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We consider scalar–tensor theory for describing varying speed of light in a spatially flat FRW space–
time. We find some exact solutions in the metric and Palatini formalisms. Also we examine the dynamics
of this theory by dynamical system method assuming a �CDM background and we find some exact
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for any attractor the form of non-minimal coupling coefficient is quadratic in terms of the scalar field Ψ .
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1. Introduction

There are some ideas that suggest the constants of nature, such
as gravitational constant and the speed of light, should be time–
space dependent [1–3]. Although the number and the role of fun-
damental constants are still debated [4], there are different mecha-
nisms leading to varying constants. Brans–Dicke scalar–tensor the-
ory [2,5] is the first formulation of a dynamical gravitational con-
stant as while as a theoretical explanation of Mach’s principle is
inherent in it. Another important physical constant which has at-
tracted considerable attention recently [1] is the speed of light.
Theories with varying speed of light (VSL) have been firstly pro-
posed by Moffat, Albrecht, Magueijo and Barrow [6,7] as an alter-
native to the inflation mechanism solving some problems of Big-
Bang cosmological models [6,8]. In their formulation the Lorentz
invariance is broken and there is a preferred frame, called cosmo-
logical frame, in which the speed of light is only a time dependent
field. In this frame there exists a pre-set function [7,9] represent-
ing the speed of light and enters in FRW equations as an input.

It is a well-known fact that it is possible to have a varying
speed of light theory and preserving the general covariance and lo-
cal Lorentz invariance [10]. The price that have to be paid for this,
is to introduce a time-like coordinate x0 which is not necessarily
equal to ct . In terms of x0 and �x, one has local Lorentz invariance
and general covariance. The physical time t , can only be defined
when dx0/c is integrable.

The most general scalar–tensor action of gravity which allows
for a dynamical speed of light is illustrated in [11]. This action is
previously analyzed by many authors using the metric approach.
Demianski et al. [12] present a class of cosmological models de-
rived from Noether symmetry requirement. These models describe
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accelerating evolution of a FRW universe filled with dust matter
and exhibit power-law dependence of coupling and potential to
the scalar field. There is also some tracking solutions of this model
[13], in which the time evolution of the scalar field tracks the ex-
pansion rate of the universe.

In our earlier paper [14] we have found the exact classical cos-
mological solutions assuming an exponential coupling between a
scalar field, representing dynamical speed of light, and the geome-
try, with or without cosmological constant. Here we shall continue
our previous work [14] on investigating the exact cosmological so-
lutions with varying speed of light. In the following sections we
shall use it and find it’s exact cosmological solutions for the spa-
tially flat universe. We get the results firstly for a metric theory.
Then we discuss the exact solutions using the Palatini approach in
which the connection and metric are independent degrees of free-
dom. In the last section we examine the dynamics of this theory
by dynamical system method assuming a �CDM background. By
considering the character of critical points of the theory we find
some exact cosmological solutions in both formalisms.

2. The model

The Jordan–VSL action which we use here is the one presented
in [11]:

S = 1

16πG

∫
d4x

√−g
(

F (Ψ )R − 2U (Ψ ) − Z(Ψ ) gμν∂μΨ ∂νΨ
)

+ Sm[φi, gμν ] (1)

in which F (Ψ ) = (c/c0)
4 and U (Ψ ) are arbitrary regular functions

of the scalar field Ψ , representing the coupling of the scalar field
Ψ with geometry and it’s potential energy density respectively. c0
is a constant velocity and hereafter we shall put 8πG = c4

0 = 1.
The first part of the above action functional is the gravitational
part, including Ricci scalar R and a dynamical term for the veloc-
ity of light with arbitrary coupling function Z(Ψ ). The latter is the
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action for matter fields, φi , and does not involve the scalar field Ψ ,
so the matter is minimally coupled to gravity. As emphasized in
the introduction, here we have assumed that there is a time-like
coordinate x0, which is not equal to ct and thus dx0/c is not nec-
essarily integrable. The dynamics of Ψ depends on the functions
F and Z . But note that Z can always be set equal to unity by a
redefinition of the field Ψ . Therefore only one arbitrary function
remains.

2.1. Metric approach

In the metric approach the metric and the scalar field Ψ are
dynamical variables. The variation of the action (1) with respect to
them gives:

F (Ψ )

(
Rμν − 1

2
gμν R

)

= Tμν + ∂μΨ ∂νΨ − 1

2
gμν(∂αΨ )2

+ ∇μ∂ν F (Ψ ) − gμν∇μ∇μ F (Ψ ) − gμνU (Ψ ), (2)

∇α∇αΨ = −1

2

dF

dΨ
R + dU

dΨ
. (3)

Also the weak equivalence principle holds because the matter
fields are minimally coupled to the metric. This implies:

∇μT μ
ν = 0, (4)

where the energy–momentum tensor of matter is defined as

T μν = 2√−g

δSm

δgμν
. (5)

In a cosmological context, applying the field equations (2)–(4) to
FRW universe in which the metric has the following form:

ds2 = −dx02 + a(t)2
(

dr2

1 − kr2
+ r2 dΩ2

)
, (6)

and leads to the following cosmological equations:

3F

(
H2 + k

a2

)
= ρ + 1

2
Ψ̇ 2 − 3H Ḟ + U , (7)

−2F

(
Ḣ − k

a2

)
= (ρ + p) + Ψ̇ 2 + F̈ − H Ḟ , (8)

(Ψ̈ + 3HΨ̇ ) = 3
dF

dΨ

(
Ḣ + 2H2 + k

a2

)
− dU

dΨ
, (9)

ρ̇ + 3H(ρ + p) = 0. (10)

These are c-variable FRW equations, the wave equation of Ψ

field and the conservation law respectively. H(x0) = 1
a

da
dx0 is the

Hubble parameter, ρ and p are the energy and pressure densi-
ties of a perfect fluid considered as matter field and dot denotes
derivative with respect to the time-like coordinate x0. These equa-
tions form a coupled set of nonlinear differential equations for
H(x0) and Ψ (x0). The time-like coordinate x0 is related to cosmic
time by the relation:

dt = dx0

c
= dx0

F 1/4
. (11)

In cosmological application dx0/c is integrable and gives the
physical time. Therefore, the physical Hubble parameter H p(t) =
1
a

da
dt can be evaluated as H p = H(x0) dx0

dt .

Substituting 1
H(x0)

d
dx0 by 1

H p(t)
d
dt in (10) gives:

dρ + 3H p(ρ + p) = 0. (12)

dt
This shows that in this model the conservation equation (10) is
valid even in terms of cosmic time. However it is possible to
have the non-conservation of energy–momentum if we change our
model. The way that the conservation relation changes, highly de-
pends on the model. For example, in the preferred frame approach
[6], violation of the energy–momentum conservation occurs be-
cause of appearing a source term proportional to the gradient of
c in the conservation equation.

The conditions which one should impose on VSL models are
usually inspired by the cosmological puzzles. In order to solve the
horizon problem of the standard cosmology, one should set [1]
ä/ȧ − ċ/c > 0 for the early universe and also one has ȧ > 0. These
lead to some constraints on the range of possible values of inte-
gration constants, appeared in the solutions.

The cosmological solutions of the greatest interest are those for
which the time evolution of the Hubble parameter is proportional
to the inverse of the cosmic time (corresponding to power-law
expansion) or a constant (corresponding to de Sitter expansion).
Considering a spatially flat FRW universe, we shall distinguish two
cases. A c-dominated universe by which we mean Sm = U = 0.
A (c–Λ)-dominated universe means that Sm = 0 but Λ is not zero
and is of gravitational type.

2.1.1. c-dominated universe
Putting Sm = U = 0 in the equations of motion, we get two

independent equations:

3F H2 = 1

2
Ψ̇ 2 − 3H Ḟ , (13)

−2F Ḣ = Ψ̇ 2 + F̈ − H Ḟ . (14)

Assuming a power-law dependence for the coupling coefficient F ,
the above equations have the following solutions:

H ∼ 1

x0
, (15)

Ψ ∼ x0α
. (16)

And also the coupling function F (Ψ ) ∼ Ψ 2 which is a particular
case emerged by requiring the existence of Noether symmetry [12].
The cosmic time is defined as (assuming α �= 2):

t ∼ (
x0)1−α/2

. (17)

Thus the physical Hubble parameter and the speed of light can be
written as:

H p ∼ 1

t
⇒ a ∼ tν, (18)

c ∼ t
α

2−α . (19)

Requesting an expanding universe together with horizon criteria
lead to the following constraints on the range of possible values of
constants:

ν > 0, ν >
2

2 − α
. (20)

Taking now α = 2, the corresponding solutions are given by sub-
stituting α = 2 in the relations (15) and (16). But now the time is
defined as:

t ∼ ln x0, (21)

so that:

H p ∼ const ⇒ a ∼ eνt, (22)

c ∼ eκt . (23)
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So α = 2 leads to de Sitter expansion for cosmic scale factor. In
this case it is needed that:

ν > 0, ν − κ > 0. (24)

Moreover, another solution which leads to the power-law expan-
sion is:

H ∼ const, ψ ∼ eαx0
, F ∼ ψ2. (25)

This is a special choice which is used previously by many authors
[10,14,15]. The cosmic time is:

t ∼ e− α
2 x0

, (26)

so

H p ∼ 1

t
⇒ a ∼ tν . (27)

Considering both criteria pointed before, one gets the following
constraint:

ν > 0. (28)

2.1.2. (c–Λ)-dominated universe
A mentioned before, this era corresponds to a matter free uni-

verse for which the potential U is nonzero and has the form
U = ΛF in which Λ is a constant. Demanding power-law expan-
sion for cosmic scale factor one can easily show that the solution
is:

H ∼ const, ψ ∼ eαx0
, F ∼ ψ2, (29)

and the cosmic time is:

t ∼ e− 1
2 αx0

. (30)

Here α > 0, so the speed of light is decreasing in cosmic time.

2.2. Palatini approach

In the Palatini approach the metric and connections are con-
sidered as independent fields. The variation of the action (1) with
respect to the metric gives:

F (Ψ )

(
R̃μν − 1

2
gμν R̃

)

= Tμν + ∂μΨ ∂νΨ − 1

2
gμν(∂αΨ )2 − gμνU (Ψ ), (31)

where R̃μν is Ricci tensor constructed from connections and R̃ ≡
gμν R̃μν . By varying the action (1) with respect to the connection,
one arrives at another field equation:

∇̃α

(√−g gμν F (Ψ )
) = 0 (32)

in which ∇̃ represents the covariant derivative with respect to the
connection. This equation shows that the connections are Levi-
Civita connections of a metric hμν related to gμν as:

hμν = F (Ψ )gμν (33)

or equivalently:

Γ λ
μν =

{
λ

μν

}
+ Xλ

μν (34)

where:

Xα
βγ = 1

2

(
δα
β ∂γ ln F (Ψ ) + δα

γ ∂β ln F (Ψ ) − gβγ gαδ∂δ ln F (Ψ )
)

(35)

is the difference between the affine connection and the Christoffel
symbols (

{
λ

μν

}
). and finally the variation with respect to Ψ gives:

∇α∇αΨ = dU − 1 dF
R̃. (36)
dΨ 2 dΨ
It is worth noting that in this case the matter energy–momentum
tensor is divergence free with respect to covariant derivative de-
fined with Levi-Civita connection of the metric, i.e. ∇μT μ

ν = 0. This
implies that the test particle shall move on the metric geodesic cal-
culated using the Levi-Civita connection. An explicit proof of this
point for a more general action can be found in [16].

Eq. (33) shows that the F -field or equivalently the c-field acts
as a conformal factor of space–time metric, gμν . Using the trans-
formation rules of the Riemann and Ricci tensors under rescaling
(33) and then inserting those in (31) and (36), we obtain:

F (Ψ )

(
R(g)

μν − 1

2
gμν R(g)

)

= Tμν +
(

1 − 3

2F

(
dF

dΨ

)2)(
∂μΨ ∂νΨ − 1

2
gμν(∂αΨ )2

)

+ ∇μ∂ν F (Ψ ) − gμν∇α∇α F (Ψ ) − gμνU (Ψ ), (37)

∇α∇αΨ = dU

dΨ
− 1

2

dF

dΨ

(
R(g) − 3

F
∇α∇α F (Ψ ) + 3

2F 2
(∂α F )2

)
, (38)

where R(g) = gμν R(g)
μν and R(g)

μν is the Ricci tensor constructed from
Christoffel symbols. In the spatially flat FRW space–time one can
easily shown that the field equations (37) and (38) together the
conservation law lead to:

3F

(
H2 + k

a2

)
= ρ + Ψ̇

2
− 3H Ḟ − 3 Ḟ 2

4F
+ U , (39)

−2F

(
Ḣ + k

a2

)
= (ρ + p) + Ψ̇ 2 − H Ḟ + F̈ − 3 Ḟ 2

2F
, (40)

Ψ̈ + 3HΨ̇

= 3
dF

dΨ

(
Ḣ + 2H2 + k

a2
+ 3

2

H Ḟ

F
+ F̈

2F
− Ḟ 2

4F 2

)
− dU

dΨ
, (41)

ρ̇ + 3H(ρ + p) = 0. (42)

As we did for the metric approach, one can find some exact solu-
tions for the spatially flat universe in two cases: c-dominated and
(c–Λ)-dominated. The interesting point which can be easily shown
is that demanding power-law expansion for cosmic scale factor in
the Palatini framework leads to the solutions which are the same
as the results found using the metric formalism.

3. Dynamics of VSL theories

Another way to find out some exact solutions for cosmologi-
cal models is the dynamical system method [17]. In this method
by choosing some appropriate variables, one can convert the field
equations of the desired theory to a set of autonomous differen-
tial equations. Then the critical points of the autonomous system
describe interesting exact solutions. Also this method helps us to
check the stability of the solutions. Here we consider a class of VSL
theories which are described by action (1). It is worth noting that
this theory is the same as to a general scalar tensor theory, but
we should take into account that the volume element is defined
as dx0 d3x which is different form the canonical volume element.
So as we have explained before, since in the field equations H is
not the physical Hubble parameter and derivatives are with respect
to x0 coordinate, the dynamics of VSL theories should be differ-
ent from the scalar tensor theories. Dynamics of a general scalar
tensor theory in the Jordan frame using metric approach has been
considered in [18] by demanding a background �CDM spatially flat
cosmology.

In Section 2, to find the exact solutions, we chose F (x0) such
that the corresponding solution for cosmic scale factor was physi-
cally interested. However, here we impose a general form for phys-
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Table 1
The critical points of the system (57), (58), (59) and (60).

Era Cp (x1, x2, x3, x4) Eigenvalues

Radiation
H ′

p
H p

= −2 R1(0,0,0,1) (1,−1/2,−2,4)

R2(2,0,−1,0) (1,2,1/2,5 − 2n)

R3(4/3,0,−1/3,0) (5/3,−1/2,2/3, 14
3 − 4n

3 )

R4(−2,0,−1/3,0) (−1,
√

41−11
4 ,−

√
41+11

4 ,3 + 2n)

R5( 8
2n−1 ,

(4n2−24n+35)

3(2n−1)2 ,
4(2n2−9n−2)

3(2n−1)2 ,0) ( 4
2n−1 , 2n+3

2n−1 , 10n−29−A
4−8n , 10n−29+A

4−8n )

Matter
H ′

p
H p

= − 3
2 M1(0,0,0,0) (3,−1,

√
3−3
2 ,−

√
3+3
2 )

M2(2,0,−1,0) (0,0,1,4 − 2n)

M3( 6
2n−1 ,

2(4+n2−4n)

(2n−1)2 , 2n2−8n−1
(2n−1)2 ,0) (−1, 3

2n−1 ,
(2−n)(−3+C)

2n−1 ,
(2−n)(3+C)

2n−1 )

De Sitter
H ′

p
H p

= 0 Λ1(0,1,0,0) (−4,−3, −9+√
33+96n
4 , −9−√

33+96n
4 )

Λ2(6,0,−7,0) (−1, 9+√
33

4 , 9−√
33

4 ,3 − 6n)

Λ3(2,0,−1,0) (−3/2,−3,−2,1 − 2n)

Λ4(4,0,−3,0) (3/2,−2,−1,2 − 4n)
ical Hubble parameter which is related to �CDM cosmology, that
is:

H p(z)2 = H2
0

[
Ω0m(1 + z)3 + Ω0r(1 + z)4 + ΩΛ

]
(43)

where Ω0r = ρr
ρcr

� 10−4, Ω0m = ρm
ρcr

� 0.3 and ΩΛ = 1 − Ω0m −
Ω0r , then we seek for the corresponding solutions for scalar field.
We also assume U (Ψ ) ∼ F (Ψ )n where n is a constant [19]. In or-
der to express Eqs. (39), (40) and (41) as a dynamical system of the
first order differential equations, we first write them in dimension-
less form as:

1 = Ωm + ρr

3F H2
+ Ψ ′ 2

6F
+ U

3F H2
− F ′ 2

F 2
− F ′

F
, (44)

−2
H ′

H
= ρm

F H2
+ 4ρr

3F H2
+ Ψ ′ 2

F
− F ′

F
+ H ′ F ′

H F
+ F ′′

F
− 3F ′ 2

F 2
, (45)

Ψ ′′

F
= − H ′Ψ ′

H F
+ 1

F

dF

dΨ

[
3H ′

H
+ 6 + 9F ′

2F
+ 3H ′ F ′

2H F
+ 3F ′′

2F
− 3F ′ 2

4F 2

]

− 1

F H2

dU

dΨ
− 3Ψ ′

F
, (46)

where ′ = d
d ln a = 1

H(x0)

d
dx0 = 1

H p(t)
d
dt . Now we use a set of di-

mensionless phase-space variables x1, . . . , x4 similar to those in-
troduced in [18], that is:

x1 = − F ′

F
, x2 = U

3F H2
, x3 = Ψ ′ 2

6F
, x4 = ρr

3F H2
. (47)

Now defining Ωm = ρm
3F H2 we write Eqs. (44) and (45) as:

Ωm = 1 − x4 − x3 − x2 − x1 + 1

4
x2

1, (48)

x′
1 = 3 + 2

H ′

H
+ x4 + 3x3 − 3x2 −

(
2 + H ′

H

)
x1 + 1

4
x2

1. (49)

Differentiating x4 and x2 with respect to ln a gives:

x′
4 = x4

[
x1 − 4 − 2

H ′

H

]
, (50)

x′
2 = x2

[
x1(1 − n) − 2

H ′

H

]
, (51)

where n = F
U

dU
dF . Finally, differentiating x3 with respect to ln a and

using (46), we have:

x′
3 = −2

(
H ′

H
+ 3

)
x3

+ 1
x1

(
x1 + x4 + 5x3 + (2n − 3)x2 − 1

) − 1
x3

1. (52)

2 8
On the other hand one can easily verify that H ′
H = H ′

p
H p

+ 1
4 x1, so by

substituting this relation to Eqs. (49), (50), (51) and (52) we have:

x′
1 = 3 −

(
3

2
+ H ′

p

H p

)
x1 − 3x2 + 3x3 + 2

H ′
p

H p
+ x4, (53)

x′
2 = x2

[
x1

(
1

2
− n

)
− 2

H ′
p

H p

]
, (54)

x′
3 = −2

(
H ′

p

H p
+ 3

)
x3 + 1

2
x1

(
x1 + x4 + 4x3 + (2n − 3)x2 − 1

)

− 1

8
x3

1, (55)

x′
4 = x4

[
1

2
x1 − 4 − 2

H ′
p

H p

]
. (56)

These equations describe the cosmological dynamics of the VSL
theory in Palatini formalism. By a completely similar procedure
one can write the field equations of the metric formalism as fol-
lows:

x′
1 = −3 − x1

(
3

2
+ H ′

p

H p

)
− 3x2 + x4 + 2x3 + 3

4
x2

1 + 2
H ′

p

H p
, (57)

x′
2 = x2

[
x1

(
1

2
− n

)
− 2

H ′
p

H p

]
, (58)

x′
3 = x1

[
1

2
x3 − 2 − H ′

p

H p
+ nx2

]
− 6x3 − 2

H ′
p

H p
x3 − 1

4
x2

1, (59)

x′
4 = x4

[
1

2
x1 − 4 − 2

H ′
p

H p

]
. (60)

It is important to note that H ′
p/H p is not always constant so

the dynamical equations of the metric and Palatini formalisms are
not autonomous and we cannot find the critical points in any
regime. On the other hand we know that H ′

p/H p for �CDM back-
ground is approximately constant in the matter, radiation and de
Sitter eras and so we can use the dynamical system method for
these eras [18]. The critical points and their corresponding eigen-
values are shown in Table 1 for the metric formalism and in Ta-
ble 2 for the Palatini formalism.

Considering Table 2, we see that the only physically interested
coordinates are R1, R5, M1, M3 and Λ1, for other points x3 < 0
for any n. For n < 1

2 , Λ1, M3 and R5 are attractors, but de-
manding positive values for x3 imposes another range to n, say
−0.93 < n < −0.13. Note that A = √

281 + 128n3 + 924n − 732n2

and C = √
3 + 12n. It should be noted that R1, M1 and Λ1 corre-

spond to general relativity with constant speed of light. Also it is
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Table 2
The critical points of the system (53), (54), (55) and (56).

Era Cp (x1, x2, x3, x4) Eigenvalues

Radiation
H ′

p
H p

= −2 R ′
1( 8

2n−1 , 4n2−24n+35
3(2n−1)2 ,

4(2n2−9n+10)

3(2n−1)2 ,0) (0, 2n+3
2n−1 , 10n−29−A

4−8n , 10n−29+A
4−8n )

R ′
2(0,0,0,1) (−2,4, 1+√

17
4 , 1−√

17
4 )

R ′
3(2,0,0,0) (0,1/2,2,5 − 2n)

R ′
4(4/3,0,1/9,0) (0,−1/2,5/3, 14

3 (1 − n))

R ′
5(−2,0,2/3,0) (0,

√
41−11

4 ,−
√

41+11
4 ,3 + 2n)

Matter
H ′

p
H p

= − 3
2 M ′

1(2,0,0,0) (0,1,−1,4 − 2n)

M ′
2(0,0,0,0) (3,−1,

√
3−3
2 ,−

√
3+3
2 )

M ′
3( 6

2n−1 ,
2(4+n2−4n)

(2n−1)2 ,
2(4+n2−4n)

(2n−1)2 ,0) (−1, 3
2n−1 ,

(2−n)(−3+C)
2n−1 ,

(2−n)(3+C)
2n−1 )

De Sitter
H ′

p
H p

= 0 Λ′
1(0,1,0,0) (−4,−3, −9+√

33+96n
4 , −9−√

33+96n
4 )

Λ′
2(6,0,2,0) (−4, 9+√

33
4 , 9−√

33
4 ,3 − 6n)

Λ′
3(2,0,0,0) (−3/2,−4,−2,1 − 2n)

Λ′
4(4,0,1,0) (3/2,−4,−1,2 − 4n)
worth noting that these results are different from those obtained
in [18] for similar scalar tensor theory. Considering the critical
points of Table 2 we see that M ′

3 is an attractor if − 1
4 < n < 1

2 .
Also in the de Sitter era Λ′

1 for n < 1
2 and Λ′

3 for n > 1
2 are at-

tractors. The noteworthy feature of the Palatini VSL theory is that
there exists no attractor critical point in the radiation dominated
universe and unlike the metric formalism, for all critical points, x3
can be a positive quantity. However, in the Palatini formalism we
have three critical points R ′

3, M ′
1 and Λ′

3, which are meaningless
because for them F ′(Ψ ) �= 0 while Ψ ′ = 0. It is also important to
mention that again R ′

2, M ′
2 and Λ′

1 correspond to general relativity
with constant speed of light.

It is interesting to note that for any solutions which are ex-
tracted from the analysis of the critical points, the non-minimal
coupling coefficient takes the form F (Ψ ) ∼ (Ψ − Ψ0)

2. For any
regime and critical point, the speed of light takes the form c(t) ∼
a(t)−x1/4 in both formalisms. The scalar field takes the form
Ψ (t) = λt−x1/4 +Ψ0 and the horizon criteria is x1 > 4 in the radia-
tion dominated era. In the matter dominated era, the scalar field is
Ψ (t) = λt−x1/3 +Ψ0 and the horizon criteria takes the form x1 > 2.
On the other hand considering the above tables, we see that the
critical points in the matter and radiation eras do not satisfy the
horizon criteria. However, in the de Sitter era the horizon criteria
is satisfied by any physical critical point and the solution for Ψ is
Ψ (t) = λe−x1t/4 + Ψ0.

4. Conclusions

In this Letter, we have considered a class of VSL theories which
are described by the action (1), in both metric and Palatini for-
malisms. In Section 2 we have shown that this model exhibits a
power-law or de Sitter expansion for the cosmic scale factor. In
any case applying both formalisms, we have shown that F (Ψ ) is a
quadratic function in terms of the dynamical scalar field Ψ . This is
a particular case emerged by requiring the existence of the Noether
symmetry for any cosmological point-like Lagrangian of a general
scalar tensor theory [12]. On the other hand, one aspect of our
model is if the scalar field can be interpreted as dark energy as
well as variable speed of light. Many authors studied, for example,
the change of fine structure constant based on quintessence [20].
To give a look at this point here, note that in the metric formalism,
using Eqs. (7) and (8), we define ωeff as follows:

ωeff = Peff = Ψ̇ 2 + 2 F̈ + 4H Ḟ − 2U
˙ 2 ˙ . (61)
ρeff Ψ − 6H F + 2U
The choice of ωeff = −1 leads to the following equation:

Ψ̇ 2 − H Ḟ + F̈ = 0. (62)

In the matter–radiation free universe, by using equations (7), (8)
and (62) we have:

6F H2
0 + 5H0 Ḟ + F̈ − 2U = 0, (63)

where H = H0 is a constant. By using these equations one can
verify that the coupling coefficient takes the form F (Ψ ) ∼ Ψ 2 in
both c-dominated and Λ-dominated universe. As an example of
this point, consider a Λ-dominated universe. Eq. (63) leads to the
following solution for the coupling function:

F ∼ e
−1
2 (5H0+

√
H2

0+8Λ)x0
, (64)

and by substituting this result in (62) we obtain:

Ψ ∼ e
−1
4 (5H0+

√
H2

0+8Λ)x0
. (65)

So F (Ψ ) ∼ Ψ 2. Similarly, in the Palatini formalism, we define ωeff
as follows:

ωeff = Peff

ρeff
= Ψ̇ 2 + 2 F̈ + 4H Ḟ − 3 Ḟ 2

2F − 2U

Ψ̇ 2 − 6H Ḟ − 3 Ḟ 2

2F + 2U
. (66)

Again, ωeff = −1 leads to the following equation:

Ψ̇ 2 − H Ḟ + F̈ − 3 Ḟ 2

2F
= 0. (67)

By considering the modified Friedman equations of this formalism,
equations (39) and (40), in the matter–radiation free universe, one
can see that the coupling function satisfying the condition (63).
So by using the equations (63) and (67), we see that F (Ψ ) ∼ Ψ 2

in both c-dominated and Λ-dominated universe. So the consis-
tency with Noether symmetry and having constant ωeff, specially
ωeff = −1, are both satisfied for F (Ψ ) ∼ Ψ 2. But it should be
stressed here that unlike the usual �CDM or quintessence models,
the expression ωeff = −1 dose not mean necessarily an accelerated
universe (i.e. d2a

dt2 > 0). To clarify this point let us combine (7) and
(8) in the metric formalism (or (39) and (40) in the Palatini for-
malism) as follows:

ä

a
= −1

6

[
(1 + 3ω)ρ + (1 + 3ωeff)ρeff

]
. (68)

Converting the derivatives in terms of x0 to derivatives with re-
spect to the cosmic time, for a matter–radiation free universe, we
have:

1 d2a
2

= 1 1 dF
H p − (1 + 3ωeff)

1/2
ρeff. (69)
a dt 4 F dt 6F
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Note that this equation is correct in both formalisms with only dif-
ferent expression of ρeff so the following results are common for
them. From this equation we see that the evolution of the speed
of light has a crucial role in constructing an inflationary universe.
If the speed of light is decreasing in cosmic time, then the neces-
sary condition for d2a

dt2 > 0 is ωeff < − 1
3 , but this is not sufficient

condition. On the other hand, if the speed of light is increasing in
time, then the sufficient condition for d2a

dt2 > 0 is ωeff < − 1
3 , but

this is not necessary condition. In the other word, by a constant
ωeff, the sign of d2a

dt2 can change with time. For a simple example,

consider the solution (64), where H(x0) = H0 and ωeff = −1. By
using Eq. (69) we have:

1

a

d2a

dt2
= H2

p

(
1 − αt2), (70)

where α is a positive constant.
We recall that the action (1) which is used in this Letter, allows

for a dynamical gravitational constant as well as dynamical speed
of light. The only difference is that we should take x0 coordinate
as a time-like coordinate in the latter case. So the equations of
variable speed of light and variable gravitational constant scalar–
tensor cosmology are not similar when we write them in terms of
the physical time and physical Hubble parameter. To clarify better,
starting action (1) as a variable gravitational constant theory and
then applying it to cosmology, considering a matter–radiation free
universe, it can be easily shown that the first term in Eq. (69) is
absent in this case. In this theory ωeff < − 1

3 leads to an inflation-
ary universe if the matter–radiation density is negligible.

In Section 3 we have considered the dynamics of the VSL theo-
ries in order to find out other exact solutions. We have constructed
the cosmological dynamical system which is constrained to obey
the �CDM cosmic history. Also by considering the corresponding
critical points, we have shown that for both formalisms, variable

speed of light takes the form c ∼ a− x1
4 in each era. But the time-

dependence of dynamical scalar field is different in the radiation

and matter eras and it has the forms Ψ ∼ t− x1
4 and Ψ ∼ t− x1

3 , re-
spectively.

By calculating the variables x1, . . . , x4 for exact solutions of the
c-dominated universe which have been obtained in Section 2 and
comparing them with the results of the section 3, one can show
that they are not critical points in metric formalism. But by choos-
ing appropriate values for α,υ and k in the relations (18)–(27),
they can correspond to the critical points R ′

4, R ′
5, Λ′

2 and Λ′
4 in

Palatini formalism.
It is worth to note that for any solution which are extracted
from the analysis of critical points, the non-minimal coupling co-
efficient takes the form F (Ψ ) ∼ (Ψ − Ψ0)

2. Also unlike the metric
approach, there is no attractor critical point in the radiation dom-
inated era for the Palatini approach. It is also important to note
that critical points in the matter and radiation eras do not satisfy
the horizon criteria. However, in the de Sitter era the horizon cri-
teria is satisfied by any physical critical point and the scalar field
has the exponential dependence to cosmic time.
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