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A B S T R A C T

Brain damage induced by Olusosun and Aba-Eku municipal landfill leachates was investi-

gated in Wistar rats. Male rats were orally exposed to 1–25% concentrations of the leachates

for 30 days. Catalase (CAT) and superoxide dismutase (SOD) activities, and malondialdehyde

(MDA) concentrations in the brain and serum of rats were evaluated; body and brain weight

gain and histopathology were examined. There was significant (p < 0.05) decrease in body

weight gain and SOD activity but increase in absolute and relative brain weight gain, MDA

concentration and CAT activity in both brain and serum of treated rats. The biochemical

parameters, which were more altered in the brain than serum, corroborated the neuro-

logic lesions; neurodegeneration of purkinje cells with loss of dendrites, perineural vacuolations

of the neuronal cytoplasm (spongiosis) and neuronal necrosis in the brain. The concentra-

tions of Cr, Cu, Pb, As, Cd, Mn, Ni, sulphates, ammonia, chloride and phosphate in the leachate

samples were above standard permissible limits. The interactions of the neurotoxic con-

stituents of the leachates induced the observed brain damage in the rats via oxidative damage.

This suggests health risk in wildlife and human populations.

© 2015 The Authors. Production and hosting by Elsevier B.V. on behalf of Beni-Suef Uni-

versity. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Population growth with subsequent industrial development is
the major factor responsible for the inevitable increase in solid
waste generation worldwide. Inappropriate disposal of these
wastes into unsanitary landfills constitute public health risk
and environmental contamination due to landfill gas and lea-
chate production from components of the solid wastes (Alimba,
2013). Leachates contain high concentrations of toxic metals,
hazardous organic and inorganic chemicals, radioactive sub-

stances, particulate matter and microorganisms; many of which
are regarded as emergent environmental contaminants
(Efuntoye et al., 2011; Eggen et al., 2010; Øygard and Gjengedal,
2009; Slack et al., 2005). Previously, we observed that mixture
of these xenobiotics in leachates from Olusosun and Aba Eku
landfills in Nigeria, induced alterations in the liver, kidney, body
weight, haematological indices and erythrocyte morphology in
rats (Alimba and Bakare, 2012; Alimba et al., 2012). Li et al. (2006,
2010) reported that leachate from Xingou municipal landfill in
China induced lipid peroxidation, protein oxidation and dis-
turbed the antioxidant status of liver, spleen, heart, brain and
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kidney in exposed mice. It was suggested from these reports
that the induction of systemic toxicity by landfill leachates in-
volves free radical generation.

Among mammalian organs, the brain is the most suscep-
tible organ to lipid peroxidation and oxidative injury from
xenobiotics due to its membrane rich polyunsaturated fatty
acids, low antioxidant status and high iron contents (Jayaraman
et al., 2008). Evidence exists that individual chemicals in land-
fill leachate altered the normal functioning of the nervous
system hence increasing neurotoxic diseases among human
population (Neal and Guilarte, 2012; Wright et al., 2006).
However, there are limited studies on the effects of landfill lea-
chate on the functional and structural integrity of the
mammalian brain. Furthermore, neurotoxic assessment is one
among the health outcomes suggested by the Agency for Toxic
Substances and Disease Registry (ATSDR) to be monitored
during exposure to hazardous substances from solid waste dis-
posal sites (Johnson, 1999; Schaumburg et al., 1983). In this study,
a 30 day sub-chronic toxicity testing of Olusosun and Aba Eku
landfill leachates in Wistar rats was carried out to assess struc-
tural alterations in the brain, antioxidant enzyme activities and
lipid peroxidation status of the brain and serum, and altera-
tions in brain weight gain. Some physico-chemical parameters
and heavy metal compositions of the leachates were also
analyzed.

2. Materials and methods

2.1. Sampling site and leachate collection

The study sites, Olusosun and Aba-Eku landfills, had been de-
scribed previously (Alimba, 2013). These landfills were selected
due to the high polluting status of the environment through
landfill gas and leachate production, which increased public
health risk through exposure to landfill chemicals and micro-
organisms (Alimba, 2013; Efuntoye et al., 2011). Raw leachates
were collected from 20 different leachate wells on each of the
landfills and thoroughly mixed to produce homogenous samples
for each sampling site. The samples were transferred to the
laboratory in pre-cleaned 10 litre plastic containers, where they
were filtered using glass wool and Whatmann® No. 42 filter
paper to remove suspended particles. They were centrifuged
at 3000 rpm for 10 minutes and stored at 4 °C. The processed
leachates were considered as stock samples (100%) and la-
belled as Aba-Eku Leachate (AEL) and Olusosun Leachate (OSL).

2.2. Physical and chemical analysis of the leachate

Physical and chemical components of the leachates were
analysed according to American Public Health Association
(APHA) (1998). Nitrate, ammonia, chloride, phosphate, sul-
phate, total hardness, total alkalinity, biochemical oxygen
demand (BOD), chemical oxygen demand (COD) and total solids
(TS) were determined. Also iron (Fe), lead (Pb), copper (Cu), man-
ganese (Mn), arsenate (As), cadmium (Cd), chromium (Cr) and
nickel (Ni) concentrations were determined according to United
States Environmental Protection Agency (USEPA) (1996) and
American Public Health Association (APHA) (1998). 100 ml each

of the leachate samples was digested by heating with con-
centrated HNO3. The resulting mixture was made up to 10 ml
with 0.1N HNO3 and metal concentrations determined using
PerkinElmer® A3100 atomic absorption spectrophotometer.

2.3. Animals and experimental design

Male Wistar rats (mean ± SD weight; 167.64 ± 4.27 g) were ob-
tained from the animal house unit of College of Medicine,
University of Ibadan, Nigeria. They were acclimatized for 2
weeks prior to leachate treatment, and were maintained in labo-
ratory condition of 12 hours dark and light cycle with access
to drinking water and standard rodent chow (Ladokun feed
Nigeria®) ad libitum. Rats in each group (n = 5) was gavaged 0.5 ml
of 1, 2.5, 5, 10 and 25 % (leachate diluted with distilled water,
v/v) concentrations, of each of the leachates for 30 consecu-
tive days. The leachate concentrations were selected from
previous sub-chronic systemic toxicity (Alimba and Bakare, 2012;
Alimba et al., 2012), Similar treatment was concurrently given
to the negative and positive control groups receiving distilled
water and cyclophosphamide (CYP, 40 mg / kg/ bwt) respec-
tively. The animal experiment conformed to the Guide for the
Care and Use of Laboratory Animals published by the US Na-
tional Institutes of Health (NIH Publication No. 85-23) (Gad, 2007).

2.4. Clinical pathology and body and brain weight
measurement

Rats in each of the treatment groups were weighed at the be-
ginning of the experiment using Acculab® USA, Model-vic-
303 electronic analytical weighing balance. At the end of
exposure, rats were fasted overnight, weighed prior to blood
collection and sacrificed. Blood was collected from the orbital
plexus using heparinized 70 ml micro-haematocrit capillary
tubes into lithium coated serum separator tubes (Sanford, 1954).
It was allowed to clot and centrifuged at 3000 rpm for 20
minutes at 4 °C to separate the serum (supernatant). Whole
brain from both treated and control rats were surgically
removed, rinsed with ice-cold physiological saline and blotted
dry to determine the absolute and relative brain weight (brain
weight / body weight x 100 g). Brain homogenate was pre-
pared using ice-cold 10 mmol/L phosphate-buffered saline (pH
7.4) containing 0.15 M KCl (10% w/v).The homogenate was cen-
trifuged at 6000 rpm for 30 minutes at 4 °C. Both the brain
homogenate and serum (supernatants) were stored at −70 °C
prior to biochemical analysis.

2.5. Biochemical analysis

The brain homogenate and serum were analysed for antioxi-
dant enzyme activities; superoxide dismutase (SOD; E.C. 1.15.1.1)
was assayed according to the method of Nebot et al. (1993),
while catalase (CAT; E.C. 1.11.1.6) was in accordance with the
method of Johansson and Borg (1988). Lipid peroxidation con-
centration in the brain homogenate and serum was by
malondialdehyde (MDA) determination in accordance with the
methods of Esterbauer and Cheeseman (1990). Protein con-
centration was measured according to the method of Lowry
et al. (1951). Analytical grade reagents (Biosystems Laborato-
ries, S.A. Costa Brava, Barcelona, Spain) were used, and the
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absorbance of the reactions were measured spectrophoto-
metrically using HAICE®, DR 3000 (Germany).

2.6. Histopathological analysis

Sections of the brain from the treated and control rats were
fixed in 10% neutral buffered formalin. The fixed tissues were
dehydrated by passing through ascending order of ethyl alcohol–
water concentrations, cleared in xylene and embedded in
paraffin using rotary microtome. 3 μm thick sections of the
tissues were prepared on slides, stained with Haematoxylin–
Eosin (H&E) and mounted in neutral DPX medium for
microscopic examination at 400×.

2.7. Statistical analysis

All statistical analyses were conducted with Graphpad prism
5.0® computer programs.

Data are presented as mean ± SD (n = 5). One-way analy-
sis of variance (ANOVA) was used to determine the differences
among various groups. When the corresponding F value (at 95%
confidence limit) for the differences in the treated group means
was significant pair wise, comparisons between treated groups
and the negative control were determined using multiple com-
parison procedure of the Dunnett post-hoc test, and differences
were considered significant (p < 0.05).

3. Results

3.1. Physical and chemical analysis of the leachate

Table 1 shows the physico-chemical parameters and heavy
metals analyzed in Olusosun and Aba Eku leachates. OSL and
AEL were respectively dark brown and brown in colour, with
pH values within the range set by National Environmental
Standards and Regulations Enforcement Agency (NESREA),
(Nigeria) (2009) and United State Environmental Protection
Agency (2006). The heavy metals and physico-chemical pa-
rameters examined in the leachates were higher than the
maximum allowable limits (United State Environmental
Protection Agency, 2006; National Environmental Standards and
Regulations Enforcement Agency [NESREA], [Nigeria], 2009).

3.2. Body and organ weight gain

Table 2 presents significant (p < 0.05) decrease in the percent-
age body weight gain of exposed rats compared to the negative
control. OSL treated rats presented a decrease body weight gain
than AEL treated rats. There were significant (p < 0.05) increase
in means of absolute and relative brain weight gain in OSL and
AEL treated rats, although only the 10 and 25% concentrations
were significantly different from the negative control (Table 2).

3.3. Biochemical indicators of oxidative stress

Fig. 1(a–c) shows the results of the biochemical tests. SOD ac-
tivity significantly (p < 0.05) reduced in the brain and serum
compared to the negative control. This was followed by

Table 1 – Physico-chemical parameters and heavy
metals analysed in Olusosun and Aba-Eku landfill
leachates.*

Parameters AEL OSL NESREAa USEPAb

Colour Brown Dark brown – –
pH 7.9 6.8 6.0–9.0 6.5–8.5
Nitrate 78.62 87.3 10 10
Ammonia 67.51 83.1 10 0.02
BODc 643.70 602 50 –
CODd 712.21 529 90 –
Phosphate 99.15 105.70 2.0 –
Chloride 899.32 991 250 250
Sulphate 124.34 202.36 250 250
Hardness 492 516 – 0–75
Alkalinity 405 421 150 20
TSe 1131.24 1140.3 – –
Cu 1.86 1.92 0.5 1.3
Fe 0.60 0.71 – 0.3
Pb 0.83 0.81 0.05 0.015
Cd 0.41 0.47 0.2 0.05
Mn 0.69 0.58 0.2 0.05
As 0.50 0.60 – 0.01
Ni 0.38 0.51 0.05 –
Cr 0.24 0.43 0.05 0.1

* All values are in mg/L except pH.
a National Environmental Standards and Regulations Enforce-

ment Agency (2009) (Nigeria) maximum permissible limits for
effluent from wastewater.

b United State Environmental Protection Agency (2006).
www.epa.gov/safewater/mcl.html

c Biochemical oxygen demand.
d Chemical oxygen demand.
e Total solid.

Table 2 – Percentage body weight change, absolute and
relative brain weight of rat exposed to Olusosun (OSL)
and Aba Eku (AEL) landfill leachates for 30 days.

Leachate conc.
(%,v/v)

% Body
weight

Absolute brain
weight (g)

Relative brain
weight (g)

OSL
DW 9.13 1.29 ± 0.05 0.78 ± 0.02
1.0 7.68 1.43 ± 0.07 0.89 ± 0.09
2.5 5.78 1.47 ± 0.14 0.92 ± 0.04
5.0 2.87 1.52 ± 0.18 0.98 ± 0.07
10.0 0.24 1.60 ± 0.02b 0.99 ± 0.05a

25.0 −3.07 1.56 ± 0.03b 1.00 ± 0.03a

CYP −5.39 1.60 ± 0.03b 1.05 ± 0.06b

AEL
DW 9.13 1.29 ± 0.05 0.78 ± 0.02
1.0 7.76 1.34 ± 0.06 0.84 ± 0.04
2.5 5.09 1.37 ± 0.05 0.86 ± 0.03
5.0 1.95 1.44 ± 0.05 0.88 ± 0.08
10.0 1.56 1.56 ± 0.04a 0.98 ± 0.04a

25.0 −1.74 1.68 ± 0.03b 0.98 ± 0.09a

CYP −5.39 1.60 ± 0.03b 1.05 ± 0.06b

Values are in mean ± SD. Superscripts differ significantly (ap < 0.05;
bp < 0.01) from Dist water using Dunnett’s multiple post hoc test.
Dist water (distilled water).CYP (cyclophosphamide; 40 mg/kg/bw).
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concomitant significant (p < 0.05) increase in CAT activity in
both brain and serum of leachate treated rats compared to the
negative control. SOD and CAT activities in the brain were se-
verely affected by the leachate constitutes than in the serum.
MDA concentration in the brain and serum was significantly
higher than the negative control. Brain MDA concentration was
higher than in the serum.

3.4. Histopathological assessment of the brain

Histology of the cerebellum from negative control rats showed
relatively normal neurons and evenly distributed purkinje cells
(Fig. 2a). Fig. 2(b-f) showed sections of rat brain exposed to the
leachates with diffused vacuolations of the neuronal cyto-
plasm (spongiosis), sub-meningeal spongiosis at the molecular
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Fig. 1 – (a) Values are in mean ± SD. Superscripts differ significantly (ap < 0.05; bp < 0.01; cp < 0.001) from Dist water using
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layer, neuronal necrosis with proliferating astrocytes, swollen
endothelial cells (oedema), inflammation of the neurons and
neuro-degenerated purkinje cells with lost dendrites.

4. Discussion

There is convincing evidence that chemicals in landfill lea-
chates are capable of altering the functioning of the nervous
system (Schaumburg et al., 1983; Wright et al., 2006). However,
the neurotoxic effects of these xenobiotics are yet to be fully
characterized since they are enormous and varied. The find-
ings herein showed the involvement of oxidative stress
induction in the pathological alterations of Wistar rat brain
exposed to landfill leachates. The elevated concentrations of
toxic metals and physico-chemical parameters in the tested
leachates show the leachability of these parameters from in-
dividual wastes in the landfills. They are capable of inducing
deleterious effects on biological systems which may be linked
to the significant increase in both absolute and relative brain
weight gain with concomitant decrease in percentage change
in terminal body weight of the treated rats compared to the
negative control. Alterations in brain weight gain suggest brain
damage due to swollen endothelial cells (oedema) induced by
the leachate constituents; mostly the toxic metals (Bailey et al.,

2004; Lanning et al., 2002). Li et al. (2010) showed that in-
crease brain weight gain observed in mice exposed to landfill
leachates for 7 days was the most obviously affected organ com-
pared to other viscera examined.

Superoxide dismutase activity prevents oxidative damage
by scavenging and converting superoxide anions to hydrogen
peroxide, while catalase decomposes the hydrogen peroxide
to protect tissues from highly reactive hydroxyl radicals
(Michiels et al., 1994). Significant alterations in the activities
of these enzymes in the brain and serum of the leachate treated
rats is linked to the harmful effects of the leachate constitu-
ents due to excess undetoxified reactive oxygen species (ROS)
formation. Alterations in the antioxidant enzyme activities along
with lipid peroxidation induction in leachate treated rats in
the brain than in serum support the vulnerability of the brain
to leachate induced oxidative damage (Bertoldi et al., 2012; Li
et al., 2006). The metallic ions in the leachates are known to
permeate brain tissues altering the trans-synaptic move-
ment of neurotransmitters and or receptor associated voltage-
sensitive channels and membrane transporters (Leonard et al.,
2004; Mejia et al., 1997; Rodriguez et al., 1998). These metallic
ions caused loss of functional integrity to the neuronal cell
membrane of the leachate treated rats through free radical for-
mation. This assertion may account for the dose-dependent
alterations in brain SOD and CAT of mice exposed to lea-
chates (Li et al., 2006) and rats exposed to arsenic (Chaudhuri

Fig. 2 – (a-f): Sections of the rat brain exposed to Olusosun and Aba-Eku landfill leachates and the negative control (H&E, x
400).

(a) Section of the cerebrum from the negative control showing normal neurons and evenly distributed purkinje cells.
(b) Section of the cerebellum from leachate treated rat showing diffused vacuolation of the neuronal cytoplasm (spongiosis).
(c) Section of the cerebrum from leachate exposed rat showed submeningeal spongiosis at the molecular layer and neuro-

nal necrosis with proliferating astrocytes.
(d) Section of the cerebrum from leachate treated rat showing numerous vacuolation in the neuronal cytoplasm (spongiosis)

and inflammation of the neurons.
(e) Section of the cerebrum from leachate treated rat showing vacuolation of the neuronal cytoplasm and swollen endothe-

lial cells.
(f) Section of the cerebellum from leachate treated rat showing neuro-degenerated purkinje cells with loss of dendrites.
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et al., 1999). It is also in agreement with Tsarpali and Dailianis
(2012) observation that landfill leachates inhibited acetylcho-
linesterase (enzyme that degrades the neurotransmitter;
acetylcholine) activity in mussel. Alterations in enzyme bio-
chemistry and biological molecules involve synergistic and or
antagonistic interactions of leachate constituents via free radical
production (Bakare et al., 2012; Radetski et al., 2004; Tsarpali
and Dailianis, 2012), and this is also considered as a major
mechanisms of leachate induced neurotoxicity in mammals
(Leonard et al., 2004; Rao and Avani, 2004).

Histopathological examination of tissues is a sensitive end
point which detects specific lesions induced directly on tissues
or indirectly via free radical generation induced by xenobiotics
(Lanning et al., 2002; Travlos et al., 1996).The neurologic lesions
in the brain of OSL and AEL treated rats corroborate biochemi-
cal observations to suggest neurotoxic oxidative damage.
Neuronal necrosis observed in the treated rats is associated
with disruption of structural and functional integrities of cell
membrane. It is possible that pro-oxidant metals (including As)
in the leachates reacted with lipid hydroperoxides of the brain
cell membrane to elicit significant increase in malondialdehyde
(MDA) formation in the treated rats. This produced MDA in-
terfered with the integrity of the neuronal membrane
(Chattopadhyay et al., 2002; Jomova et al., 2010; Knaapen et al.,
2004). The occurrence of inflammatory neurons, neuronal ne-
crosis and proliferating astrocytes associated neuro-degeneration
in the leachate treated rats suggest reactive oxygen species for-
mation and subsequent disruption of metabolic enzymes.These
consequently activated neuronal accidental cell death (ne-
crotic) and or neuronal programmed cell death (apoptotic)
pathways (Wright and Baccarelli, 2007; Zheng et al., 1998). Fur-
thermore, inflammatory cells are associated with spongiosis,
neuro-degeneration of the purkinje cells and swollen endo-
thelial cells (Park et al., 2009).The presence of swollen endothelial
cells (oedema) corroborated increased absolute brain weight
gain in the treated rats, and suggests obstruction of cellular
fluid flow in the brain cells (Lanning et al., 2002). Neuro-
degenerations in Purkinje cells may affect impulse/signal
conduction (poor signal transmission) from the cerebellum to
higher centre that will enhance motor coordination of the body
(Gartner and Hiatt, 2001). This may account for the laboured
breathing pattern, sluggishness, muscular disorders (muscu-
lar stiffness and decreased motor activities), hair loss and
ungroomed hair in Wistar rats exposed to OSL and AEL for 30
days (Alimba et al., 2012). Some of these neuro-psychological
features were also observed in school-aged children residing
near hazardous waste sites, and they correlated with increase
As, Mn and Cd concentrations in their hair (Wright et al., 2006).

In conclusion, OSL and AEL induced neurotoxic effects in
Wistar rats via oxidative stress provoked by the leachate con-
stituents. This suggests possible health risk to human and
wildlife population in close proximity to unprotected landfill
facilities due to exposure to hazardous substances via surface
and underground water sources.
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