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Abstract

We show that the Hausdor1 dimension equals the logarithmic loss unpredictability for any set
of in3nite sequences over a 3nite alphabet. Using computable, feasible, and 3nite-state predictors,
this equivalence also holds for the computable, feasible, and 3nite-state dimensions. Combining
this with recent results of Fortnow and Lutz (Proc. 15th Ann. Conf. on Comput. Learning Theory
(2002) 380), we have a tight relationship between prediction with respect to logarithmic loss
and prediction with respect to absolute loss.
c© 2003 Elsevier B.V. All rights reserved.

1. Introduction

We establish a fundamental relationship between logarithmic loss and Hausdor1 di-
mension, central ideas in two very active research areas. Hausdor1 dimension [7] is a
re3nement of Lebesgue measure that has become a powerful tool in fractal geometry
[3]. Logarithmic loss (also known as self-information loss) is very important in the
theory of prediction. The survey by Merhav and Feder on universal prediction [9] con-
tains historical references and a thorough discussion of the motivation and signi3cance
of logarithmic loss.
Given a set X of in3nite sequences over a 3nite alphabet, consider the problem of

designing a single predictor that performs well on all sequences in X . Informally, we
de3ne the unpredictability of X as the minimal average loss, with respect to a given
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loss function, that a predictor can achieve on all members of X . (Our prediction model
is standard. Technical de3nitions will be given in the body of the paper.)
Relationships between prediction and Hausdor1 dimension have been investigated

by Fortnow and Lutz [6], Ryabko [12,10,11], and Staiger [14]. In this note we show
that unpredictability with respect to logarithmic loss corresponds exactly to Hausdor1
dimension. For any set X of sequences, writing dimH(X ) for the Hausdor1 dimension
of X and unpredlog(X ) for the logarithmic loss unpredictability of X , we prove that

dimH(X ) = unpredlog(X ): (1)

Fortnow and Lutz [6] de3ned the predictability of a set of sequences as the max-
imum “success” achievable by any predictor on the set. This notion of predictability
corresponds with absolute loss unpredictability. Speci3cally, if we denote the absolute
loss unpredictability of X by unpredabs(X ) and the Fortnow–Lutz predictability of X
by pred(X ), we have

pred(X ) = 1− unpredabs(X ) (2)

for every set X .
For any set X of binary sequences, Fortnow and Lutz proved that

2(1− pred(X ))6 dimH(X )6H(pred(X )); (3)

where H is the binary entropy function. Combining (1), (2), and (3), we have a
relationship between unpredictability with respect to absolute loss and unpredictability
with respect to logarithmic loss:

2 · unpredabs(X )6 unpredlog(X )6H(unpredabs(X )) (4)

for any set X of binary sequences. Fortnow and Lutz also stated that the bounds in (3),
and hence in (4), are tight in a very strong sense. Using this result, for any �∈ [0; 12 ]
and �∈ [2 · �;H(�)], there is a set X of binary sequences with unpredabs(X )= � and
unpredlog = �. (Fortnow and Lutz also gave tight bounds for sequences over non-binary
alphabets; in this introduction we only state the binary case for simplicity.)
Our main result, that (1) holds for all sets X , is proved using Lutz’s characterization

of Hausdor1 dimension by gales [8]. Lutz introduced gales, betting functions that are
generalizations of martingales, in order to e1ectivize Hausdor1 dimension. Our proof
of (1) makes use of a natural correspondence between gales and predictors.
Lutz [8] used feasible (polynomial-time) and computable gales to de3ne feasible and

computable dimensions. Subsequently, Dai, Lathrop, Lutz, and Mayordomo used gales
induced by 3nite-state gamblers to de3ne 3nite-state dimension [2]. By using feasible,
computable, and 3nite-state predictors, we can also de3ne feasible, computable, and
3nite-state unpredictability. The results mentioned in this introduction extend to the
feasible, computable, and 3nite-state settings.
This note is organized as follows. We de3ne gales and predictors in Section 2

and brieMy review the de3nitions of the Hausdor1, computable, feasible, and 3nite-
state dimensions. In Section 3 we de3ne unpredictability with respect to general loss
functions and prove the equivalence of logarithmic loss unpredictability and dimension.
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A full comparison of absolute loss and logarithmic loss unpredictability via the work
of Fortnow and Lutz [6] is given in Section 4.

2. Gales, predictors, and dimension

In this section we de3ne gales and predictors and brieMy review Hausdor1 dimension,
computable dimension, feasible dimension, and 3nite-state dimension. The book by
Falconer [3] is an excellent reference on Hausdor1 dimension. Further details on feasi-
ble and computable dimension are available in Lutz’s introductory paper [8]. Finite-state
dimension was introduced by Dai, Lathrop, Lutz, and Mayordomo [2]. (The latter two
references [2,8] only address the binary alphabet but are easily extended to arbitrary
3nite alphabets.)
Throughout the paper we let � be a k-symbol alphabet where 26k¡∞. We write

�∗ for the set of all 3nite strings over � and �¡n for the set of strings of length less
than n. The empty string is denoted by 
. The set of all in3nite sequences over �
is �∞. For a string or sequence !∈�∗ ∪�∞, we write ![0::n − 1] for the length n
pre3x of ! and ![n] for the nth symbol of !.
For each n∈N, let An be the set of all pre3x sets A⊆�∗ such that A∩�¡n= ∅.

(A is a pre3x set if no element of A is a pre3x of another element of A.) For each
X ⊆�∞, s∈ [0;∞), and n∈N, we de3ne

Hs
n(X ) = inf

{ ∑
w∈A

k−s|w|
∣∣∣∣A ∈ An and X ⊆ ⋃

w∈A
w · �∞

}

and

Hs(X ) = lim
n→∞ Hs

n(X ):

De�nition. The Hausdor� dimension of a set X ⊆�∞ is

dimH(X ) = inf{s ∈ [0;∞) |Hs(X ) = 0}:
For each X ⊆�∞, it holds that 06dimH(X )61.

2.1. Gales

Lutz [8] proved an alternative characterization of Hausdor1 dimension using func-
tions called gales.

De�nition. Let s∈ [0;∞). A function d :�∗ → [0;∞) is an s-gale if for all w∈{0; 1}∗,
d(w) = k−s

∑
a∈�

d(wa):

Intuitively, a gale is viewed as a function betting on an unknown sequence. If w is
a pre3x of the sequence, then the capital of the gale after placing its 3rst |w| bets is
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given by d(w). Assuming that w is a pre3x of the sequence, the gale places bets on
wa also being a pre3x for each a∈�. The parameter s determines the fairness of the
betting; as s decreases the betting is less fair. The goal of a gale is to bet successfully
on sequences.

De�nition. Let s∈ [0;∞) and let d be an s-gale.
1. We say d succeeds on a sequence S ∈�∞ if

lim sup
n→∞

d(S[0::n− 1]) = ∞:

2. The success set of d is

S∞[d] = {S ∈ �∞ |d succeeds on S}:

Theorem 2.1 (Lutz [8]). For any X ⊆�∞,

dimH(X ) = inf
{
s
∣∣∣∣ there exists an s-gale dfor which X ⊆ S∞[d]

}
:

2.2. Predictors

Consider predicting the symbols of an unknown in3nite sequence. Given an initial
3nite segment of the sequence, a predictor speci3es a probability distribution over
�. We may think of the probability that the algorithm assigns to each character as
representing the predictor’s con3dence of that character occurring next in the sequence.
Formally, we de3ne a predictor as follows.

De�nition. A function � :�∗ ×�→ [0; 1] is a predictor if for all w∈�∗,∑
a∈�

�(w; a)= 1:

Here we interpret �(w; a) as the predictor �’s estimation of the likelihood that the
character immediately following the string w is a. There is a natural correspondence
between predictors and gales. (An early reference for the following type of relationship
between prediction and gambling is [1].)

Notation. 1. A predictor � induces for each s∈ [0;∞) an s-gale d(s)� de3ned by the
recursion

d(s)� (
) = 1

d(s)� (wa) = ksd(s)� (w)�(w; a)

for all w∈�∗ and a∈�; equivalently

d(s)� (w) = ks|w|
|w|−1∏
i=0

�(w[0::i − 1]; w[i])

for all w∈�∗.
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2. An s-gale d with d(
)= 1 is induced by the predictor �d de3ned by

�d(w; a) =

{
k−s d(wa)d(w) if d(w) �= 0;
1
k otherwise

for all w∈�∗ and a∈�.

2.3. Feasible and computable dimension

The characterization of Hausdor1 dimension by gales motivated the following def-
initions of feasible and computable dimensions. We say that a real-valued function
f :�∗ → [0;∞) is computable if there is a computable function f̂ :N×�∗ → [0;∞)∩Q
satisfying |f̂(r; w) − f(w)|62−r for all w∈�∗ and r ∈N. We say that f is feasible
if there is a function f̂ approximating f in the same way that is computable in time
polynomial in |w|+ r.

De�nition. Let X ⊆�∞.
1. The feasible dimension of X is

dimp(X ) = inf
{
s
∣∣∣∣ there exists a feasible
s-gale d for which X ⊆ S∞[d]

}
:

2. The computable dimension of X is

dimcomp(X ) = inf
{
s
∣∣∣∣ there exists a computable
s-gale d for which X ⊆ S∞[d]

}
:

We say that a function f :�∗ → [0;∞)∩Q is exactly feasible (or exactly com-
putable) if f itself is polynomial-time computable (or computable). The following
result known as the Exact Computation Lemma shows that feasible and computable
dimension can be equivalently de3ned using exactly feasible and exactly computable
gales.

Lemma 2.2 (Lutz [8]). Let ks be rational.
1. For any feasible s-gale d there exists an exactly feasible s-gale d′ such that
S∞[d]⊆ S∞[d′].

2. For any computable s-gale d there exists an exactly computable s-gale d′ such
that S∞[d]⊆ S∞[d′].

The following observation is simple but useful.

Observation 2.3. 1. Let s be rational and � be a predictor. If � is feasible (or com-
putable), then d(s)� is feasible (or computable).
2. Let ks be rational and d be an s-gale. If d is exactly feasible (or exactly

computable), then �d is exactly feasible (or exactly computable).
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2.4. Finite-state dimension

Finite-state gamblers [4,13] are used to de3ne 3nite-state dimension.

De�nition. A 7nite-state gambler (FSG) is a tuple G=(Q; !; �; q0) where Q is a
nonempty, 3nite set of states, ! :Q×�→Q is the transition function, � :Q×�→Q
∩ [0; 1] is the betting function, and q0 ∈Q is the initial state. The betting function
satis3es

∑
a∈� �(q; a)= 1 for each q∈Q.

An FSG G=(Q; !; �; q0) de3nes a predictor �G by

�G(w; a) = �(!∗(w); a)

for all w∈�∗ and a∈�. Here !∗ :�∗ →Q is the standard extension of ! to strings
de3ned by the recursion

!∗(
) = q0

!∗(wa) = !(!∗(w); a):

We say that a predictor � is 7nite-state if �= �G for some FSG G and that an s-gale
d is 7nite-state if d=d(s)� for some 3nite-state predictor �. Note that �d is 3nite-state
if d is 3nite-state.
Dai et al. [2] used 3nite-state gales to de3ne 3nite-state dimension.

De�nition. The 3nite-state dimension of a set X ⊆�∞ is

dimFS(X ) = inf
{
s
∣∣∣∣ there exists a 3nite-state
s-gale d for which X ⊆ S∞[d]

}
:

(Note: In [2], 3nite-state dimension was de3ned using multi-account 3nite state gam-
blers, and the above single-account de3nition was shown to be equivalent.)
From Theorem 2.1 and the de3nitions of the computable, feasible, and 3nite-state

dimensions, we observe that

06 dimH(X )6 dimcomp(X )6 dimp(X )6 dimFS(X )6 1

for all X ⊆�∞.

2.5. Uni7ed notation

We now introduce some uni3ed notation to simplify the statement of our results.
For this, we de3ne the following sets.

all = {all gales and predictors}
comp = {all computable gales and predictors}

p = {all feasible gales and predictors}
FS = {all 3nite-state gales and predictors}
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For any #∈{all; comp; p;FS} and X ⊆�∞, we then de3ne

dim#(X ) = inf
{
s
∣∣∣∣ there exists an s-gale d ∈ #
for which X ⊆ S∞[d]

}
:

Using this notation, dimall represents Hausdor1 dimension. The notation for the com-
putable, feasible, and 3nite-state dimensions remains the same.

3. Unpredictability and dimension

In this section we use a standard prediction model to de3ne the unpredictability of
sets of sequences with respect to a loss function. Under the logarithmic loss we obtain
an equivalent de3nition of Hausdor1 dimension.
In judging the performance of a predictor, it is instructive to consider its “loss”

on individual symbols of the sequence. One natural way to do this is to measure the
absolute loss. If the probability that the predictor assigned to the correct symbol is p,
then we assign the absolute loss

lossabs : [0; 1] → [0; 1]

lossabs(p) = 1− p
to that prediction. That is, the loss is equal to the probability that the predictor did not
assign to the correct symbol. Another common, but more severe, measure of loss is
the logarithmic loss

losslog : [0; 1] → [0;∞]

losslog(p) = logk
1
p
:

(Recall that k = |�|.) If p = 1, then both the absolute and logarithmic losses are 0.
As p approaches 0, the logarithmic loss becomes in3nite, while the absolute loss only
goes to 1.
The cumulative loss of a predictor on a 3nite string is the sum of the losses it incurs

while predicting the individual symbols. We now formally de3ne this as well as the
asymptotic loss rate on in3nite sequences and sets of sequences. Here loss& may be
absolute or logarithmic loss or any other loss function.

De�nition. Let � be a predictor and let loss& : [0; 1] → [0;∞] be a loss function.
1. The &-cumulative loss of � on a string w∈�∗ is

L&
�(w) =

|w|−1∑
i=0

loss&(�(w[0::i − 1]; w[i])):

2. The &-loss rate of � on a sequence S ∈�∞ is

L&
�(S) = lim inf

n→∞
L&
�(S[0::n− 1])

n
:
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3. The &-loss rate of � on a set X ⊆�∞ is

L&
�(X ) = sup

S∈X
L&
�(S):

The unpredictability of a set of sequences is de3ned as the in3mum of the loss rates
that a predictor can guarantee on the set.

De�nition. Let loss& : [0; 1]→ [0;∞] be a loss function and let #∈{all; comp; p;FS}.
For any X ⊆�∞, the #-&-unpredictability of X is

unpred&#(X ) = inf{L&
�(X ) | � is a predictor in #}:

Observe that

06 unpredlogall (X )6 unpredlogcomp(X )6 unpredlogp (X )6 unpredlogFS (X )6 1

and

06 unpredabsall (X )6 unpredabscomp(X )6 unpredabsp (X )6 unpredabsFS (X )6
k − 1
k

for all X ⊆�∞. Here the upper bounds of 1 and (k−1)=k are witnessed by the predictor
� de3ned by �(w; a) = 1=k for all w∈�∗ and a∈�.

3.1. Logarithmic loss and dimension

We now show that logarithmic loss unpredictability equals dimension.

Theorem 3.1. For any X ⊆�∞ and #∈{all; comp; p;FS},

dim#(X ) = unpredlog# (X ):

Proof. Let ks be rational and assume that d is an s-gale succeeding on X . Assume
without loss of generality that d(
)= 1. Let �d :�∗ ×�→ [0; 1] be the predictor in-
ducing d as de3ned in Section 2. For any w∈�∗ with d(w)¿0,

Llog
�d (w) =

|w|−1∑
i=0

logk
1

�d(w[0::i − 1]; w[i])

=− logk
|w|−1∏
i=0

�d(w[0::i − 1]; w[i])

=− logk k
−s|w|d(w)

= s|w| − logk d(w):



J.M. Hitchcock / Theoretical Computer Science 304 (2003) 431–441 439

Let S ∈ S∞[d]. Then there exist in3nitely many n∈N such that d(S[0::n − 1]) ¿ 1,
and for each of these n we have

L
log
�d (S[0::n− 1])

n
=
sn− logk d(S[0::n− 1])

n

6
sn− logk 1

n
= s:

Therefore L
log
�d (S)6 s, so this establishes that unpredlogall (X )6L

log
�d (X )6s. If d is ex-

actly computable, then the predictor �d is exactly computable, so we have unpredlogcomp

(X )6L
log
�d (X )6s. Similarly, if d is exactly feasible or d is 3nite-state, we have

unpredlogp (X )6s or unpredlogFS (X )6s. For each #, we have established that unpredlog# (X )
6s for all s¿dim#(X ) such that ks ∈Q. By density of the set {s | ks ∈Q}, it follows
that unpredlog# (X )6dim#(X ) for each #.
Now let s¿t be rational, and assume that � is a predictor for which L

log
� (X )¡t.

Let d(s)� be the s-gale induced by � as de3ned in Section 2. Let S ∈X . Then there
exist in3nitely many n∈N such that

L
log
� (S[0::n− 1])

n
6 t;

and for each of these n we have

logk d
(s)
� (S[0::n− 1]) = sn+

n−1∑
i=0

logk �(w[0::i − 1]; w[i])

= sn−Llog
� (S[0::n− 1])

¿ sn− tn
= (s− t)n;

so it follows that S ∈ S∞[d(s)� ] and X ⊆ S∞[d(s)� ]. Therefore, dimall(X )6s. If � is fea-
sible (or computable or 3nite-state), then d(s)� is feasible (or computable or 3nite-
state), so dimp(X )6s (or dimcomp(X )6s or dimFS(X )6s). For each #, we now have
dim#(X )6s for all rational s¿unpredlog# (X ). By density of the rationals, we then have
dim#(X )6unpredlog# (X ) for each #.

4. Absolute loss versus logarithmic loss

It is immediate from the de3nitions that the predictability of Fortnow and Lutz [6]
has the following relationship with absolute loss unpredictability.

Proposition 4.1. For any X ⊆�∞ and #∈{all; comp; p;FS},
pred#(X ) = 1− unpredabs# (X ):
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(Fortnow and Lutz only de3ned pred# for the case #=p. Their de3nition readily
extends to the other #.)
Fortnow and Lutz proved very tight bounds between predictability and dimension.

(Feder et al. [5] previously obtained related results about the 3nite-state predictability of
individual sequences.) To state their results we need the following technical de3nitions.
1. The k-adic segmented self-information function Ik : [1=k; 1]→ [0; 1] is de3ned by

setting Ik(1=j)= logk j for 16j6k and interpolating linearly between these points.
2. The k-adic maximum entropy function Hk : [0; 1]→ [0; 1] is de3ned by

Hk(�) = � logk
1
�
+ (1− �) logk

k − 1
1− � :

Theorem 4.2 (Fortnow and Lutz [6]). For every set X ⊆�∞ and #∈{all; comp; p, FS},
Ik(pred#(X ))6 dim#(X )6Hk(pred#(X )):

(Fortnow and Lutz only presented Theorem 4.2 for the case #=p. Their proof also
works for #∈{comp; all} and can be extended for the case #=FS.)
Combining Theorem 3.1, Proposition 4.1, and Theorem 4.2, we have the following

relationship between absolute loss prediction and logarithmic loss prediction.

Theorem 4.3. For every set X ⊆�∞ and P∈{all; comp; p;FS},
Ik(1− unpredabs# (X ))6 unpredlog# (X )6Hk(1− unpredabs# (X )):

In particular, if � is the binary alphabet, then

2 · unpredabs# (X )6 unpredlog# (X )6H(unpredabs# (X ));

where H is the binary entropy function.

Furthermore, Fortnow and Lutz stated that the bounds in Theorem 4.2 are tight for
the case #=p in the strong sense that for any �∈ [1=k; 1] and �∈ [Ik(�);Hk(�)],
there is a set X ⊆�∞ with pred#(X )= � and dim#(X )= �. This tightness also holds
for #∈{comp; all}, and holds for #=FS with a dense subset of such � and �. For
each #, it is immediate that the bounds in Theorem 4.3 are tight in the same way.
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