
Biochimica et Biophysica Acta 1823 (2012) 1658–1665

Contents lists available at SciVerse ScienceDirect

Biochimica et Biophysica Acta

j ourna l homepage: www.e lsev ie r .com/ locate /bbamcr

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector 
Sphingosine 1-phosphate induces MKP-1 expression via p38 MAPK- and
CREB-mediated pathways in airway smooth muscle cells

Wenchi Che a, Melanie Manetsch a, Timo Quante a, Md. Mostafizur Rahman a, Brijeshkumar S. Patel a,
Qi Ge b, Alaina J. Ammit a,⁎
a Respiratory Research Group, Faculty of Pharmacy, University of Sydney, NSW 2006, Australia
b Woolcock Institute of Medical Research, University of Sydney, NSW 2006, Australia
Abbreviation: ASM, airway smooth muscle; CREB, cA
DUSP, dual-specificity phosphatases; ERK, extracellular
interleukin 6; JNK, c-Jun N-terminal kinase; MAPK, mit
MKP, mitogen-activated protein kinase phosphatase; PK
dard error of the mean; S1P, sphingosine 1-phosphate;
⁎ Corresponding author. Tel.: +61 2 93516099; fax:

E-mail address: alaina.ammit@sydney.edu.au (A.J. A

0167-4889/$ – see front matter © 2012 Elsevier B.V. Al
doi:10.1016/j.bbamcr.2012.06.011
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 1 February 2012
Received in revised form 17 May 2012
Accepted 12 June 2012
Available online 25 June 2012

Keywords:
Sphingolipid
Cytokine
Adenylate cyclase
CREB
p38 MAPK
DUSP-1
Sphingosine 1-phosphate (S1P), a bioactive sphingolipid elevated in asthmatic airways, is increasingly recognized
as playing an important role in respiratory disease. S1P activates receptor-mediated signaling to modulate diverse
cellular functions and promote airway inflammation. Althoughmany of the stimulatory pathways activated by S1P
have been delineated, especially mitogen-activated protein kinases (MAPK), the question of whether S1P exerts
negative feedback control on its own signaling cascade via upregulation of phosphatases remains unexplored.
We show that S1P rapidly and robustly upregulates mRNA and protein expression of the MAPK deactivator–
MAPK phosphatase 1 (MKP-1). Utilizing the pivotal airway structural cell, airway smooth muscle (ASM), we con-
firm that S1P activates all members of the MAPK family and, in part, S1P upregulates MKP-1 expression in a p38
MAPK-dependent manner. MKP-1 is a cAMP response element binding (CREB) protein-responsive gene and
here, we reveal for the first time that an adenylate cyclase/PKA/CREB-mediated pathway also contributes to
S1P-inducedMKP-1. Thus, by increasingMKP-1 expression via parallel p38MAPK- and CREB-mediated pathways,
S1P temporally regulates MAPK signaling pathways by upregulating the negative feedback controller MKP-1. This
limits the extent and duration of pro-inflammatoryMAPK signaling and represses cytokine secretion in ASM cells.
Taken together, our results demonstrate that S1P stimulates both kinases and the phosphatase MKP-1 to control
inflammation in ASM cells and may provide a greater understanding of the molecular mechanisms responsible
for the pro-asthmatic functions induced by the potent bioactive sphingolipid S1P in the lung.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

The bioactive sphingolipid sphingosine 1-phosphate (S1P) plays
an important role in a number of diseases typified by inflammation,
including respiratory disorders such asthma [1,2]. In 2001, we dem-
onstrated that S1P was elevated in human asthma [3] and over the
past decade S1P has been shown to promote development of a
pro-asthmatic and pro-remodeling phenotype in airway cells in
vitro, ex vivo and in vivo. S1P regulates key airway functions such as
contraction [4,5], cytokine secretion [3], leukocyte recruitment [6],
and airway cell hyperplasia [7]. Moreover, a clear pathophysiologic
role has been revealed by recapitulation of asthmatic phenotype by
administration of S1P in mouse models of human disease [8]. Thus,
S1P has emerged as an important mediator responsible for airway in-
flammation and hyperresponsiveness in asthma. As S1P is an
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attractive target for the development of new pharmacotherapeutic
strategies, a greater understanding of S1P-mediated signaling in
clinically-relevant airway cells is warranted.

S1P regulates myriad cellular functions due to the broad nature of
the family of cognate receptors — S1P receptors 1–5 (S1P1–5)
(reviewed in [9–13]). S1P receptors are G protein-coupled receptors
coupled to a range of heterotrimeric G proteins co-ordinating diverse
downstream signaling pathways in a species- and cell type-specific
manner. Our studies utilize the pivotal airway cell–airway smooth
muscle (ASM). ASM cells express S1P1–5 [3] and we and others have
explored some of the signaling pathways activated in ASM upon ex-
ogenous addition of S1P. S1P acts via Gi-coupled S1P receptors to ac-
tivate members of the mitogen-activated protein kinase (MAPK)
family [14,15], and we showed that S1P increases production of the
second messenger cAMP in a Gs-coupled manner [3]. To date, wheth-
er S1P controls the extent and duration of its own signaling cascade
by upregulating the MAPK phosphatase 1 (MKP-1) has not been ex-
plored in ASM cells, or any other cell type.

MKP-1 is a potent MAPK deactivator that plays an important neg-
ative feedback role in a wide range of inflammatory cells [16,17]. In
ASM, we recently reported that stimulation with tumor necrosis fac-
tor α (TNFα) increases MKP-1 upregulation via a p38 MAPK manner.
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MKP-1 then acts back on the kinases to dephosphorylate them and
restrain MAPK-mediated pro-inflammatory signaling pathways and
cytokine secretion [18]. Whether S1P activates a comparable negative
feedback loop is unknown at present. Therefore, the aim of this study
was to examine for the first time whether S1P upregulates MKP-1, the
underlying molecular mechanism and the impact on cytokine secre-
tion from ASM cells. We show that S1P-induces MKP-1 expression
via activation of parallel p38 MAPK and CREB-mediated pathways
and MKP-1 serves to restrain pro-inflammatory MAPK signaling and
synthetic function of ASM cells. In this way, MKP-1 acts as a negative
feedback effector and allows S1P to control the extent and duration of
its own inflammatory signaling cascade.
2. Materials and methods

2.1. Cell culture

Human bronchi were obtained from patients undergoing surgical
resection for carcinoma or lung transplant donors in accordance
with procedures approved by the Sydney South West Area Health
Service and the Human Research Ethics Committee of the University
of Sydney. ASM cells were dissected, purified and cultured as previ-
ously described by Johnson et al. [19]. A minimum of three different
ASM primary cell lines was used for each experiment.

Unless otherwise specified, all chemicals used in this study were
purchased from Sigma-Aldrich (St. Louis, MO).
2.2. Western blotting

Western blotting was performed using rabbit monoclonal or poly-
clonal antibodies against phosphorylated (Thr180/Tyr182) and total
p38 MAPK, phosphorylated (Thr202/Tyr204) and total extracellular
signal-regulated kinase (ERK), phosphorylated (Thr183/Tyr185) and
total c-Jun N-terminal kinase (JNK), phosphorylated (Ser133) and
total cAMP response element binding (CREB) (all from Cell Signaling
Technology, Danvers, MA). MKP-1 was quantified by Western blot-
ting using a rabbit polyclonal antibody against MKP-1 (C-19: Santa
Cruz Biotechnology, Santa Cruz, CA), compared to α-tubulin used as
the loading control (mouse monoclonal IgG1, DM1A: Santa Cruz Bio-
technology, Santa Cruz, CA). Primary antibodies were detected with
goat anti-mouse or anti-rabbit HRP‐conjugated secondary antibodies
(Cell Signaling Technology) and visualized by enhanced chemilumi-
nescence (PerkinElmer, Wellesley, MA).
2.3. Real-time RT-PCR

Total RNAwas extracted using the RNeasyMini Kit (Qiagen Australia,
Doncaster, VIC, Australia) and reverse transcription was performed by
using the RevertAid First Strand cDNA Synthesis Kit (Fermentas Life
Sciences, Hanover, MD) as per the manufacturer's protocol.

MKP-1 mRNA levels were measured using real-time RT-PCR on an
ABI Prism 7500 (Applied Biosystems, Foster City, CA) with the DUSP1
(Hs00610256_g1) TaqMan® Gene Expression Assay and the eukaryotic
18S rRNA endogenous control probe (Applied Biosystems) subjected to
the following cycle parameters: 50 °C for 2 min, 1 cycle; 95 °C for
10 min, 1 cycle; 95 °C for 15 s, 60 °C for 1 min, 40 cycles.
2.4. ELISAs

Cell supernatants were collected and stored at−20 °C for later analy-
sis by ELISA. Interleukin 6 (IL-6) ELISAs were performed according to the
manufacturer's instructions (BD Biosciences Pharmingen, San Diego, CA).
2.5. MKP-1 overexpression

ASM cells were transiently transfected with the MKP-1 expression
vector pCMV-Flag-MKP-1 [20] generously provided by Andrew R.
Clark (Kennedy Institute of Rheumatology, Imperial College London)
using the methods established in our previous publication [21]. Cells
were stimulated with S1P (1 μM) for 24 h before supernatants were
removed for IL-6 protein measurement by ELISA.

2.6. Statistical analysis

Statistical analysis was performed using the Student's unpaired t
test. P valuesb0.05 were sufficient to reject the null hypothesis for
all analyses.

3. Results

3.1. Temporal activation of MAPKs and upregulation of MKP-1 by S1P

To demonstrate the temporal activation of MAPK family members
by S1P and the subsequent upregulation of MKP-1 protein,
growth-arrested ASM cells were treated with S1P for up to 1 h and
MAPK phosphorylation was quantified by Western blotting. As
shown in Fig. 1A, S1P stimulates a rapid, but transient, activation of
all three MAPK family members within 5 min of stimulation with
S1P. Although the temporal kinetics of MAPK phosphorylation can
vary slightly between primary cultures, in general MAPK phosphory-
lation appears to peak at 10–30 min before returning to baseline
levels by 60 min. Interestingly, the decline in MAPK activation is mir-
rored by upregulation of MKP-1 protein. This timing is suggestive of a
negative feedback mechanism in human ASM cells, recently identified
for TNFα-induced MKP-1 [18] whereby inflammatory stimuli activate
kinases (MAPKs) as well as their own phosphatases (MKP-1), in order
to regulate the extent and duration of signal transduction.

To determine the MAPK responsible for S1P-induced upregulation
of MKP-1 we performed a series of experiments where ASM cells
were pretreated with pharmacological inhibitors of p38 MAPK, ERK,
and JNK signaling pathways and the resultant effect on S1P-induced
MKP-1 upregulation was assessed by Western blotting. As shown in
Fig. 1B, pretreatment with the p38 MAPK inhibitor SB203580
inhibited S1P-induced p38 MAPK phosphorylation at 30 min and cor-
respondingly repressed MKP-1 protein upregulation at both 30 and
60 min. Although PD98059 and SP600125 were effective inhibitors
of ERK and JNK phosphorylation at 30 min, the protein levels of
MKP-1 observed after stimulation with S1P were not repressed by
either inhibitor (Fig. 1B). These results suggest that S1P induces
upregulation of MKP-1 in a p38 MAPK-mediated manner and this
was confirmed by densitometric analysis (Fig. 1C).

3.2. MKP-1 expression is cAMP/CREB-responsive and S1P induces CREB
phosphorylation to upregulate MKP-1 expression via an adenylate
cyclase/PKA/CREB-mediated pathway

S1P acts on the S1P receptor family to stimulate myriad cell signal-
ing pathways [9–13]. A number of S1P receptors (i.e. S1P2 and S1P3)
are coupled to adenylate cyclase [10,11]. In this way, S1P stimulation
increases the important second messenger cAMP. In 2001 [3] we
demonstrated that S1P acts via S1P receptors to increase cAMP levels
in ASM cells. As cAMP activates CREB signaling pathways and MKP-1
is a CREB-responsive gene [22], we nowwish to ascertain the involve-
ment of the adenylate cylase/cAMP-mediated cellular signaling path-
way in the upregulation of MKP-1 in ASM cells.

Firstly, to show that adenylate cyclase stimulation upregulates
MKP-1 in ASM cells, we pretreated cells for 30 min with the adenyl-
ate cyclase activator – forskolin – and then examined MKP-1 mRNA
and protein expression in the absence and presence of S1P treatment
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Fig. 1. Temporal activation of MAPKs and upregulation of MKP-1 by S1P. (A) Growth-arrested ASM cells were stimulated with S1P (1 μM) for 0, 5, 10, 30 and 60 min. (B)
Growth-arrested ASM cells were pretreated for 30 min with vehicle, or the MAPK inhibitor PD98059 (10 μM), SB203580 (1 μM) or SP600125 (10 μM), then stimulated with
S1P for 30 min and 60 min. Western blotting was performed using specific antibodies against phosphorylated (Thr180/Tyr182) and total p38 MAPK, phosphorylated (Thr202/
Tyr204) and total ERK, phosphorylated (Thr183/Tyr185) and total JNK, and MKP-1. α-Tubulin was used as the loading control. (A, B) Results are representative Western blots
from n=5 primary ASM cell lines and (C) demonstrates densitometric analysis where results are expressed as % S1P-induced MKP-1 protein upregulation at 60 min. Statistical
analysis was performed using the Student's unpaired t test where ∞ denotes significant inhibition by SB203580 (Pb0.05) (mean+SEM values from n=5 primary ASM cell lines).
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for 60 min (Fig. 2A and B). As shown in Fig. 2A, forskolin alone signif-
icantly upregulatedMKP-1mRNA expression in ASM cells by 26.8.0±
3.0-fold, compared to vehicle-treated cells (Pb0.05). Interestingly,
forskolin and S1P treatment in combination had an additive effect on
MKP-1 mRNA expression in ASM cells. As demonstrated in Fig. 2A,
forskolin pretreatment significantly increased S1P‐induced mRNA ex-
pression from 19.6±3.0-fold to 47.6±4.2-fold (Pb0.05). Adenylate cy-
clase activation also upregulated MKP-1 protein in similar manner; as
shown in Fig. 2B, forskolin treatment alone increased MKP-1 and en-
hanced S1P-induced upregulation.
Secondly, to demonstrate that cAMP increases MKP-1 expression
in ASM cells, we treated cells for 1 h with a cell-permeable cAMP
analogue — dibutyryl cAMP. As shown in Fig. 2C, dibutyryl cAMP sig-
nificantly increased MKP-1 mRNA levels by 3.3±0.2-fold, compared
to vehicle-treated cells (Pb0.05). This was associated with CREB acti-
vation, as dibutyryl cAMP increased CREB Ser133 phosphorylation (at
30 min) with a subsequent increase in MKP-1 protein upregulation
after 60 min stimulation with dibutyryl cAMP (Fig. 2D).

Because we demonstrated that MKP-1 expression is adenylate
cyclase/cAMP/CREB-responsive in ASM cells we now wished to
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examine the temporal kinetics of CREB phosphorylation and subse-
quentMKP-1 upregulation after stimulationwith S1P. As demonstrated
in Fig. 2E, S1P robustly and potently induces CREB phosphorylation (at
Ser133) as early as 5 min and this activation was sustained for the
60 min time period examined. Fig. 2E also shows S1P-induced MKP-1
upregulation. To link S1P-induced activation of the CREB-signaling
Fig. 2.MKP-1 expression is cAMP/CREB-responsive and S1P induces CREB phosphorylation t
(A, B) Growth-arrested ASM cells were pretreated for 30 min with vehicle or forskolin (10 μ
treated with vehicle or dibutyryl cAMP (1 mM) for 30 and 60 min. (E) Growth-arrested ASM
ASM cells were pretreated for 60 min with vehicle or H-89 (10 μM), then treated with veh
expression was quantified by real-time RT-PCR and results were expressed as fold increase
the Student's unpaired t test where * denotes a significant increase in MKP-1 mRNA expre
by forskolin (Pb0.05) (mean+SEM values from n=3 primary ASM cell lines). (B, D, E,
MKP-1 protein (compared to α-tubulin as a loading control) was quantified by Western bl
cell lines.
pathway with MKP-1 upregulation we pretreated cells with H-89, a
pharmacological inhibitor known to attenuate activity of protein kinase
A (PKA) — a key kinase responsible for phosphorylation of CREB at
Ser133. Although H-89 is relatively non-specific, our results suggest
that S1P induces CREB phosphorylation to upregulate MKP-1 expres-
sion via a PKA/CREB-mediated pathway. As shown in Fig. 2F, H-89
o upregulate MKP-1 expression via an adenylate cyclase/PKA/CREB-mediated pathway.
M), then treated with vehicle or S1P for 60 min. (C, D) Growth-arrested ASM cells were
cells were stimulated with S1P (1 μM) for 0, 5, 10, 30 and 60 min. (F) Growth-arrested
icle or S1P for 60 min. Dibutyryl cAMP was assessed in parallel. (A, C) MKP-1 mRNA
compared to vehicle-treated cells at 60 min. Statistical analysis was performed using
ssion and § denotes significant upregulation of S1P-induced MKP-1 mRNA expression
F) CREB phosphorylation at Ser133 (compared to total CREB) and/or upregulation of
otting, where (B, D, E, F) illustrate representative Western blots of n=3 primary ASM
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suppressed S1P-induced CREB phosphorylation resulting in reduced
MKP-1 upregulation at 60 min.

3.3. S1P increases MKP-1 expression via parallel p38 MAPK- and
CREB-mediated pathways

Taken together our data shows that S1P-inducedMKP-1 upregulation
is associated with activation of both p38 MAPK- and CREB-mediated
pathways. In cell types apart from ASM, CREB activation has been dem-
onstrated as downstream of p38MAPK. Thus, two possible explanations
exist: (i) S1P-induces CREB phosphorylation in a p38 MAPK-dependent
manner; (ii) S1P induces MKP-1 expression via parallel p38 MAPK-
and CREB-mediated pathways. To exclude the former possibility we
pretreated ASM cells with the p38 MAPK inhibitor SB203580 and exam-
ined the effect on S1P-induced p38MAPK and CREB phosphorylation. As
shown in Fig. 3A, SB203580 effectively blocked S1P-induced p38 MAPK
phosphorylation. In contrast, S1P-induced CREB activation was unaffect-
ed by pretreatment with the p38 MAPK inhibitor. These results are in
support of parallel p38 MAPK and CREB-mediated pathways underlying
S1P-induced MKP-1 upregulation.

To confirm this assertion, we pretreated ASM cells with inhibitors of
thep38MAPK andPKA/CREB-mediated pathways alone and in combina-
tion and measured the effects on S1P-induced MKP-1 mRNA expression
and protein upregulation. As shown in Fig. 3B, blocking the p38 MAPK
pathway significantly inhibited MKP-1 mRNA expression, reducing the
level of MKP-1 stimulated by S1P from 16.8±2.5-fold to 10.3±
0.8-fold when cells were pretreated with SB203580 (Pb0.05). Inhibiting
PKA with H-89 also effectively repressed S1P-induced MKP-1 mRNA (to
9.3±0.8-fold: Pb0.05). Importantly,whenboth inhibitorswere added in
combination there was a significantly greater degree of inhibition than
achieved with either inhibitor added alone (6.6±0.3-fold; Pb0.05).
The effect of the inhibitors on S1P-induced MKP-1 protein (Fig. 3C and
D)was in accordwith themRNA results. Densitometric analysis revealed
that the combination of both inhibitors repressed S1P-induced MKP-1
protein upregulation by 44.6±2.3% and had a significantly greater re-
pressive effect than either inhibitor alone (Fig. 3D: Pb0.05). Taken to-
gether our data indicates that S1P activates dual p38 MAPK-and
CREB-mediated signaling pathways to induce MKP-1 expression.

3.4. MKP-1 is a negative feedback effector that represses S1P-induced
p38 MAPK and ERK-mediated signaling and IL-6 secretion

We have previously reported that S1P induces secretion of the cyto-
kine IL-6 from ASM cells [3]. To determine whether MAPK-mediated
signaling pathways contribute to S1P-induced IL-6 secretion ASM cells
were pretreated with inhibitors of the p38 MAPK, ERK, and JNK path-
ways prior to stimulation with S1P, using SB203580, PD98059,
and SP600125, respectively. As shown in Fig. 4A, inhibition of p38
MAPK and ERK significantly inhibited S1P-induced IL-6 secretion
(Pb0.05). There was no effect of JNK inhibition. These results
suggest that S1P-induced IL-6 secretion from ASM cells is p38
MAPK- and ERK-dependent.

To confirm that S1P temporally regulates MAPK signaling path-
ways by upregulating the negative feedback controller – MKP-1 –

we blocked MKP-1 upregulation with the pharmacological inhibitor,
triptolide [18,23,24] and observed the effect on p38 MAPK and ERK
phosphorylation. As demonstrated in Fig. 4B, triptolide pretreatment
completely repressed S1P-induced MKP-1 protein. Where we had
previously demonstrated that MAPK phosphorylation declines at 30
and 60 min (also see Fig. 1A), in the absence of MKP-1 p38 MAPK
and ERK phosphorylation continues in an unrestrained manner. In
this way, MKP-1 controls the extent and duration of S1P-induced sig-
naling and has a significant impact on cytokine secretion from ASM
cells. This is demonstrated in Fig. 4C, where S1P-induced IL-6 secre-
tion from ASM cells was significantly repressed in cells that had
been transfected with an MKP-1 overexpression vector, compared
to cells transfected with vector control (Pb0.05). Taken together,
our results suggest that S1P-induced MKP-1 serves to restrain



Fig. 3. S1P increases MKP-1 expression via parallel p38 MAPK- and CREB-mediated pathways. (A) Growth-arrested ASM cells were pretreated for 30 min with vehicle or 1 μM
SB203580, prior to stimulation with S1P (1 μM) for 0, 5, 10, 30 and 60 min. (B, C, D) Growth-arrested ASM cells were pretreated for 60 min with vehicle or H-89 (10 μM), or
for 30 min with 1 μM SB203580, prior to stimulation with S1P (1 μM) for 60 min, compared to vehicle control. (A, C, D) p38 phosphorylation at Thr180/Tyr182 (compared to
total p38 MAPK), CREB phosphorylation at Ser133 (compared to total CREB), or upregulation of MKP-1 protein (compared to α-tubulin as a loading control) was quantified byWestern
blotting, where (A, C) illustrate representative Western blots and (D) demonstrates densitometric analysis where results are expressed as % S1P-induced MKP-1 protein upregulation at
60 min (mean+SEMvalues fromn=4primary ASMcell lines). (B)MKP-1mRNAexpressionwasquantifiedby real-time RT-PCR and resultswere expressed as fold increase compared to
vehicle-treated cells at 0 min (mean+SEM values from n=3 primary ASM cell lines). Statistical analysis was performed using the Student's unpaired t test where * denotes a significant
increase in MKP-1 mRNA expression, § denotes significant inhibition by SB203580 or H-89, and ∞ indicates a significant effect of H89 and SB203580 in combination, compared to either
inhibitor added alone (Pb0.05).
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pro-inflammatory MAPK signaling and synthetic function of ASM
cells.

4. Discussion

S1P is an important pathophysiological mediator found elevated in
human asthma that drives the development of a pro-inflammatory
and pro-remodeling phenotype in the airway. Recent research has
highlighted the prospect of targeting S1P as potential therapy and in
the current study we illustrate the endogenous anti-inflammatory
mechanisms that are activated by S1P itself to exert regulatory control
over cellular signaling. We discover that S1P, like other stimuli,
upregulates the phosphatase MKP-1 that acts in a negative feedback
manner to repress MAPK-mediated pathways and cytokine secretion
in ASM cells. In this way, MKP-1 serves as an important negative feed-
back mechanism to limit the pro-inflammatory response to S1P in air-
way cells.

In 2001 [3] we demonstrated that S1P modulates ASM functions
that promote inflammation and remodeling in asthma. We demon-
strated that cAMP levels are increased via activation of the Gs-coupled

image of Fig.�3


Fig. 4. MKP-1 is a negative feedback effector that represses S1P-induced p38 MAPK and ERK-mediated signaling and IL-6 secretion. (A) Growth-arrested ASM cells were pretreated
for 30 min with vehicle, 1 μM SB203580, or 10 μM PD98059 to inhibit p38 MAPK and ERK, respectively, then stimulated with 1 μM S1P for 24 h. IL-6 secretion was measured by
ELISA. Data are expressed as % S1P-induced IL-6 secretion (where IL-6 protein secreted in response to 1 μM S1P was 1711.7±193.6 pg/ml (data are mean±SEM)). Statistical anal-
ysis was performed using the Student's unpaired t test, where ∞ denotes significant inhibition (Pb0.05). Data are mean+SEM values from n=11 primary ASM cell lines.
(B) Growth-arrested ASM cells were pretreated for 30 min with vehicle or the MKP-1 inhibitor triptolide (1 μM) prior to stimulation with S1P (1 μM) for 0, 5, 10, 30 and
60 min. Western blotting was performed using specific antibodies against MKP-1 (compared to α-tubulin used as the loading control), phosphorylated (Thr180/Tyr182) and total
p38 MAPK, phosphorylated (Thr202/Tyr204) and total ERK. Results are representative Western blots from n=3 primary ASM cell lines. (C) ASM cells were transiently transfected
with a MKP-1 expression vector, or empty vector control, stimulated for 24 h with S1P (1 μM), before IL-6 secretion was measured by ELISA. Data are expressed as %
S1P-induced IL-6 secretion in cell transfected with empty vector alone and statistical analysis was performed using the Student's unpaired t test, where ∞ denotes significant in-
hibition (Pb0.05). Data are mean+SEM values from n=6 primary ASM cell lines.
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S1P receptors and downstream adenylate cyclase and that S1P in-
duces IL-6 secretion. We now extend these studies to show that S1P
rapidly and robustly stimulates CREB phosphorylation at Ser133.
Moreover, all members of the MAPK family are activated by S1P in a
temporally distinct manner, but only p38 MAPK and ERK in particular
contribute to S1P-induced IL-6 secretion. In cell types apart from
ASM, the MAPK deactivator MKP-1 has been reported to be induced
by CREB- and MAPK-mediated pathways [25–27]. Thus, in this
paper we report that S1P upregulates MKP-1, illustrate the underly-
ing molecular mechanisms responsible and highlight the impact on
cytokine secretion from ASM cells.

MKP-1 is the archetypal member of the MKP family, also
known as DUSPs (dual-specificity phosphatases). MKPs direct
dual dephosphorylation of MAPKs in a cell-type specific manner.
MAPK-mediated cellular function is regulated by both strength
and duration of MAPK phosphorylation. This signaling must be
strictly controlled to modulate functional outcome. This crucial
negative feedback control is achieved by the MKPs, as they are
immediate-early genes [28] known to be capable of rapid expression
and upregulation. We show that S1P rapidly and robustly upregulates
both MKP-1 mRNA expression and protein upregulation within 1 h
after stimulation; although the resultant MKP-1 upregulation is tran-
sient and returns to baseline levels by 2 h (data not shown). Dual path-
ways are responsible for S1P-induced MKP-1 expression in ASM cells.
Upregulation was shown, in part, to be cAMP-mediated and occurred
via the PKA/CREB pathway. Notably, the human MKP-1 promoter is

image of Fig.�4
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known to contain two cis-acting cAMP response elements [25,26].
CREB-mediated upregulation occurred in parallel with p38 MAPK-
mediated expression, as pharmacological inhibition of the p38 MAPK-
mediated pathway with SB203580 attenuated S1P-iduced MKP-1 gene
expression and protein expression; confirming earlier studies in alveolar
macrophages [29] and our recent study in ASM cells [18].

Therefore, in this paper we have underscored the important neg-
ative feedback role played by MKP-1 and determined that S1P con-
comitantly stimulates both inflammatory (CREB and MAPKs) and
the anti-inflammatory (phosphatase MKP-1) to control synthetic
function in ASM cells. Thus, S1P, like other inflammatory stimuli in
ASM cells (e.g. TNFα: (20)), induces MKP-1 to serve as a negative
feedback effector. We show for the first time that S1P-induced IL-6
secretion is mediated by p38 MAPK- and ERK-dependent pathways
and observe that p38 MAPK and ERK phosphorylation continues in
an unrestrained fashion when MKP-1 is not present to “switch
them off” at the right time. Moreover, MKP-1 overexpression re-
strains S1P-induced cytokine secretion. In summary, in this manu-
script we have demonstrated that the MAPK responsible for
S1P-induced MKP-1 upregulation is p38 MAPK. Once upregulated,
MKP-1 can then serve as a MAPK deactivator and can dephosphory-
late members of the MAPK family in a cell-type and species-specific
manner. Thus, in this way, the identity of the MAPKs responsible for
MKP-1 upregulation and those MAPKs that can be dephosphorylated
can differ.

Collectively, our results provide further support for the important
negative feedback role played by the endogenous anti-inflammatory
protein – MKP-1 – in human ASM cells. By inducing MKP-1 expres-
sion via parallel p38 MAPK- and CREB-mediated pathways, the bio-
logically active sphingolipid S1P controls the extent and duration of
pro-inflammatory cellular signaling and regulates ASM synthetic
function. This raises the possibility that this inherent feedback loop
via MKP-1 activation might be exploited to restrict S1P action in asth-
ma in the future.

Acknowledgements

This research was supported by PhD scholarships to MM (Senglet
Stiftung — Switzerland) and to MMR (Endeavour Postgraduate Award –

Australia), and funded by a project grant (570856) from the National
Health and Medical Research Council of Australia and the University of
Sydney Thompson Fellowship to AJA. The authors wish to thank Andrew
R. Clark (Kennedy Institute of Rheumatology, London) for the MKP-1 ex-
pression vector and our colleagues in the Respiratory Research Group at
the University of Sydney. We acknowledge the collaborative effort of
the cardiopulmonary transplant team and the pathologists at St Vincent's
Hospital, Sydney, and the thoracic physicians and pathologists at Royal
Prince Alfred Hospital, Concord Repatriation Hospital and Strathfield
Private Hospital and Healthscope Pathology, Sydney.

References

[1] Y. Yang, S. Uhlig, The role of sphingolipids in respiratory disease, Ther. Adv.
Respir. Dis. 5 (2011) 325–344.

[2] W.Q. Lai, W.S. Wong, B.P. Leung, Sphingosine kinase and sphingosine 1-phosphate
in asthma, Biosci. Rep. 31 (2011) 145–150.

[3] A.J. Ammit, A.T. Hastie, L.C. Edsall, R.K. Hoffman, Y. Amrani, V.P. Krymskaya, S.A.
Kane, S.P. Peters, R.B. Penn, S. Spiegel, R.A. Panettieri Jr., Sphingosine 1-phosphate
modulates human airway smooth muscle cell functions that promote inflammation
and airway remodeling in asthma, FASEB J. 15 (2001) 1212–1214.

[4] H.M. Rosenfeldt, Y. Amrani, K.R. Watterson, K.S. Murthy, R.A. Panettieri Jr., S.
Spiegel, Sphingosine-1-phosphate stimulates contraction of human airway
smooth muscle cells, FASEB J. 17 (2003) 1789–1799.

[5] H. Kume, N. Takeda, T. Oguma, S. Ito, M. Kondo, Y. Ito, K. Shimokata, Sphingosine
1-phosphate causes airway hyper-reactivity by rho-mediated myosin phospha-
tase inactivation, J. Pharmacol. Exp. Ther. 320 (2007) 766–773.

[6] W.Q. Lai, H.H. Goh, Z. Bao, W.S. Wong, A.J. Melendez, B.P. Leung, The role of sphingo-
sine kinase in a murine model of allergic asthma, J. Immunol. 180 (2008) 4323–4329.

[7] T.L. Ediger, M.L. Toews, Synergistic stimulation of airway smooth muscle
mitogenesis, J. Pharmacol. Exp. Ther. 294 (2000) 1076–1082.

[8] F. Roviezzo, A. Di Lorenzo, M. Bucci, V. Brancaleone, V. Vellecco, M. De Nardo, D. Orlotti,
R. De Palma, F. Rossi, B. D'Agostino, G. Cirino, Sphingosine-1-phosphate/sphingosine
kinase pathway is involved in mouse airway hyperresponsiveness, Am. J. Respir. Cell
Mol. Biol. 36 (2007) 757–762.

[9] J. Chun, S1P-1 Receptor, in: S.J.E. Editors-in-Chief: , B.B. David (Eds.) xPharm: The
Comprehensive Pharmacology Reference, Elsevier, New York, 2007, pp. 1-6.

[10] J. Chun, S1P–2 Receptor, in: S.J.E. Editors-in-Chief: B.B. David (Eds.) xPharm: The
Comprehensive Pharmacology Reference, Elsevier, New York, 2007, pp. 1–6.

[11] J. Chun, S1P–3 Receptor, in: S.J.E. Editors-in-Chief: B.B. David (Eds.) xPharm: The
Comprehensive Pharmacology Reference, Elsevier, New York, 2007, pp. 1–6.

[12] J. Chun, S1P–4 Receptor, in: S.J.E. Editors-in-Chief: B.B. David (Eds.) xPharm: The
Comprehensive Pharmacology Reference, Elsevier, New York, 2007, pp. 1–4.

[13] J. Chun, S1P–5 Receptor, in: S.J.E. Editors-in-Chief: B.B. David (Eds.) xPharm: The
Comprehensive Pharmacology Reference, Elsevier, New York, 2007, pp. 1–5.

[14] D. Tolan, A.-M. Conway, S. Rakhit, N. Pyne, S. Pyne, Assessment of the extracellular
and intracellular actions of sphingosine 1-phosphate by using the p42/p44
mitogen-activated protein kinase cascade as amodel, Cell. Signal. 11 (1999) 349–354.

[15] S. Rakhit, A.-M. Conway, R. Tate, T. Bower, P.J. Pyne, S. Pyne, Sphingosine
1-phosphate stimulation of the p42/p44 mitogen-activated protein kinase path-
way in airway smooth muscle, Biochem. J. 338 (1999) 643–649.

[16] X. Wang, Y. Liu, Regulation of innate immune response by MAP kinase
phosphatase-1, Cell. Signal. 19 (2007) 1372–1382.

[17] H. Chi, R.A. Flavell, Acetylation of MKP-1 and the control of inflammation, Sci.
Signal. 1 (2008) e44.

[18] M. Manetsch, W. Che, P. Seidel, Y. Chen, A.J. Ammit, MKP-1: a negative feedback
effector that represses MAPK-mediated pro-inflammatory signaling pathways
and cytokine secretion in human airway smooth muscle cells, Cell. Signal. 24
(4) (2012 Apr) 907–913.

[19] P.R. Johnson, K.O. McKay, C.L. Armour, J.L. Black, The maintenance of functional
activity in human isolated bronchus after cryopreservation, Pulm. Pharmacol.
8 (1995) 43–47.

[20] M. Lasa, S.M. Abraham, C. Boucheron, J. Saklatvala, A.R. Clark, Dexamethasone
causes sustained expression of mitogen-activated protein kinase (MAPK) phos-
phatase 1 and phosphatase-mediated inhibition of MAPK p38, Mol. Cell. Biol. 22
(2002) 7802–7811.

[21] T. Quante, Y.C. Ng, E.E. Ramsay, S. Henness, J.C. Allen, J. Parmentier, Q. Ge, A.J.
Ammit, Corticosteroids reduce IL-6 in ASM cells via up-regulation of MKP-1,
Am. J. Respir. Cell Mol. Biol. 39 (2008) 208–217.

[22] I.J. Cho, N.R. Woo, I.C. Shin, S.G. Kim, H89, an inhibitor of PKA and MSK, inhibits
cyclic-AMP response element binding protein-mediated MAPK phosphatase-1
induction by lipopolysaccharide, Inflamm. Res. 58 (2009) 863–872.

[23] P. Chen, J. Li, J. Barnes, G.C. Kokkonen, J.C. Lee, Y. Liu, Restraint of
proinflammatory cytokine biosynthesis by mitogen-activated protein kinase
phosphatase-1 in lipopolysaccharide-stimulated macrophages, J. Immunol.
169 (2002) 6408–6416.

[24] J.K. Burgess, J.H. Lee, Q. Ge, E.E. Ramsay, M.H. Poniris, J. Parmentier, M. Roth, P.R.
Johnson, N.H. Hunt, J.L. Black, A.J. Ammit, Dual ERK and phosphatidylinositol
3-kinase pathways control airway smooth muscle proliferation: differences in
asthma, J. Cell. Physiol. 216 (2008) 673–679.

[25] S.P. Kwak, D.J. Hakes, K.J. Martell, J.E. Dixon, Isolation and characterization of a
human dual specificity protein–tyrosine phosphatase gene, J. Biol. Chem. 269
(1994) 3596–3604.

[26] A. Sommer, H. Burkhardt, S.M. Keyse, B. Luscher, Synergistic activation of the
mkp-1 gene by protein kinase A signaling and USF, but not c-Myc, FEBS Lett.
474 (2000) 146–150.

[27] J. Li, M. Gorospe, D. Hutter, J. Barnes, S.M. Keyse, Y. Liu, Transcriptional induction
of MKP-1 in response to stress is associated with histone H3 phosphorylation–
acetylation, Mol. Cell. Biol. 21 (2001) 8213–8224.

[28] H. Sun, C.H. Charles, L.F. Lau, N.K. Tonks, MKP-1 (3CH134), an immediate early
gene product, is a dual specificity phosphatase that dephosphorylates MAP kinase
in vivo, Cell 75 (1993) 487–493.

[29] J.H. Hu, T. Chen, Z.H. Zhuang, L. Kong, M.C. Yu, Y. Liu, J.W. Zang, B.X. Ge, Feedback
control of MKP-1 expression by p38, Cell. Signal. 19 (2007) 393–400.


	Sphingosine 1-phosphate induces MKP-1 expression via p38 MAPK- and CREB-mediated pathways in airway smooth muscle cells
	1. Introduction
	2. Materials and methods
	2.1. Cell culture
	2.2. Western blotting
	2.3. Real-time RT-PCR
	2.4. ELISAs
	2.5. MKP-1 overexpression
	2.6. Statistical analysis

	3. Results
	3.1. Temporal activation of MAPKs and upregulation of MKP-1 by S1P
	3.2. MKP-1 expression is cAMP/CREB-responsive and S1P induces CREB phosphorylation to upregulate MKP-1 expression via an ad...
	3.3. S1P increases MKP-1 expression via parallel p38 MAPK- and CREB-mediated pathways
	3.4. MKP-1 is a negative feedback effector that represses S1P-induced p38 MAPK and ERK-mediated signaling and IL-6 secretion

	4. Discussion
	Acknowledgements
	References


