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SUMMARY

Dimerization-driven activation of the intracellular
kinase domains of the epidermal growth factor
receptor (EGFR) upon extracellular ligand binding is
crucial to cellular pathways regulating proliferation,
migration, and differentiation. Inactive EGFR can
exist as both monomers and dimers, suggesting
that the mechanism regulating EGFR activity may
be subtle. The membrane itself may play a role but
creates substantial difficulties for structural studies.
Our molecular dynamics simulations of membrane-
embedded EGFR suggest that, in ligand-bound
dimers, the extracellular domains assume conforma-
tions favoring dimerization of the transmembrane
helices near their N termini, dimerization of the juxta-
membrane segments, and formation of asymmetric
(active) kinase dimers. In ligand-free dimers, by hold-
ing apart the N termini of the transmembrane helices,
the extracellular domains instead favor C-terminal
dimerization of the transmembrane helices, juxta-
membrane segment dissociation and membrane
burial, and formation of symmetric (inactive) kinase
dimers. Electrostatic interactions of EGFR’s intracel-
lular module with the membrane are critical in main-
taining this coupling.

INTRODUCTION

The epidermal growth factor receptor (EGFR, or Her1/ErbB1) is

one of the four members of the Her (ErbB) family of receptor tyro-

sine kinases, which also includes Her2 (ErbB2/Neu), Her3

(ErbB3), and Her4 (ErbB4). These proteins serve as cell-surface

receptors for the peptide ligands of the epidermal growth factor

(EGF) family and play crucial roles in regulating cell proliferation,

migration, and differentiation (Citri and Yarden, 2006); their aber-

rant activity is implicated in a variety of cancers (Riese et al.,
2007). Consequently, Her proteins, and EGFR andHer2 in partic-

ular, are among the most intensely pursued drug targets.

The EGF receptor consists of an extracellular module

(comprising domains I, II, III, and IV) and an intracellular kinase

domain (with a long regulatory C-terminal tail), which are con-

nected by a single-helix transmembrane segment and a juxta-

membrane segment (Figure 1). EGFR activation is dimerization

dependent (Schlessinger, 2002). Ligand binding elicits a ‘‘back-

to-back’’ dimer of the extracellular domains (Ogiso et al., 2002;

Garrett et al., 2002), which leads the intracellular kinase domains

to form enzymatically active (asymmetric) dimers (Zhang et al.,

2006). Crystal structures of monomeric extracellular domains

(Ferguson et al., 2003) andof an inactive, symmetric kinase dimer

(Jura et al., 2009) have also been resolved. At low resolution,

detergent-solubilized dimers of nearly full-length receptors

have been visualized (Mi et al., 2011). A number of studies (e.g.,

Low-Nam et al., 2011; Chung et al., 2010; Clayton et al., 2005)

have shown that EGFR can also exist as preformed dimers in

the absence of ligands.

A body of experimental evidence shows that the EGFR

components that promote the dimerization and activation of

the receptors are intertwined with the components that

inhibit these processes (Figure 1). Although isolated kinase

domains are predominantly monomeric in solution (Zhang

et al., 2006), they dimerize and activate strongly when the

juxtamembrane segments are included (Jura et al., 2009).

When such EGFR constructs are localized to cell membranes,

however, their activities are abrogated. This surprising finding

is reported in this issue of Cell in the accompanying paper by

Endres et al. (2013), which also shows that the activity may

be recovered by the addition of the transmembrane seg-

ments and abrogated at low expression levels by the further

addition of the extracellular domains. These findings sug-

gest that the transmembrane and juxtamembrane segments

on balance favor EGFR activation, whereas the kinase

domain, the extracellular domains, and the EGFR interaction

with the cell membrane contribute to EGFR autoinhibition.

Although ligand binding enhances dimerization of the extracel-

lular domains only modestly in solution (Odaka et al., 1997),
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Summary of experimental findings Figure 1. Schematic View of Three EGFR

States and Summary of Some Key Experi-

mental Results

Cartoon of the monomer, ligand-free, and ligand-

bound dimers of EGFR. The structurally unre-

solved portions are shaded. The inset is a

summary of experiments (referenced in the main

text) that measured the activity of various EGFR

constructs, and the inferred contribution of EGFR

components to the balance between EGFR acti-

vation and autoinhibition.
at the cell surface, it can tip the balance decisively toward

activation.

The structural basis of these findings is uncertain, however,

because the architecture of intact EGFR remains obscure.

Various experiments have suggested the need to take the

cell membranes into account (Bessman and Lemmon, 2012),

but this presents a formidable challenge to structural analysis.

One key problem is the relatively poor understanding of the

crucial middle sections of EGFR that are embedded in, or

adjacent to, the cell membrane. It has been proposed

that, in EGFR dimers, the transmembrane helices alternate

between two dimer forms, one associated with inactive and

the other with active EGFR dimers (Fleishman et al., 2002),

although direct evidence supporting this hypothesis is lack-

ing. Although the juxtamembrane segments promote the

dimerization and activation of EGFR kinases (Jura et al.,

2009; Red Brewer et al., 2009), the structural mechanism that

couples the trans- and juxtamembrane segments is not

understood.

The preformed dimers present another key problem. Although

inactive EGFR is usually present as monomers in normal

cells, at higher levels of expression, inactive, preformed dimers

are commonly observed, and knowledge of their structure

could shed light on the mechanisms by which EGFR activity is

controlled. Their structure, however, remains unknown, although
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the observation that preformed dimers

are primed for ligand binding (Chung

et al., 2010) hints at a potentially

close structural relationship to the active

dimer in its extracellular domains. The

existence of inactive dimers suggests a

tight conformational coupling between

the extra- and intracellular domains to

prevent kinase activity in the absence of

ligand, but puzzlingly, the dimerization of

the extracellular domains and the dimer-

ization of the intracellular kinase domains

are not necessarily correlated, as shown

by experiments on intact EGFRs in deter-

gent micelles (Mi et al., 2011; Wang et al.,

2011). One possibility is that embedding

EGFR in detergent micelles alters the

receptor’s behavior in important ways

(Bessman and Lemmon, 2012) and that

a structural understanding of signal trans-
duction may need to take the membrane environment into

account.

Here, we use molecular dynamics (MD) simulations to eluci-

date the overall architecture of EGFR and its interaction with

the membrane to understand the cross-membrane coupling in

these receptors. We adopted a divide-and-conquer strategy,

initiating our model building with simulations of individual

EGFR components in various contexts. Guided by observations

from these simulations and by insights gained from coordinated

experimental work described in the companion paper (Endres

et al., 2013), the components were then assembled into larger

models, the simulations of which helped motivate further exper-

imental work. We ultimately constructed and characterized

nearly full-length models for the monomer, the ligand-free, inac-

tive dimer, and the ligand-bound, active dimer. In simulations of

the extracellular portion of a ligand-bound EGFR dimer, we

found that the extracellular domains remained close to the

(active) crystal structure but that this structure was no longer

stable when the bound EGF ligands were removed. In particular,

the two domain IVs underwent a conformational change that

substantially increased the distance between their C termini.

Because, in intact EGFR, the domain IVs are directly linked to

the transmembrane domains, these extracellular domain simula-

tions shed light on how ligand binding may be coupled to the

arrangement of the transmembrane helices. Further simulations,
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Figure 2. Conformational Diversity of the Monomeric Extracellular Module

(A) Simulation of the tethered monomeric extracellular module (starting from PDB ID code 1NQL). The overall conformation is maintained, but the ‘‘tether’’

contacts are lost (inset).

(B) Simulation of the extended monomeric extracellular module (one subunit taken from the ligand-bound extracellular dimer in PDB ID code 3NJP). Domain IV

undergoes a large conformational change and reaches the dimerization arm of domain II, whereas domains I, II, and III largely remain stable.

In both (A) and (B), the ‘‘hinge’’ in domain IV (residues 502–514) is highlighted in orange, and the starting conformations are shown in gray.
together with nuclear magnetic resonance (NMR) and mutagen-

esis data (Endres et al., 2013), demonstrated that the transmem-

brane helices may dimerize either near their N or C termini. The

data further showed that antiparallel juxtamembrane helix

dimers coexist with N-terminal transmembrane dimers but are

incompatible with the C-terminal transmembrane dimers. Our

simulations showed that, when the juxtamembrane dimers are

disrupted, the juxtamembrane segments become embedded in

the membrane. Consistent with earlier findings by Jura et al.

(2009), we show that a juxtamembrane helix dimer is compatible

with the asymmetric kinase dimer and, hence, with EGFR activa-

tion. We find membrane-embedded juxtamembrane segments,

on the other hand, to be compatible with both the symmetric

kinase dimer and EGFRmonomers and, thus, with EGFR autoin-

hibition. Combining these findings, we propose a structural

mechanism that enables the receptors to relay signals across

the membrane. Notably, the simulations indicate that membrane

lipids, especially anionic lipids, interact extensively with the

receptors and are integral to signal transduction. A detailed

description of EGFR-membrane interaction from these simula-

tions provides a mechanistic understanding of a dual role for

anionic lipids in EGFR regulation in both inhibiting EGFR in the

absence of ligand stimulus and in accentuating EGFR response

to a stimulus.

RESULTS

Monomeric Extracellular Domains Are Conformationally
Highly Flexible
In the ligand-bound extracellular EGFR dimer, each subunit

binds one ligand between domains I and III and adopts an

extended conformation (Figure 2; Garrett et al., 2002; Ogiso

et al., 2002; Lu et al., 2010). In the absence of ligands, mono-

meric extracellular domains may assume a ‘‘tethered’’ confor-

mation (Cho and Leahy, 2002; Ferguson et al., 2003) that
precludes dimerization. This conformation is characterized by

a wide separation of domains I and III and the tether interaction

between domain IV and the dimerization arm of domain II (Fig-

ure 2). EGFR, however, can dimerize prior to EGF binding, sug-

gesting that the extracellular domains in monomeric EGFR may

adopt conformations other than tethered.

To investigate these conformations, we first simulated the

monomer starting from the tethered conformation, in which, on

a timescale of microseconds, the ‘‘tether’’ readily disengaged,

but domains II and IV remained in extensive contact, shielding

the dimerization arm (Figure 2A). Thus, our simulations suggest

a limited role of the tether in EGFR autoinhibition, which is

consistent with experimental findings (Mattoon et al., 2004;

Dawson et al., 2007; Liu et al., 2012a). Simulations of monomeric

extracellular domains were also initiated from the extended

conformation (both with and without EGF bound). These simula-

tions demonstrated a significant conformational change occur-

ring within 1–5 ms, in which the C terminus of the extracellular

domains traveled a distance of�80 Å (Figure 2B). This happened

largely as a result of the bending of domain IV around a ‘‘hinge’’

(residues 502–514), which produced a compact conformation of

the extracellular domains not yet captured by crystallography,

which resembled the extended conformation in domains I–III,

and the tethered conformation in domain IV. The instability of

the extended conformation for EGFR monomers confirms that

the extracellular domains in monomers generally adopt compact

conformations (Du et al., 2012).

The Dimer Conformation of Ligand-free Extracellular
Domains
In contrast to the instability of the extended conformation of

extracellular monomers, the extended conformation of the two

subunits in a ligand-bound dimer (the ‘‘two-ligand dimer’’) re-

mained stable in our simulations, which is consistent with the

stabilizing effect of ligand binding to EGFR active dimers
Cell 152, 557–569, January 31, 2013 ª2013 Elsevier Inc. 559



Figure 3. Conformations of the Ligand-Bound and Ligand-free EGFR Extracellular Dimer

(A) The dimer is simulated starting from the crystal structure (PDB ID code 3NJP), retaining either both ligands (two-ligand dimer, left) or one ligand (one-ligand

dimer, center). The final conformation of the one-ligand dimer simulation is used to initiate the simulation of the ligand-free dimer (right). The two domain IVs

undergo a significant movement in the one-ligand dimer simulation, but not in the two-ligand or ligand-free dimer simulations. This results in a greater distance

between the C termini (dCC) in the one-ligand and ligand-free dimers than in the two-ligand dimer.

(B) Side views of the dimer conformations. Transitions from the ‘‘Staggered’’ toward the ‘‘Flush’’ conformation (Liu et al., 2012b) are observed in our simulations of

the one-ligand and ligand-free dimers. The dashed lines here indicate the principal axes of the domain IIs.

See also Figure S1 and Movie S1.
(Figure S1 available online). EGFR can also form ligand-free

dimers that presumably need to be autoinhibited in normal cells.

Because the crystal structure of the ligand-free extracellular

dimer is not yet available for human EGFR, we attempted to

investigate the structure using MD simulations. From the notion

that the inactive dimers are primed for ligand binding (Chung

et al., 2010; Sako et al., 2000), we hypothesized that their

extracellular domains bear structural resemblance to the active

structure. We thus performed simulations based on the crystal

structure of the two-ligand extracellular dimer. First, the crystal

structure was simulated after one ligand was removed. In

the simulation, the gap left by the removed ligand (Figure 3)

was filled by domains I and III, which came into contact with

each other. The resultant conformation of the ligand-free subunit

bears significant similarity in domains I–III (Figure 3) to the ligand-

free structures of Her2 (Cho et al., 2003; Garrett et al., 2003)

and Drosophila EGFR (Alvarado et al., 2009, 2010). Moreover,

we observed a rotation of one subunit with respect to the
560 Cell 152, 557–569, January 31, 2013 ª2013 Elsevier Inc.
dimerization arm of the other (Figures 3B and S1E), reflecting

a transition between the ‘‘staggered’’ and the ‘‘flush’’ conforma-

tions (Liu et al., 2012b).

Perhaps more importantly, the rearrangement of domains I

and III led to a ‘‘bending’’ motion at domain IV (Movie S1)

around the hinge region in the ligand-free subunit of the ‘‘one-

ligand dimer’’ (where only one EGFR subunit is ligand bound),

reminiscent of the ‘‘bending’’ in monomeric extracellular

domains (Figure 2B). The bent domain IV was observed to

occasionally return to its initial conformation (Figure S1), likely

reflecting a fluctuation between the two conformations in

a one-ligand dimer. To further investigate the conformation of

the ligand-free extracellular dimer, we removed the remaining

ligand from the one-ligand extracellular dimer. Starting with

a bent domain IV, subsequent simulations did not exhibit signif-

icant conformational changes, suggesting that a bent domain IV

is stable in the absence of bound ligands in the dimer (Figures 3

and S1).



Our results thus suggest that the removal of bound ligands

results in significant rearrangement of the domain IVs. Instead

of a V-shape arrangement of domain IVs in the two-ligand

dimer, in the new arrangement, they adopt an antiparallel

arrangement with a distance of �45 Å between the two

C-terminal ends (dCC), which is significantly greater than the

distance in the two-ligand dimers (10 Å in crystal structures

and �30 Å on average in our simulations; Figure S1E). The

distance dCC is important because, by altering it, the extracel-

lular domains may communicate with the one-pass transmem-

brane helices and ultimately the cytoplasmic portion of the

EGFR dimer. The basic observation concerning dCC was found

to be robust to the choice of force field in our simulations

(Supplemental Information).

The TransmembraneHelices Favor anN-Terminal Dimer
The transmembrane segment connects the extra- and intracel-

lular domains. We expect that the transmembrane conforma-

tions in active and inactive EGFR dimers differ in ways that

place substantial constraints on the possible structures of the

intra- and extracellular modules. An EGFR transmembrane helix

contains twoGxxxG-likemotifs (where theG represents a glycine

or other small amino acid): one close to the N terminus

(TGMVGA, residues 624–629, which itself comprises two over-

lapping GxxxG-like motifs) and the other to the C terminus

(ALGIG, residues 637–641). Because GxxxG motifs often serve

as dimerization interfaces of transmembrane helices (Lemmon

et al., 1994; Russ and Engelman, 2000), dimerization of the

EGFR transmembrane helices at the N- or the C-terminal motifs

has been suggested by Mendrola et al. (2002) and Fleishman

et al. (2002). Crosslinking experiments by Lu et al. (2010)

confirmed that the ligand-bound active EGFR dimer contains

dimer contacts at the N-terminal motif. The C-terminal trans-

membrane dimer, on the other hand, has been proposed to be

part of the ligand-free inactive EGFR dimer (Landau and Ben-

Tal, 2008).

To assess the relevance of these two potentially competing

transmembrane-dimer forms for EGFR signaling, we investi-

gated their stability using MD simulations. We constructed

a model of the N-terminal transmembrane dimer using the

resolved Her2 N-terminal dimer (Bocharov et al., 2008) as

a template. The C-terminal dimer model was constructed so

that the two helices were in contact at the C-terminal GxxxG-

like motifs, and the angle between these two helices was similar

to that in the Her2 N-terminal dimer. In a POPC/POPS lipid

bilayer (see Supplemental Information), the N-terminal trans-

membrane dimer was found to be stable by itself, as it remained

intact in simulations up to 100 ms long (Figure 4A), whereas the

C-terminal dimer dissociated on a timescale of 100 ns to 10 ms

(Figure 4B).

Consistent with the crosslinking experiments by Lu et al.

(2010), although the wild-type N-terminal dimer remained

intact in simulations, the dimer interfaces were variable, in-

cluding the GxxxG-like motif, as well as the adjacent resi-

dues. This is reflected in the distance between the interfacing

residues, dint, which fluctuated around slightly different aver-

ages in the simulations, and in the varied residue contacts

(Figure 4A).
The different stability of the N- and C-terminal transmembrane

dimers may be in part attributed to the fact that the N-terminal

dimerization interface is more extensive, consisting of two over-

lapping GxxxG-like motifs. Moreover, the glycine (Gly625) in the

N-terminal motif is more favorable for dimerization than its coun-

terpart (Ala637) at the C-terminal motif. Consistent with this

observation, Her2 features glycines in its C-terminal motif

(GVVFG, residues 646–650), and in our simulations, the

C-terminal Her2 transmembrane dimer was stable for as long

as 100 ms (Figure S2).

The relative stability of the N-terminal EGFR transmembrane

dimer was corroborated by further self-assembly simulations

of the transmembrane helices initially placed distant from

one other in a POPC/POPS lipid bilayer. In both such simula-

tions, the transmembrane helices dimerized at the N-terminal

GxxxG-like motifs, and resultant dimers remained stable

throughout the simulations—50 ms or longer (Figure 4D).

The Model of the N-Terminal Transmembrane Dimer Is
Consistent with NMR Measurements
From the nuclear Overhauser effect (NOE) spectroscopy of

EGFR trans- and juxtamembrane segments (TM–JM) embedded

in DMPC lipids, 21 pairs of adjacent residues from a TM–JM

dimer (21 intersubunit ‘‘NOEs,’’ including 13 for the transmem-

brane and 8 for the juxtamembrane segments) were identified

(Endres et al., 2013). Almost all (up to 11 out of 13) of the trans-

membrane NOEs were satisfied in the aforementioned simula-

tions of the N-terminal transmembrane dimer in POPC/POPS

membrane bilayers, where the structural model was constructed

independently from the NMR data, and the membrane lipids

were different from those in the NMR experiments.

To further compare our model against the NMR data, we

simulated the same system probed by the NMR experiments,

where the transmembrane dimer was embedded in neutral-

charged DMPC lipid bilayers with the juxtamembrane segments

attached (Figure 5). In the first of these simulations (‘‘DMPC 1’’),

the initial conformation of the transmembrane dimer was taken

from the last snapshot of the 100 ms simulation of the N-terminal

transmembrane dimer in POPC/POPS lipids (Figure 4A), which

satisfied 9 of the 13 transmembrane NOEs. The dimer reached

a new conformation with a wider (��70�) angle between the

two helices 12 ms into the simulation (Figure 5B). Similarly, in

simulation ‘‘DMPC 4,’’ an ensemble of conformations with

angles ranging from �30� to �80� was observed. The alterna-

tive, ‘‘narrow’’ conformations also appeared to be accessible

in DMPC, as the conformation remained stable in two other

simulations (‘‘DMPC 2’’ and ‘‘DMPC 3’’). Each of these two

sets of conformations satisfies up to 11 of the 13 transmem-

brane NOEs (Figures 5A and S3); the wide conformations do

not satisfy the two NOEs involving Val636, which are mostly

satisfied in the narrow conformations (Figures 5A and S3).

Based on these observations, we suggest that an N-terminal

transmembrane dimer exists in a dynamic equilibrium in DMPC

bilayers. Indeed, we confirmed that an ensemble consisting of

both the wide and the narrow transmembrane conformations

can satisfy all of the 13 transmembrane NOEs (Figures 5A and

S3). It should be noted that the wide transmembrane-dimer

conformations observed in the DMPC bilayers may not be viable
Cell 152, 557–569, January 31, 2013 ª2013 Elsevier Inc. 561



Figure 4. N-Terminal and C-Terminal Transmembrane Dimers

(A) Simulations of the N-terminal transmembrane dimer. The starting and ending conformations in one of the simulations are shown in the left panel, where

the GxxxG-like motifs are highlighted in green. In the middle panel, the (center-of-mass) distance between the motifs of the two helices is plotted. The right

panel shows the residue-residue contacts between the two helices, computed over the two simulations, where the intensity represents the fraction of simulation

time in which a contact is maintained.

(B) Simulations of the C-terminal transmembrane dimers. The distance between the dimer interfaces (middle) shows the instability of these dimers. The residue-

residue contacts (right) are averaged over all four simulations. WT, wild-type.

(C) Simulations of the I640E C-terminal dimer. The contact between the Glu640 and the backbone of the other helix is highlighted in the left panel. The

I640E mutation stabilized the C-terminal transmembrane dimer (middle). Note that the residue contact map (right) differs from that of the C-terminal dimer of the

wild-type (B).

(D) Self-assembly simulation of EGFR transmembrane helices. The self-assembly was observed in two independent simulations (middle). The residue contacts

(right) are similar to those observed in simulations of the modeled N-terminal transmembrane dimers in (A).

See also Figure S2.
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Figure 5. Properties of the TM–JM-A Dimers

(A) NOEs (Endres et al., 2013) satisfied by simulations. Each dot indicates a satisfied NOE at a given time in the simulation. The five columns correspond to four

TM–JM-A simulations with DMPC and one with POPC/POPS lipids. Note that the overlapping dots may appear as a straight line in the figure.

(B) The angle between the two transmembrane helices in the simulated TM–JM-A dimers. The narrow and wide conformations are marked schematically.

(C) JM-A helicity.

(D) JM-A conformations. The JM-A dimer is stable when connected to the N-terminal transmembrane dimer (left), but not when connected to the C-terminal

dimer. A JM-A embedded in the membrane, with its hydrophobic residues (orange) placed into the hydrophobic membrane interior.

See also Figure S3.
in the thicker POPC/POPS bilayers or typical biological mem-

branes. Transmembrane helices tend to be more tilted in thinner

bilayers (Holt and Killian, 2010), leading to larger interhelix angles
in a dimer in the DMPC bilayers. It is noteworthy that simulated

annealing, a standard method in NMR analysis, generated a

model of a left-handed N-terminal transmembrane dimer. This
Cell 152, 557–569, January 31, 2013 ª2013 Elsevier Inc. 563



model was unstable in simulations (Figure S3) and is likely

not adopted by EGFR. This indicates that the relatively small

number of NOEs themselves may be insufficient to unambigu-

ously distinguish different models.

The N- and the C-Terminal Transmembrane Dimers
Represent an Active and an Inactive Conformation,
Respectively
The N-terminal transmembrane dimer is geometrically compat-

ible with the two-ligand active extracellular dimer, in that the

short distance between the N termini of the transmembrane

helices matches that of the C termini of the two domain IVs

in the active extracellular dimer. This is not the case for the

C-terminal transmembrane dimer. We infer that the N-terminal

transmembrane dimer is integral to an active EGFR dimer,

a conclusion consistent with experiments by Lu et al. (2010)

showing elevated levels of crosslinking at the N-terminal

GxxxG-like motif upon EGF stimulus. The same study, how-

ever, also showed that mutations (T624L, G625L, G628L, and

A629L) at the N-terminal motif do not disrupt EGFR activation,

thus suggesting that N-terminal dimerization is not essential.

We performed simulations of these mutants and found that

the N-terminal transmembrane dimer in fact is resilient to these

mutations (Figure S2). (This observation is likely connected to

the finding of Lu et al. (2010) that the N-terminal dimerization

interface is structurally variable, a finding directly supported

by our simulations, as discussed above.) The mutagenesis

findings of Lu et al. (2010) thus are not necessarily inconsistent

with an essential role for N-terminal dimerization of the trans-

membrane helices in EGFR activation. Additional support for

this conclusion comes from investigations of the T624I/

G625I/G628I/A629I quadruple mutation, which impairs EGFR

activation (Endres et al., 2013); our simulations of this mutant

show that the N-terminal dimerization is indeed disrupted

(Figure S2).

The C-terminal transmembrane dimer has been hypothesized

to be part of an inactive EGFR dimer (Fleishman et al., 2002;

Landau and Ben-Tal, 2008). Although our simulations suggest

that the C-terminal dimers are relatively unstable on their own

(Figure 4B), further simulations showed that they can be main-

tained if other EGFR components are present (Figure S3D).

That the C-terminal transmembrane dimer matches the inferred

structure of the ligand-free extracellular dimer is consistent with

this hypothesis.

This hypothesis is further supported by the finding that an

I640E mutation near the C-terminal GxxxG-like motif strongly

inhibits EGFR activity in cells (Endres et al., 2013). This mutation

broke the N-terminal transmembrane dimer in simulation (Fig-

ure 4A). The glutamate side chain tended to interact with lipid

head groups rather than stay inside the membrane, reducing

the effective hydrophobic length of the transmembrane helices,

changing their orientation with respect to the membrane,

and disrupting the dimer interface. This mechanism resembles

that by which a similar transmembrane mutation of integrin

b leads to the dissociation of its transmembrane domains and in-

tegrin activation (Kim et al., 2011). Moreover, glutamate side

chains are known to form interchain hydrogen bonds in

membranes (Sternberg and Gullick, 1989), and the I640E
564 Cell 152, 557–569, January 31, 2013 ª2013 Elsevier Inc.
mutation may strengthen the dimerization at the C terminus (Fig-

ure 4C). The contact in the mutant transmembrane helices was

mostly by interactions of Glu640 and the backbone groups

near the C terminus of the partner helix. The I640E dimer is

nevertheless similar to the GxxxG-mediated C-terminal dimer

in that the C termini of the helices are close to each other.

The JM-A Helix Dimer Is Induced by the N-Terminal
Transmembrane Dimer and Is Stabilized by Anionic
Lipids
It has been previously shown that the juxtamembrane

segments linking the transmembrane helices and the kinase

domains are critical in EGFR activation (Jura et al., 2009; Red

Brewer et al., 2009; Thiel and Carpenter, 2007). In the active

state, the N-terminal portion of the juxtamembrane segments

(JM-A) forms antiparallel helix dimers (Scheck et al., 2012;

Jura et al., 2009), and the C-terminal portion (JM-B) interacts

with the kinase domains. The JM-A helix dimer thus couples

the N-terminal transmembrane dimer at one end with the

(active) asymmetric kinase dimer at the other. The new NMR

measurements of the TM–JM segments (Endres et al., 2013)

identified eight JM-A NOEs, all consistent with an antiparallel

helix dimer.

We modeled the active TM–JM-A dimer consisting of an

antiparallel JM-A helix dimer attached to an N-terminal trans-

membrane dimer. The JM-A dimer was so constructed that the

hydrophobic sides of the amphipathic JM-A helices were in

contact with each other. Notably, simulations of this model

showed that the JM-A helices were less stable with DMPC lipids

than with POPC/POPS lipids: the JM-A helices melted in three of

the four DMPC simulations, and the JM-A dimers fell apart (Fig-

ure 5C). This is consistent with theNMR finding that JM-A helicity

is maintained only �30% of the time with DMPC (Endres et al.,

2013). Moreover, when the JM-A helix dimer was maintained,

the model satisfied the NOEs remarkably well (Figure 5A),

although neither the construction of the model nor the simulation

used any information from NMR.

It is especially noteworthy that, compared to DMPC, in

a POPC/POPS bilayer, the JM-A helices and the helix dimer

were better stabilized (Figure 5C), and the NOEs were better

satisfied throughout the simulation. The JM-A is rich in positively

charged basic residues, and the simulation showed that they in-

teracted extensively with the anionic POPS lipids (Figure S3B).

The stabilizing effect of the POPC/POPS bilayer most likely

arose from these electrostatic interactions, which are absent in

the neutral DMPC lipids. Additionally, in simulations where the

TM–JM dimer was connected to the asymmetric kinase dimer,

we observed further stabilization of the JM-A helices (Fig-

ure S3F), suggesting a cooperative interaction between these

domains.

The JM-A Segments of Inactive EGFRs Are Embedded
in the Membrane
To communicate signals across the membrane, the trans- and

juxtamembrane segments presumably adopt distinct conforma-

tions in the active or inactive EGFR states. Having argued

that an activedimer of EGFRcomprises anN-terminal transmem-

brane dimer and an antiparallel JM-A helix dimer, we now seek to



Figure 6. Models of the Near-Complete EGFR Monomer and Dimers

(A–C) The models are taken from simulations of the EGFR monomer (A), inactive dimer (B), and active dimer (C), at the noted simulation time. The connecting

points between the extracellular and the transmembrane helices are marked by circles.

See also Movies S2 and S3 and Tables S1, S2, and S3 for the coordinates of the structural models.
identify the JM-A conformations in a monomeric receptor or an

inactivedimer.Wefirst simulatedmonomeric TM–JM-A.Notably,

the JM-A, which was initially placed in solution away from the

POPC/POPS membrane, became embedded in the membrane

with the JM-A hydrophobic residues buried in the bilayer interior

and the basic residues paired with the head groups of the

charged lipid (Figures 5D and S3C). The membrane embedding

of the juxtamembrane segments is consistent with the NMR

data of JM-A in detergent micelles (Choowongkomon et al.,

2005). We then performed simulations (with a POPC/POPS

bilayer) starting from a C-terminal transmembrane dimer

combined with a JM-A dimer. In these simulations, the JM-A

dimer either dissociated or significantly deformed (Figures 5D

and S3A), suggesting that the C-terminal transmembrane dimer,

representative of an inactive state, and the JM-A antiparallel helix

dimer, representative of an active state, may not coexist. Struc-

turally, this may be because residues (645–653) connecting the

trans- and juxtamembrane segments are rich in positive charges,

and when the C-terminal transmembrane dimer brings them

close to one another, the resultant repulsion destabilizes the

JM-A dimer. By contrast, the N-terminal transmembrane dimer

separates these residues and thus stabilizes the JM-A dimer.

Taken together, these results support a scenario in which the

JM-A conformations alternate between the antiparallel JM-A

helix dimer and separated JM-A embedded in the membrane,
the former corresponding to the active and the latter to the inac-

tive state.

Assembly of Complete EGFRs
Having characterized the main EGFR components individually,

we proceeded to assemble these components into models of

near-complete EGFRs (missing the natively unstructured tails

C-terminal to the kinase domains). A model of monomeric

EGFR (Figure 6A; Table S1) includes the EGFR extracellular

domains adopting a nonextended conformation (Figure 2),

a transmembrane helix, a JM-A embedded in POPC/POPS

membrane, and the JM-B connected to the kinase domain

(KD) in its inactive kinase conformation (Wood et al., 2004;

Jura et al., 2009). The kinase domain was placed relative to the

membrane so that its two positively charged patches (Figure 7A;

Lys689, Lys690, Lys692, and Lys715 in one and Arg779, Arg817,

Lys851, and Lys889 in the other) were in contact with the

membrane and interacting with the anionic lipids. Such an

arrangement potentially constitutes another layer of inhibition

by occluding the substrate-binding site of the kinase by the

membrane (Figure 7A).

Similarly, we assembled a model of an EGFR inactive dimer

(Figure 6B; Table S2), which included the simulation-generated,

ligand-free extracellular dimer (Figure 3), a C-terminal trans-

membrane dimer, and membrane-embedded JM-A connected
Cell 152, 557–569, January 31, 2013 ª2013 Elsevier Inc. 565



Figure 7. EGFR Interaction with the Intracellular Leaflet of the Membrane

(A) Electrostatic potentials of EGFR kinases on the surface in contact with the membrane (first row), kinase interactions with the inner leaflet (second row), and

aggregation of anionic (POPS) lipids around EGFR in simulations (third row). The anionic lipids are shown in red and the other lipids in gray. The fractions indicate

the relative concentration of POPS lipids in the membrane bilayer. The electrostatic potential is shown on a scale from �5 to 5 kBT/jej (red to blue). Note that the

kinase domains are attached to the membrane, and their active sites (shown in orange in row 2) are sequestered by the membrane except in the active dimer.

(B) Instability of the inactive dimer at low concentrations of POPS lipids. With low POPS concentrations, the kinase domains detached from the membrane (left),

and the C-terminal transmembrane dimer dissociated (right); here, dint denotes the separation between the two C-terminal GxxxG-like motifs.

(C) A model of overexpression-induced EGFR activation due to reduced availability of the anionic lipids. At normal expression levels (left), extensive interaction

with the anionic lipids favors inactive EGFRmonomers and dimers over active dimers. At high expression levels (right), a relative scarcity of the anionic lipids leads

to EGFR activation.

See also Figure S4.
by the extended JM-B to the (inactive) symmetric kinase dimer

(Jura et al., 2009). The involvement of the symmetric dimer in

the inactive dimer of EGFR is consistent with the low-resolution
566 Cell 152, 557–569, January 31, 2013 ª2013 Elsevier Inc.
visualization of a globular kinase dimer that differs from the rod-

like asymmetric active kinase dimer (Mi et al., 2011). The

symmetric kinase dimer, with the large distance between its



N termini, may be readily connected to a pair of separated juxta-

membrane segments embedded in the membrane.

Previously, it has been noted that the positively charged

patches of the subunits in the symmetric kinase dimer face the

same direction (Figure 7A; Jura et al., 2009). Given that these

patches may interact favorably with anionic lipids, in the inactive

dimer model we placed the kinase dimer so that these patches

faced the membrane. As in the monomer model, here the

substrate-binding sites of the kinase domains were again

occluded by the membrane (Figure 7A).

Our model of the active dimer (Figure 6C; Table S3) consisted

of the two-ligand active extracellular dimer, the N-terminal trans-

membrane dimer connected with the antiparallel JM-A dimer,

and an (active) asymmetric JM-B–KD dimer. The asymmetric

kinase dimer (Protein Data Bank [PDB] ID code 2GS6; Zhang

et al., 2006) was placed relative to the JM-A dimer according

to the orientation seen in the crystal structure of the JM–KD

construct (PDB ID code 3GOP; Red Brewer et al., 2009). Unlike

the inactive EGFR dimer, where the substrate-binding sites of

the kinase domains are occluded by the membrane, in the active

EGFR dimer, the site of the enzymatically activated receiver

kinase faces the interior of the cell (Figure 7A). Although the

key components of EGFR dimers were stable in our simulations

of the EGFR models, some flexibility was observed between

these components (Figure 6; Movies S2 and S3). For instance,

the extracellular module of the active dimer may undergo signif-

icant motions relative to the transmembrane segments and the

membrane but itself maintains a small distance between its C

termini (Figure S1E). Rather than standing upright on the

membrane, the extracellular modules are flexible in orientation

and often rest on the membrane surface, in agreement with

previous FRET measurements (Kästner et al., 2009).

EGFR Interactions with Anionic Membrane Lipids
Our models highlight the extensive electrostatic interaction

between EGFR and the intracellular leaflet of the membrane.

Such interaction is reflected in the clustering of anionic POPS

lipids around EGFR in our simulations. The simulations show

that the EGFRmonomer, and inactive and active dimers, respec-

tively, are in contact (within 5 Å) with 25 ± 3, 52 ± 2, and 37 ± 3

POPS lipid molecules on average (at 15% POPS; see Figures

7A and S4). In all three cases, the POPS in contact with EGFR

accounted for �50% of all the lipids in contact, whereas POPS

accounted for only 30% (15% overall for the bilayer) of the

inner-leaflet lipids (see Supplemental Information; Figures S4B

and S4C). We have also observed similar trends in simulations

with lower (7.5% and 2.5% of the overall lipid number) POPS

content. The JM-A, which is rich in basic residues, interacts

extensively with the anionic lipids both in inactive EGFRs, where

it is embedded in the membrane, and in the active EGFR dimers,

where it is part of an antiparallel helix dimer (Figure S3). As dis-

cussed above, such interactions in the active dimer presumably

stabilize the JM-A dimer and strengthen the coupling between

the extra- and intracellular modules.

We found that inactive EGFR interacted with the anionic lipids

more extensively than did active EGFR. For example, on

average, �26 POPS molecules were in contact with each

receptor in the inactive monomer or dimer, versus �18–19 in
the active dimer. This is because, in inactive EGFR, the basic

residues of the kinase domains are exposed and in contact

with the membrane (Figure 7A), whereas in the active dimer,

the patches are shielded by the C-terminal tails, as shown in

the crystal structure (PDB ID code 2GS6; Zhang et al., 2006).

The interaction of EGFR with anionic lipids thus is likely

more energetically favorable for inactive than for active EGFR.

If so, the interaction of the membrane with the intracellular

portion of EGFRwould give a net contribution to EGFR inhibition.

This is consistent with our finding that lowering POPS concentra-

tion leads to destabilization of the inactive dimer conformation

and detachment of the kinase domains from the membrane

(Figures 7B and S4D). Although the C-terminal transmembrane

dimer associated with EGFR autoinhibition was stable in the

inactive TM–JM–KD dimer at 15% (overall) POPS, it dissociated

in simulations with lower POPS content (Figure 7B), presumably

because the interaction of the anionic lipids with the juxtamem-

brane segments is needed to stabilize the inactive EGFR dimer.

Remarkably, simulations with reduced POPS concentration

(0%–2.5%) also show that the kinase domains of the inactive

EGFR dimer may detach from the membrane when there is

a lack of negatively charged lipids (Figure 7B). Such detachment

may favor activation, as the intracellular EGFR module has been

found to be active in solution but inhibited when attached to the

cell membrane (Endres et al., 2013).

DISCUSSION

The simulation studies and the experimental findings (Endres

et al., 2013) together shed light on the overall architecture of

intact EGFRs in themembrane environment and on the structural

mechanism of autoinhibition and activation. The extracellular

module plays an inhibitory role in the absence of ligands, as its

deletion leads to ligand-independent activation. Our simulations

show that, in addition to impeding receptor dimerization, ligand-

free extracellular dimers (especially the two domain IVs) disfavor

activation in preformed dimers by assuming conformations

inconsistent with the formation of the N-terminal transmembrane

dimers. This explains why the insertion of a flexible linker

between the extracellular and the transmembrane segments,

which presumably decouples the former from the rest of

EGFR, causes enhanced activity in the absence of ligands.

In addition, our studies highlight the previously largely over-

looked role of the membrane in maintaining the coupling of

EGFR extracellular domains with the rest of the receptors. The

anionic lipids were found to extensively interact with the basic

residues of the juxtamembrane segments, helping stabilize the

juxtamembrane helix dimer and, indirectly, the active kinase

dimer. These interactions led to a stronger conformational

coupling between the trans- and juxtamembrane segments in

the POPC/POPS membrane than in the DMPC one, as reflected

in the greater stability of the juxtamembrane helix dimer in the

former membrane. This may explain why EGFR activity in

response to EGF stimulus is reduced at lower levels of anionic

PIP2 lipids in the cell membrane (Michailidis et al., 2011). It is

likewise not entirely surprising that, for EGFRs immersed in

detergent micelles rather than embedded in a cell membrane,

the dimerization of their extracellular modules is not necessarily
Cell 152, 557–569, January 31, 2013 ª2013 Elsevier Inc. 567



coupled to the dimerization of their intracellular modules (Mi

et al., 2011; Wang et al., 2011).

While the membrane helps ensure that ligand binding leads to

robust EGFR activation, our studies show that it also plays

a crucial role in the autoinhibition. The surface of an EGFR kinase

domain features extensive patches of basic residues (Jura et al.,

2009), which are shielded by the C-terminal tails only in an active

dimer. Our simulations show that inactive EGFR kinases,

whether monomers or dimers, attach to the membrane, and

the basic residues interact extensively with the anionic lipids.

As a result, the active sites of the kinase domains are obstructed.

In comparison, the asymmetric kinase dimer in an active EGFR

dimer has less interactions with the anionic lipids, and the active

site of the enzymatically active ‘‘receiver’’ kinase is exposed

(Figure 7A).

On balance, the anionic lipids of the membrane favor the inac-

tive stateofEGFR.This isan important featureof the ‘‘electrostatic

engine’’ model, in which EGFR activation is postulated to involve

the breaking of electrostatic interactions and the release of the

intracellular module from the membrane (McLaughlin et al.,

2005). Our observation that the inactive dimer interacts more

extensively with the membrane (Figure 7A) may be important to

EGFR autoinhibition. In normal cells, the effective EGFR concen-

tration on the cell surface can reach 20 mM (�150 molecules

per mm�2 in surface density), but the dissociation constant for

active dimers of EGFR kinase domains is �6 mM without stabili-

zation by the juxtamembrane segment (Shan et al., 2012). Since

the juxtamembrane domains are long and flexible, these numbers

suggest that active kinase domain dimers would form in the

absence of ligand stimulation if the formation does not require

breaking favorable interactions with the membrane.

The important role of anionic lipids in EGFR inhibition led us to

speculate that a relative shortage of anionic lipids may underlie

the aberrant activity associated with EGFR overexpression that

has been observed in many cancer cells. Although overexpres-

sion presumably causes an enhanced level of EGFR dimeriza-

tion, it remains unclear how overexpression overwhelms the

autoinhibitory mechanism that ordinarily ensures that ligand-

free dimers are inactive. It has been shown (Endres et al., 2013)

that, in the absence of ligands, EGFR activity depends on

EGFR density at the cell surface. Notably, EGFR activity appears

to grow strongly only in the density range beyond 800 mm�2, sug-

gesting a possible autoinhibitory mechanism that breaks down

at high EGFR density. Our analysis shows that a dimerization

model with a density-independent dissociation constant of the

active dimer fits the data less well than a similar model with

a dissociation constant that decreases with higher densities (Fig-

ure S4E). The latter model implies that the active dimer is favored

at high densities beyond the effect of high concentration. We

conjecture that EGFR overexpression, and a consequent relative

shortage of anionic lipids, may weaken the coupling between

EGFR extra- and intracellular modules and shift the balance

toward active kinase dimers (Figure 7C).
EXPERIMENTAL PROCEDURES

The simulationswere performed on the special-purpose supercomputer Anton

(Shaw et al., 2009). The simulated systems ranged in size from �35,000 to
568 Cell 152, 557–569, January 31, 2013 ª2013 Elsevier Inc.
�554,000 atoms (Table S4). All proteins, water molecules, and membrane

lipids were represented in full atomic detail. See the Extended Experimental

Procedures for details of the protocols of the MD simulation and system setup

and the force fields used in the simulations.
SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures, four

figures, four tables, and three movies and can be found with this article online

at http://dx.doi.org/10.1016/j.cell.2012.12.030.
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