Normality criteria of meromorphic functions with multiple zeros

Pei-Chu Hu, Da-Wei Meng

1. Introduction and main results

Let F be a meromorphic function in \mathbb{C}. In 1959, W.K. Hayman [9] proposed the conjecture: If F is transcendental, then $F^n F'$ assumes every finite non-zero complex number infinitely often for any positive integer n. Hayman [9,10] himself confirmed it for $n \geq 3$ and for $n \geq 2$ in the case of an entire F. Further, it was proved by E. Mues [15] when $n \geq 2$; J. Clunie [6] when $n \geq 1$, F is entire; W. Bergweiler and A. Eremenko [3] if $n=1$ and F is of finite order, and finally by H.H. Chen and M.L. Fang [4] for the case $n=1$.

Let \mathcal{F} be a family of meromorphic functions defined in a domain $D \subset \mathbb{C}$. Correspondingly, a conjecture of Hayman [10] on normal family, which is related to above problem on value distribution, is as follows: If each $f \in \mathcal{F}$ satisfies $f^n f' \neq a$ for a positive integer n and a finite non-zero complex number a, then \mathcal{F} is normal. This conjecture has been shown to be true by Yang and Zhang [29] (for $n \geq 5$ and for $n \geq 2$ in case that \mathcal{F} is a family of holomorphic functions), Gu [12] (for $n=3,4$), Oshkin [16] (for holomorphic functions, $n=1$; cf. [13]), and Pang [18] (for $n \geq 2$ in general; cf. [8]). As indicated by X. Pang [18] (or see [4,31]), the conjecture for $n=1$ is a consequence of Chen–Fang's theorem and his theorem which is a generalization of Zalcman's lemma (cf. [30]). Thus, the Hayman's conjecture on normal family is also verified completely.

Lately, Q.C. Zhang [33] proved that \mathcal{F} is also normal when each pair (f,g) of \mathcal{F} is such that $f^n f' + g^n g'$ share a finite non-zero complex number a IM for $n \geq 2$ (or see [32]), where, by definition, two meromorphic functions F and G are said to share a IM (ignoring multiplicity) if $F^{-1}(a) = G^{-1}(a)$ (see [7]). There are examples showing that this result is not true if $n=1$. For the case of high derivatives, a similar result was obtained by J.M. Qi, D.W. Meng and H.X. Yi [20].

W. Hennekemper [11] extended Clunie's result above by proving an inequality on value distribution, which means particularly that if F is a transcendental entire function, then $(F^k)'(k)$ assumes every finite non-zero complex number infinitely often for any positive integer k. Fix positive integers n and k. In 1998, Y.F. Wang and M.L. Fang [24] proved that if F is transcendental meromorphic functions in \mathbb{C}, $n \geq k+1$, then $(F^n)'(k)$ assumes every non-zero complex number infinitely often. Correspondingly, W. Schwick [22] proved a theorem of normal families related to this result, that is, when $n \geq k+3$, $(F^n)'(k) \neq 1$ for each $f \in \mathcal{F}$, then \mathcal{F} is normal in D. Recently, Y.T. Li, Y.X. Gu [14] further extend Schwick's result as follows:

Take positive integers $n,k \geq 2$. Let \mathcal{F} be a family of meromorphic functions in a domain $D \subset \mathbb{C}$ such that each $f \in \mathcal{F}$ has only zeros of multiplicity at least k. If, for each pair (f,g) in \mathcal{F}, $f(f^{(k)})^p$ and $g(g^{(k)})^p$ share a non-zero complex number a ignoring multiplicity, then \mathcal{F} is normal in D. Crown Copyright © 2009 Published by Elsevier Inc. All rights reserved.

* Corresponding author.

E-mail addresses: pchu@sdu.edu.cn (P.-C. Hu), Goths511@163.com (D.-W. Meng).

© The work of authors was partially supported by Natural Science Foundation of China.

When \(n \geq k + 2 \), and if \((f^n)_{(k)}\) and \((g^n)_{(k)}\) share a non-zero complex number \(a \) IM for each pair \((f, g)\) of \(\mathcal{F} \), then \(\mathcal{F} \) is normal in \(D \).

Related to above Hayman’s problem on value distribution, L. Yang and C.C. Yang [28] proposed the conjecture: If \(F \) is transcendental, then \(FF_{(k)} \) assumes every finite non-zero complex number infinitely often for any positive integer \(k \). C.C. Yang and P.C. Hu [26] obtained a part of an answer. To understand this problem well, many authors studied the functions of the form \(F(F_{(k)})^n \) along the researching route of Hayman’s problem. C.C. Yang, L. Yang and Y.F. Wang [27] proved that if \(n \geq 2 \) and \(F \) is a transcendental entire function, then the only possible Picard value of \(F(F_{(k)})^n \) is the value zero. In 1998, Z.F. Zhang and G.D. Song [34] announced that if \(F \) is transcendental, \(a \notin [0, \infty] \), \(n \geq 2 \), then \(F(F_{(k)})^n - a \) has infinitely many zeros. A simple proof was given by A. Alotaibi [1]. In fact, they proved a more stronger result that this fact is true if \(a \) \((\neq 0)\) is a small meromorphic function of \(F \).

Influenced from Bloch’s principle (cf. [31]), that is, there is a normality criterion corresponding to every Liouville–Picard type theorem, in this paper we investigate the problem on normal families related to above theorems of value distribution due to Zhang, Song [34] and Alotaibi [1] by proving the following result:

Theorem 1.1. Take positive integers \(n \) and \(k \) with \(n, k \geq 2 \) and take a non-zero complex number \(a \). Let \(\mathcal{F} \) be a family of meromorphic functions in the plane domain \(D \) such that each \(f \in \mathcal{F} \) has only zeros of multiplicity at least \(k \). For each pair \((f, g)\) in \(\mathcal{F} \), if \(f(f_{(k)})^n \) and \(g(g_{(k)})^n \) share a IM, then \(\mathcal{F} \) is normal in \(D \).

Example 1.2. Let \(D = \{z \in \mathbb{C} | |z| < 1\} \) and take a non-zero complex number \(a \). Fix two integers \(n \geq 2 \), \(k \geq 2 \). We consider the family
\[
\mathcal{F} = \left\{ f_n(z) = mz + a \left\lfloor \frac{m}{n} \right\rfloor z^{k-1} | m = 1, 2, \ldots, n \right\}.
\]

Obviously, for distinct positive integers \(m, l \), we have \(f_m(f_{(k)})^n \) and \(f_l(f_{(k)})^n \) share a IM. However, the family \(\mathcal{F} \) is not normal at \(z = 0 \). Example 1.2 shows that the condition that \(f \) has only zeros of multiplicity at least \(k \) is sharp in Theorem 1.1.

Example 1.3. Take a non-zero complex number \(a \) and fix an integers \(n \geq 2 \). Set
\[
\mathcal{F} = \left\{ f_m(z) = mz + a \left\lfloor \frac{m}{n} \right\rfloor z^k | m = 1, 2, \ldots, n \right\}.
\]

For distinct positive integers \(m, l \), we have \(f_m(f_{(k)})^n \) and \(f_l(f_{(k)})^n \) share a IM. However, the family \(\mathcal{F} \) is not normal at \(z = 0 \).

For the case \(k = 1 \), Example 1.3 shows that Theorem 1.1 is not true. However, according to its proof, it is true too if we add a condition that each \(f \in \mathcal{F} \) has only multiple zeros.

Example 1.4. Take \(D = \{z: |z| < 1\} \) and take
\[
\mathcal{F} = \left\{ f_m(z) = e^{mz} | m = 1, 2, \ldots \right\}
\]
or
\[
\mathcal{F} = \left\{ f_m(z) = mz^k + 1 | m = 1, 2, \ldots \right\}
\]

Obviously, any \(f_m \in \mathcal{F} \) has only zeros of multiplicity at least \(k \). For distinct positive integers \(m, l \), we have \(f_m(f_{(k)})^n \) and \(f_l(f_{(k)})^n \) share 0 IM. However, the families \(\mathcal{F} \) are not normal at \(z = 0 \).

Example 1.4 shows that the condition \(a \neq 0 \) in Theorem 1.1 is necessary.

2. Preliminary lemmas

Let \(D \) be a domain in \(\mathbb{C} \) and let \(\mathcal{F} \) be meromorphic functions defined in the domain \(D \). Then \(\mathcal{F} \) is said to be normal in \(D \), in the sense of Montel, if any sequence \(\{f_n\} \subset \mathcal{F} \) contains a subsequence \(\{f_{n_j}\} \) such that \(f_{n_j} \) converges spherically locally uniformly in \(D \), to a meromorphic function or \(\infty \). To prove Theorem 1.1, we will need the following Zalcman’s lemma (cf. [31]):

Lemma 2.1. Take a positive integer \(k \). Let \(\mathcal{F} \) be a family of meromorphic functions in the unit disc \(\Delta \) with the property that zeros of each \(f \in \mathcal{F} \) are of multiplicity at least \(k \). If \(\mathcal{F} \) is not normal at a point \(z_0 \in \Delta \), then for \(0 < \alpha < k \), there exist a sequence \(\{z_n\} \subset \Delta \) of complex numbers with \(z_n \to z_0 \); a sequence \(\{f_n\} \) of \(\mathcal{F} \); and a sequence \(\{\rho_n\} \) of positive numbers with \(\rho_n \to 0 \) such that \(g_n(\xi) = \rho_n^{-\alpha} f_n(z_n + \rho_n \xi) \) locally uniformly (with respect to the spherical metric) to a non-constant meromorphic function \(g(\xi) \) on \(\mathbb{C} \). Moreover, the zeros of \(g(\xi) \) are of multiplicity at least \(k \), and the function \(g(\xi) \) may be taken to satisfy the normalization \(g_i'(\xi) \leq g'(0) = 1 \) for any \(\xi \in \mathbb{C} \). In particular, \(g(\xi) \) has at most order 2.
This is Pang’s generalization (cf. [17,19,25]) of the Main Lemma in [30] (where \(\alpha \) is taken to be 0), with improvements due to Schwick [22] and Chen and Gu [5]. In Lemma 2.1, the order of \(g \) is defined by using the Nevanlinna’s characteristic function \(T(r, g) \):

\[
\text{ord}(g) = \limsup_{r \to \infty} \frac{\log T(r, g)}{\log r}.
\]

Here \(g^s \) denotes the spherical derivative

\[
g^s(\xi) = \frac{|g'(\xi)|}{1 + |g(\xi)|^s}.
\]

Lemma 2.2. Take positive integers \(n \) and \(k \) with \(n \geq 2 \) and take a finite non-zero complex number \(a \). If \(f \) is a rational but not a polynomial function and \(f \) has only zeros of multiplicity at least 2, then \(f(f^{(k)})^n - a \) has at least two distinct zeros.

Proof. Assume, to the contrary, that \(f(f^{(k)})^n - a \) has at most one zero. Set

\[
f(z)(f^{(k)}(z))^n = A \frac{(z - \alpha_1)^{m_1} \cdots (z - \alpha_s)^{m_s}}{(z - \beta_1)^{n_1} \cdots (z - \beta_t)^{n_t}},
\]

where \(A \) is a non-zero constant. Since \(f \) has only zeros with multiplicity at least 2, we find

\[
m_i \geq 2 \quad (i = 1, 2, \ldots, s); \quad n_j > n(k + 1) \quad (j = 1, 2, \ldots, t).
\]

For simplicity, we denote

\[
M = m_1 + m_2 + \cdots + m_s \geq 2s,
\]

\[
N = n_1 + n_2 + \cdots + n_t > n(k + 1)t.
\]

By (1), we obtain

\[
\{f(z)(f^{(k)}(z))^n\}' = \frac{(z - \alpha_1)^{m_1-1} \cdots (z - \alpha_s)^{m_s-1}}{(z - \beta_1)^{n_1+1} \cdots (z - \beta_t)^{n_t+1}} g(z).
\]

where \(g(z) \) is a polynomial with \(\deg(g) \leq s + t - 1 \). Next we may distinguish two cases.

Case 1. The function \(f(f^{(k)})^n - a \) has exactly one zero. Now we can write

\[
f(z)(f^{(k)}(z))^n = a + \frac{B(z - z_0)^l}{(z - \beta_1)^{n_1} \cdots (z - \beta_t)^{n_t}} = \frac{P(z)}{Q(z)},
\]

where \(l \geq 1 \) is a positive integer, \(B \) is a non-zero constant, \(P \) and \(Q \) are polynomials of degree \(M \) and \(N \), respectively. Also \(P \) and \(Q \) have no common factors. Obviously, we have \(z_0 \neq \alpha_i \) (\(i = 1, \ldots, s \)) since \(a \neq 0 \). Differentiating (5), we obtain

\[
\{f(z)(f^{(k)}(z))^n\}' = \frac{(z - z_0)^l-1 g_1(z)}{(z - \beta_1)^{n_1+1} \cdots (z - \beta_t)^{n_t+1}},
\]

where \(g_1 \) is a polynomial of the form

\[
g_1(z) = B(l - N)z^l + B_{l-1}z^{l-1} + \cdots + B_0
\]

in which \(B_0, \ldots, B_{l-1} \) are constants.

Case 1.1. \(l \neq N \). By using (5), we obtain \(\deg(P) \geq \deg(Q) \), that is, \(M \geq N \). Since \(z_0 \neq \alpha_i \), then (4) and (6) imply

\[
\sum_{i=1}^{s} (m_i - 1) = M - s \leq \deg(g_1) = t,
\]

and so \(M \leq s + t \). By using (2) and (3), we obtain

\[
M \leq s + t < \frac{M}{2} + \frac{N}{n(k + 1)} \leq \left\{ \frac{1}{2} + \frac{1}{n(k + 1)} \right\} M
\]

which is a contradiction since \(n \geq 2, k \geq 1 \).

Case 1.2. \(l = N \). We further distinguish two subcases:
Case 1.2.1. $M \geq N$. By (4) and (6), we obtain
\[M - s \leq \deg(g_1) \leq t. \]
Similar to Case 1.1, we obtain a contradiction $M < M$.

Case 1.2.2. $M < N$. By using (4) and (6) again, we obtain
\[l - 1 \leq \deg(g) \leq s + t - 1, \]
and hence
\[N = l \leq \deg(g) + 1 \leq s + t < \left(\frac{1}{2} + \frac{1}{n(k+1)}\right)N \leq N \]
which is a contradiction.

Case 2. The function $f(f^{(k)})^n - a$ has no zero. We also have (4) and (5) with $l = 0$. Proceeding as in the proof of Case 1, we also have a contradiction. Now Lemma 2.2 is proved.

Lemma 2.3. Take positive integers n and k with $n, k \geq 2$ and take a finite non-zero complex number a. If f is a non-constant meromorphic function such that f has only zeros of multiplicity at least k, then $f(f^{(k)})^n - a$ has at least two distinct zeros.

Proof. If f is a polynomial, we obtain immediately that $f(f^{(k)})^n$ has multiple zeros since f has only zeros of multiplicity at least k which means particularly $\deg(g) \geq k$, and hence $f(f^{(k)})^n - a$ has at least one zero. If $f(f^{(k)})^n - a$ has only a unique zero z_0, then there exist a non-zero constant A and an integer $l \geq 2$ such that
\[f(z)(f^{(k)}(z))^n = a + A(z - z_0)^l, \]
which, however, has only simple zeros since $a \neq 0$. This is a contradiction.

If f is a rational but not a polynomial function, it follows from Lemma 2.2. If f is transcendental, this is a direct consequence of a result due to Zhang and Song [34], and Alotaibi [1].

Lemma 2.4. Let $n \geq 2$ be a positive integer and let a be a finite non-zero complex number. If f is a non-constant meromorphic function, then $f(f')^n - a$ has at least one zero.

Proof. If f is a non-constant polynomial, then $f(f')^n - a$ is also a non-constant polynomial, and hence it has at least one zero.

Next we assume that f is rational with one pole at least. Write
\[f(z) = A\frac{(z - \alpha_1)^{m_1} \cdots (z - \alpha_s)^{m_s}}{(z - \beta_1)^{n_1} \cdots (z - \beta_t)^{n_t}}, \tag{7} \]
where A is a non-zero constant, and m_i, n_j are positive integers. Set
\[m_1 + m_2 + \cdots + m_s = M, \tag{8} \]
\[n_1 + n_2 + \cdots + n_t = N. \tag{9} \]
By (7), we have
\[f'(z) = \frac{P_1(z)}{Q_1(z)}, \tag{10} \]
where
\[P_1(z) = (z - \alpha_1)^{m_1-1} \cdots (z - \alpha_s)^{m_s-1}h(z), \]
\[Q_1(z) = (z - \beta_1)^{n_1+1} \cdots (z - \beta_t)^{n_t+1}, \]
in which $h(z)$ is a polynomial of the form
\[h(z) = A(M - N)z^{s+t-1} + \cdots. \]
Thus by (7) and (10), we obtain
\[f(f')^n = \frac{P}{Q}. \tag{11} \]
where
and
\[M_i = (n+1)m_i - n, \quad N_j = (n+1)n_j + n. \]

Suppose, to the contrary, that \(f(f')^n - a \) has no zero. Then
\[
f(f')^n = a + \frac{B}{Q} = \frac{P}{Q},
\]
where \(B \) is a non-zero constant, which implies particularly \(P = aQ + B \), and so \(\text{deg}(P) = \text{deg}(Q) \). Now we claim \(M > N \), otherwise, if \(M \leq N \), then
\[
\text{deg}(P_1) = M - s + \text{deg}(h) \leq M - s + (s + t - 1) < N + t = \text{deg}(Q_1),
\]
and hence
\[
\text{deg}(P) = n \text{deg}(P_1) + M < n \text{deg}(Q_1) + N = \text{deg}(Q).
\]
This is a contradiction, and so the claim is proved.
Therefore, we have
\[
\text{deg}(h^n) = n(s + t - 1)
\]
since \(M > N \), and hence
\[
\begin{align*}
\text{deg}(P) &= \sum_{i=1}^{s} M_i + \text{deg}(h^n) = \sum_{i=1}^{s} [(n+1)m_i - n] + n(s + t - 1) = (n+1)M + nt - n, \\
\text{deg}(Q) &= \sum_{j=1}^{t} N_j = \sum_{j=1}^{t} (n+1)n_j + n = (n+1)N + nt,
\end{align*}
\]
which further implies
\[
M - N = \frac{n}{n+1}
\]
since \(\text{deg}(P) = \text{deg}(Q) \). This is impossible since \(M - N \) is an integer. Therefore, \(f(f')^n - a \) has zeros.

Finally, if \(f \) is transcendental, this is a direct consequence of a result due to Zhang and Song [34], and Alotaibi [1]. Lemma 2.4 is proved. \(\square \)

3. Proof of Theorem 1.1

Without loss of generality, we may assume that \(D = \{ z \in \mathbb{C} \mid |z| < 1 \} \). Suppose, to the contrary, that \(\mathcal{F} \) is not normal in \(D \). Without loss of generality, we assume that \(\mathcal{F} \) is not normal at \(z_0 = 0 \). Then, by Lemma 2.1, there exist a sequence \(\{z_j\} \) of complex numbers with \(z_j \to 0 \) \((j \to \infty)\); a sequence \(\{f_j\} \) of \(\mathcal{F} \); and a sequence \(\{\rho_j\} \) of positive numbers with \(\rho_j \to 0 \) such that
\[
g_j(\xi) = \rho_j^{-\frac{ak}{n}} f_j(z_j + \rho_j \xi)
\]
converges uniformly to a non-constant meromorphic function \(g(\xi) \) in \(\mathbb{C} \) with respect to the spherical metric. Moreover, \(g(\xi) \) is of order at most 2. By Hurwitz’s theorem, the zeros of \(g(\xi) \) have at least multiplicity \(k \).

On every compact subset of \(\mathbb{C} \) which contains no poles of \(g \), we have uniformly
\[
f_j(z_j + \rho_j \xi) \left(f_j^{(k)}(z_j + \rho_j \xi) \right)^n - a = g_j(\xi) \left(g_j^{(k)}(\xi) \right)^n - a \to g(\xi) \left(g^{(k)}(\xi) \right)^n - a
\]
with respect to the spherical metric. If \(g(\xi)^n \equiv a \), then \(g \) has no zeros. Of course, \(g \) also has no poles. Since \(g \) is a non-constant meromorphic function of order at most 2, then there exist constants \(c_i \) such that \((c_1, c_2) \neq (0, 0) \), and
\[
g(\xi) = e^{c_1 \xi + c_2 \xi^2}.
\]
Obviously, this is contrary to the case \(g(\xi)^n \equiv a \). Hence \(g(\xi)^n \not\equiv a \).

By Lemma 2.3, the function \(g(\xi)^n - a \) has at least two distinct zeros. Let \(\xi_0 \) and \(\xi_0^* \) be two distinct zeros of \(g(\xi)^n - a \). We choose a positive number \(\delta \) small enough such that \(D_1 \cap D_2 = \emptyset \) and such that \(g(\xi)^n - a \) has no other zeros in \(D_1 \cup D_2 \) except for \(\xi_0 \) and \(\xi_0^* \), where
\[
D_1 = \{ \xi \in \mathbb{C} \mid |\xi - \xi_0| < \delta \}, \quad D_2 = \{ \xi \in \mathbb{C} \mid |\xi - \xi_0^*| < \delta \}.
\]
By (15) and Hurwitz’s theorem, for sufficiently large \(j \) there exist points \(\xi_j \in D_1, \xi_j^* \in D_2 \) such that

\[
f_j(z_j + \rho_j \xi_j)(f_j^{(k)}(z_j + \rho_j \xi_j))^n - a = 0,
\]

\[
f_j(z_j + \rho_j \xi_j^*)(f_j^{(k)}(z_j + \rho_j \xi_j^*))^n - a = 0.
\]

Since, by the assumption in Theorem 1.1, \(f_1(f_j^{(k)})^n \) and \(f_j(f_j^{(k)})^n \) share a IM for each \(j \), it follows that

\[
f_1(z_j + \rho_j \xi_j)(f_1^{(k)}(z_j + \rho_j \xi_j))^n - a = 0,
\]

\[
f_1(z_j + \rho_j \xi_j^*)(f_1^{(k)}(z_j + \rho_j \xi_j^*))^n - a = 0.
\]

Letting \(j \to \infty \), and noting \(z_j + \rho_j \xi_j \to 0 \), \(z_j + \rho_j \xi_j^* \to 0 \), we obtain

\[
f_1(0)(f_1^{(k)}(0))^n - a = 0.
\]

Since the zeros of \(f_1(f_j^{(k)})^n - a \) have no accumulation points, in fact we have

\[
z_j + \rho_j \xi_j = 0, \quad z_j + \rho_j \xi_j^* = 0,
\]

or equivalently

\[
\xi_j = -\frac{z_j}{\rho_j}, \quad \xi_j^* = -\frac{z_j}{\rho_j}.
\]

This contradicts with the facts that \(\xi_j \in D_1, \xi_j^* \in D_2 \), \(D_1 \cap D_2 = \emptyset \). Theorem 1.1 is proved completely.

4. Notes

According to the proof of Theorem 1.1 and based on ideas from [4], we may modify Theorem 1.1 as follows:

Theorem 4.1. Take positive integers \(n \) and \(k \) with \(n \geq 2 \) and take a non-zero complex number \(a \). Let \(\mathcal{F} \) be a family of meromorphic functions in the plane domain \(D \) such that each \(f \in \mathcal{F} \) has only zeros of multiplicity at least \(k \). For each element \(f \) of \(\mathcal{F} \), if \(f(z)(f^{(k)}(z))^n = a \) implies \(|f^{(k)}(z)| \leq A \) for a positive number \(A \), then \(\mathcal{F} \) is normal in \(D \).

Proof. By using the notations in the proof of Theorem 1.1, and now noting that, by Hurwitz’s theorem, the zeros of \(g(\xi) \) have at least multiplicity \(k \), the function \(g(f^{(k)})^n - a \) has at least one zero \(\xi_0 \) based on Lemmas 2.4 and 2.3. Thus we have

\[
|g_j^{(k)}(\xi_j)| = \rho_j^{\frac{k}{n}} |f_j^{(k)}(z_j + \rho_j \xi_j)| \leq A \rho_j^{\frac{k}{n}}.
\]

Since Hurwitz’s theorem implies \(\xi_j \to \xi_0 \) as \(j \to \infty \), we obtain consequently

\[
g_j^{(k)}(\xi_0) = \lim_{j \to \infty} g_j^{(k)}(\xi_j) = 0.
\]

This contradicts \(g(\xi_0)(g^{(k)}(\xi_0))^n = a \neq 0 \). Theorem 4.1 is proved. \(\square \)

Corollary 4.2. Take positive integers \(n \) and \(k \) with \(n \geq 2 \) and take a non-zero complex number \(a \). Let \(\mathcal{F} \) be a family of meromorphic functions in the plane domain \(D \) such that each \(f \in \mathcal{F} \) has only zeros of multiplicity at least \(k \). If each element \(f \) of \(\mathcal{F} \) satisfies \(f(z)(f^{(k)}(z))^n \neq a \) for any \(z \in D \), then \(\mathcal{F} \) is normal in \(D \).

If we replace the form \(f(f^{(k)})^n \) (resp. \(g(g^{(k)})^n \)) in Theorem 1.1 by the form \(f^l(f^{(k)})^n \) (resp. \(g^l(g^{(k)})^n \)) for an integer \(l \geq 2 \), the conclusion holds too (see [23] on the result of value distribution).

References

J.M. Qi, D.W. Meng, H.X. Yi, A new result about normal family and sharing values, preprint.

