Results: For part 1, both HARDY and CHROMagar were 100% sensitive and 100% specific for the 59 strains tested. For part 2: Out of the 40 specimens, 6 MDRA were detected: 4 by all the agars, 1 picked up by Hardy alone (non-MDRA acinetobacter by m-LAM). Upon re-examination, multiple colonies with different susceptibility profile were found on the agars. Discrepancy was likely due to chance of picking the resistant colonies. For the 34 non-MDRA specimens, follow up tests were required in 6 when using m-LAM, 13 when using Hardy, and 5 when using CHROMagar.

Figure. Appearances of MDRA in the three tested MDRA selective agars.

Conclusions: The three tested selective agar media have good sensitivity and specificity for detecting MDRA. Each has its own advantage and disadvantage and the choice should be made by individual laboratories.

PS 2-327

EPIDEMIOLOGY OF CANDIDEMIA IN A MEDICAL CENTER IN MIDDLE TAIWAN

Hui-Lan Chang 1, Li-Jhen Lin 2, Ing-Mei Hii 3, Chun-Eng Liu 4,5, aInfection Control Committee, Changhua Christian Hospital, Changhua, Taiwan; 2Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan

Purpose: Opportunistic pathogens such as yeast infections caused by Candida bacteremia (Candidemia). Clinical morbidity and mortality is still an important reason. This experiment was collected from 2009 to 2012 in Taiwan Medical Center clinical laboratory data were retrospective study of patients with candidemia.

Methods: To test the disk colorimetric microdilution, configure the appropriate dilution test disc antibiotics and coloring indicator. After the addition of non-critical liquid yeast culture, in manual interpretation manner lowest antifungal concentration observed inhibition of microbial growth, fungal drug susceptibility testing operation, understanding of the distribution and drug susceptibility against fungal change clinical pathogenic yeast.

Results

Candida albicans accounted for 45.2%, Candida tropicalis 22.3%, Candida glabrata 21.8%, Candida parapsilosis 8.5%, Candida krusei 1.1% and 1% other. Gender distinction, men 63.3%, women 36.7%. To distinguish between age 0 to 20 years old 4.3%, 5.9% from 21 to 40 years old, 41 to 60 years old 19.7%, 47.9% 61 to 80 years, 22.3 percent of 81 to 100 years old. In 2009 and 2012 isolates, a total of 188 cases of patients with candidemia in this study.

Conclusions: The experiments showed that the most frequently isolated remain C.albicans. Others in sequence for C.tropicalis, C. glabrata, C. parapsilosis and C.krusei etc. Amphotericin B, Posaconazole drug susceptibility testing, CLSI M27-S3 Ho interpretation no breakpoint therefore to represent. Anidulafungin, Micafungin this experiment Candida spp. Are all susceptible. C.glabrata, C. tropicalis drugs Susceptible lower. Necessary with focus on prompt identification of patients at risk for candidemia due to resistant strains and the effect of appropriate antifungal therapy on mortality.

PS 2-328

THE MANAGERIAL EXPERIENCE OF REUSE OF SINGLE-USE MEDICAL DEVICES

Li-Jhen Lin 1, Hui-Lan Chang 1, Chun-Eng Liu 4,5, aInfection control Committee, Changhua Christian Hospital, Taiwan; 4Information Technology Department, Changhua Christian Hospital, Taiwan

Purpose: To develop audit procedure and administration policy for reuse of single-use medical devices so that the introduction of these devices into clinical practices can be regulated to prevent increasing risk of infection due to inappropriate reuse of these devices on patients.

Material and methodology:

1. Resource management department receives the application from the “team for incoming new medical materials” and reminds the applicants of clinical units to complete the application via electronic administration system with attachment of the “audit form for reuse of single-use medical devices” approved by the IPC center.

2. The single-use medical devices can be reused only after the application is approved by the IPC center and co-signed by the associated committees.

3. All units stipulate the items and management policy of reusable single-use devices.

4. The clinical units record and report defective rate and expired rate of reusable single-use medical devices quarterly; and count the number of reused single-use medical devices, document the identification and tracking of exposed patients and perform testing for reusable medical devices monthly.

5. After comparison to the data between infection control information system and laboratory information system, the medical technologist of IPC center inform the physicians and clinical units about suspected cases.

6. The IPC center irregularly check the management policy of reusable medical devices in each unit.

7. The annular check report of reused medical devices from IPC center will be feedback to each unit.

Results: Quality management index: 1. The monthly associated complication rate of reusable medical devices2. The qualified rate of reusable medical devices3. The quarterly defective rate of reusable medical devices

Keywords:: Reuse of single-use medical devices

PS 2-329

EFFICIENT ENVIRONMENT SURVEILLANCE CULTURE MONITORING ACTIVITIES WITH DEVELOPING COMPUTER PROGRAM

Soon Im Choi 1, Kyung Hee Lee 2, Chun Soo Kim 3, Nam Hee Ryoo 4, Sung Yeul Ryu 5,6, Jin Ho Cheon 7, Dong Jin Jeong 8, aInfection Control Team, Dongsan Medical Center; 2Department of Internal Medicine, Keimyung University, Daegu, South Korea; 3Laboratory Medicine, Keimyung University, Daegu, South Korea; 4Electronic Data Center, Dongsan Medical Center

Purpose: In the field of infection control, it is important to maintain and disinfect a clean environment as much as hand hygiene because spreading of bacteria is mainly through polluted surface or medical instruments. Some department conducts test for environment surveillance cultures regularly. This test should be well-organized, qualified, and revised every year. In order to manage scattered items of all departments efficiently, infection control team is in charge of developing ‘environment surveillance culture’ computation program.

Methods:

1. The overview of Environment Surveillance Culture computation program

 (1) Registration of common items for ‘environment surveillance cultures’
 (2) Request and enrollment of examinations from each department through program, without submitting cooperation document
 (3) Registration to Department of Laboratory Medicine
 (4) Laboratory Medicine specialists confirm the result and attach comment.
 (5) The department registered items check the result.

2. Education and promotion of use of the program

3. Evaluate the necessity of test and confirm the results.

4. The important notice is uploaded to intra-office network page.

5. Establish documented method of environmental surveillance culture.

6. Through the program, it is easy to request tests, see the results, and simplify the procedure.

Results:

1. Infection Control Team generalizes all procedures and coordinates each department.

2. Set the test date by using program and the lab manage possible dates for high-efficiency.

3. By posting the result of working place safety result to intra-office network page.

Keywords:: Efficiency, computer program

Abstracts of the 7th International Congress of the Asia Pacific Society of Infection Control, Taipei, Taiwan, March 26-29, 2015 S131