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We demonstrate that the combination of the ideas of unimodular gravity, scale invariance, and the
existence of an exactly massless dilaton leads to the evolution of the universe supported by present
observations: inflation in the past, followed by the radiation and matter dominated stages and accelerated
expansion at present. All mass scales in this type of theories come from one and the same source.
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1. Introduction

The origin of different mass scales in particle physics is a mys-
tery. The masses of quarks, leptons and intermediate vector bosons
come from the vacuum expectation value (vev) of the Higgs field;
the dimensionful parameters like the QCD scale ΛQCD or the scales
related to the running of all other dimensionless couplings of the
Standard Model (SM) are believed to have nothing to do with the
Higgs vev. Newton’s gravitational constant provides yet another
mass scale, very different from typical particle masses of the SM.
The Higgs mass itself – where does it come from?

Is it possible that all these mass scales originate from one and
the same source?1 Indeed, it is not difficult to construct, on the
classical level, a theory containing a new singlet field χ , which
gives masses to all particles and fixes Newton’s constant. Having
in mind the SM extended by 3 light right-handed singlet fermions,
the νMSM of [1,2] (this theory – Neutrino Minimal SM – unlike the
SM, can explain neutrino masses and oscillations, dark matter and
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baryon asymmetry of the universe), one can write the Lagrangian
realizing this idea in the following form2

LνMSM = LSM[M→0] + LG + 1

2
(∂μχ)2 − V (ϕ,χ)

+ (
N̄ I iγ μ∂μNI − hα I L̄α NI ϕ̃ − f I N̄c

I NIχ + h.c.
)
, (1)

where the first term is the SM Lagrangian without the Higgs po-
tential, NI (I = 1,2,3) are the right-handed singlet leptons, ϕ and
Lα (α = e,μ, τ ) are the Higgs and lepton doublets respectively, hα I

and f I are the matrices of Yukawa coupling constants. The scalar
potential is given by

V (ϕ,χ) = λ

(
ϕ†ϕ − α

2λ
χ2

)2

+ β
(
χ2 − χ2

0

)2
, (2)

and the gravity part is

LG = −(
ξχχ2 + 2ξhϕ

†ϕ
) R

2
, (3)

where R is the scalar curvature. We will only consider positive
values for ξχ and ξh , for which the coefficient in front of the scalar
curvature is positive, whatever values the scalar fields take. This is

2 This expression is identical to the one in [3, Section 8], but uses different nota-
tions.
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the Lagrangian of “induced gravity” going back to Refs. [4,5] (see
also [6,7] in the νMSM context).

For positive λ and β the theory with potential (2) possesses
a ground state.3 It corresponds to the fields sitting at the mini-
mum of the potential, i.e. χ = χ0, h = h0 with h0

2 = α
λ
χ2

0 and
a constant metric describing flat space–time. The field values at
the potential minimum can be related to the Planck scale as
M2

P = ξχχ2
0 + ξhh0

2, M P = 2.44 × 1018 GeV. Physics in this theory
does not depend on a specific value of χ0 – all dimensionful pa-
rameters are proportional to it – and only dimensionless ratios can
be measured.

Although the aim of having one source for all mass scales is
achieved by construction of the Lagrangian (1) (we stress that we
are still discussing the classical theory) the solution is not satisfac-
tory: the absence of explicit mass terms for the Higgs field and for
singlet fermions, and the absence of a gravity scale along with the
introduction of the dimensionful parameter χ0, required to real-
ize the scenario, are ad hoc and do not follow from any symmetry
principle.

The symmetry that forbids (on the classical level) the appear-
ance of any dimensionful parameters is well known – it is the
dilatational symmetry. Under dilatations, the scalar and fermionic
fields change as φ(x) → σ nφ(σ x) (n = 1 for scalars and n = 3/2
for fermions), while the metric transforms as gμν(x) → gμν(σ x).
The action (1) is invariant under this symmetry, provided χ0 = 0,
leading to the absence of all dimensionful parameters.

From now on we will require that a dilatation invariant theory
should possess a ground state. Since this requirement is essential
for our model, we will further discuss it in Section 4. For the di-
latation invariant theory to contain massive singlet and doublet
fermions, the ground state should be such that χ �= 0 and h �= 0.
The only way to achieve this is to set β = 0. Thus, the no-scale
scenario can only be realized if β = 0. In this case the potential (2)
acquires the flat direction h2 − α

λ
χ2 = 0, and the theory contains

one exactly massless particle η – a certain mixture of the sin-
glet χ and the Higgs field. The requirement β = 0 therefore leads
to a theory with spontaneously broken scale invariance, where η
appears as a Goldstone boson.4 Equivalent arguments were given
in [8].

The theory (1) with β = 0 (from now on only this choice of
parameters will be considered) is rather peculiar5: not only is the
physics independent of the value of χ �= 0 in the ground state, but
the ground state is infinitely degenerate. The question “Who gives
the mass to the dilaton?” does not arise. It is massless, and the
chain of questions “Who gives mass to whom?” terminates.

Not to any surprise, the classical scale-invariant theory con-
structed in this way does not contain a cosmological constant Λ.
So, if we confront it with cosmological observations, it seems to
fail, since the universe is in accelerated expansion, which requires
the presence of dark energy with an equation of state close to that
of the cosmological constant. This conclusion is certainly correct
for standard General Relativity (GR), associated with the action

S E =
∫ √−g d4xLνMSM, (4)

where g is the determinant of the metric.

3 By a ground state we mean a constant solution of the equations of motion
including gravity. The existence of such a ground state could be essential for a con-
sistent quantization of the theory.

4 Spontaneous breaking of the dilatational symmetry also occurs if the potential
has a flat direction either along χ = 0 or along h = 0. However, both cases are un-
satisfactory. The first one corresponds to a theory with no massive singlet fermions,
whereas the second one is a theory with no electroweak symmetry breaking.

5 We stress that this theory is not invariant under local conformal transformations.

The conformal invariance requires the specific values for ξχ and ξh , ξχ = ξh = − 1
6 .
The aim of this Letter is to show that the situation is com-
pletely different if general relativity in (4) is replaced by Unimod-
ular Gravity (UG). UG is a very modest modification of Einstein’s
theory: it adds a constraint g = −1 to the action principle defined
by Eq. (4) [9–16]. UG is invariant under diffeomorphisms which
conserve the 4-dimensional volume element. It contains the same
number of dynamical degrees of freedom (massless graviton) as
Einstein’s theory. To the best of our knowledge, the consequences
of scale-invariant UG with massless dilaton have not been consid-
ered previously.

The relevance of UG for the cosmological constant problem was
realized long time ago [9–13]. If g = −1, adding a constant Λ

to the Einstein–Hilbert action does not change the equations of
motion. Still, the Λ problem is not solved, since the cosmologi-
cal constant shows up again, but now as an initial condition for
cosmological evolution in UG. We will see that for our case of a
scale-invariant theory together with UG, the initial conditions lead
to a non-trivial run-away effective potential for the dilaton rather
than to a cosmological constant, and thus to dynamical dark en-
ergy. Moreover, it will turn out that both inflation and accelerated
expansion of the universe can be explained on the same foot-
ing.

The Letter is organized as follows. In Section 2 we show that
scale-invariant UG with a massless dilaton is equivalent (on the
classical level) to Einstein’s theory with zero cosmological constant
and a peculiar potential, the magnitude of which is fixed by ini-
tial conditions for all the fields. We continue in Section 3 with a
discussion of the evolution of the universe in our model. The re-
quirements a full quantum theory should satisfy for our findings to
remain valid are formulated in Section 4. Section 5 is a summary
of the results.

2. Scale-invariant unimodular gravity: The classical theory

In this Letter we want to bring together several a priori sepa-
rate ideas. One of them is unimodular gravity, which has appeared
many times in the literature [9–11,13–16]. In unimodular gravity
one reduces the dynamical components of the metric gμν by one,
imposing that the metric determinant g ≡ det(gμν) takes some
fixed constant value.6 Conventionally one takes |g| = 1, hence the
name. Fixing the metric determinant to one is not a strong re-
striction, in the sense that the family of metrics satisfying this
requirement can still describe all possible geometries. For pure
gravity, things are very simple and well known. The analog of the
Einstein–Hilbert Lagrangian for unimodular gravity is

LEH = −M2
P

R̂

2
. (5)

Writing quantities with a hat, like R̂ , we mean that they depend
on the metric with g = −1. These quantities transform like tensors
under the group of volume preserving diffeomorphisms, i.e. coordi-
nate transformations xμ → ξμ(x), with the condition ∇̂μξμ = 0.7

Doing variations of this action that keep the metric determinant

6 In principle one can fix g = a(x), where a(x) is a fixed external field, and the
results are the same.

7 It is important to distinguish UG from theories constructed on the simple re-
quirement of invariance under restricted coordinate transformations xμ → ξμ(x),
with ∇̂μξμ = 0 (sometimes called TDiff gravity) [12,17,18]. The latter theories con-
tain in general a third dynamical degree of freedom for the metric. In addition, they
have field equations, which depend on the choice of coordinates. In UG the con-
straint on the metric determinant is essential. It is responsible for the absence of a
third metric degree of freedom and guarantees that the equations of motion do not
depend on the coordinate choice.
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fixed, since it is not a dynamical variable, yields the equations of
motion

Ĝμν = −Λĝμν, (6)

where Λ is an integration constant given by initial conditions.
Now, these are also the equations for standard Einstein gravity
with an added cosmological constant, for a choice of coordinates
such that the metric determinant is equal to one, which is always
possible [9]. Therefore, the two theories are classically equivalent,
except that in the standard theory the cosmological constant ap-
pears in the action, whereas in unimodular gravity it is an inte-
gration constant. It has been shown [9,13–15] that if one adds a
matter sector that couples minimally to gravity, and therefore has
a covariantly conserved energy–momentum tensor ∇μT μν = 0, the
application of UG also results in the appearance of an integration
constant that plays the role of an additional cosmological constant.
We now want to find a similar statement for a more general case,
in particular the one in which Newton’s constant is generated dy-
namically.

The action for unimodular gravity and any other fields, which
couple to gravity in an arbitrary way, has the following functional
dependence:

Σ =
∫

d4xL (ĝμν, ∂ ĝμν,Φ, ∂Φ), (7)

where Φ stands for all non-gravitational fields. If we want to de-
rive the equations of motion for this theory, we have to vary the
action keeping the constraint on the determinant. This is done us-
ing the Lagrange multiplier method. We add an additional variable,
whose equation of motion will be the constraint. So, the following
Lagrangian is equivalent to the former one:

L̃ = √−g
(
L (gμν, ∂ gμν,Φ, ∂Φ) + Λ(x)

)
︸ ︷︷ ︸

A

−Λ(x)︸ ︷︷ ︸
B

. (8)

Here, apart from the usual symmetry requirement gμν = gνμ , gμν

is unconstrained (the initial Lagrangian was multiplied by a factor√−g , which does not change the theory because of the unimodu-
lar constraint).

The equations of motion are

δA

δgμν
= 0, (9)

δA

δΦ
= 0, (10)

δ(A + B)

δΛ
= 0 = (

√−g − 1). (11)

We observe that
∫

d4x A(x) is invariant under the full group of dif-
feomorphisms. The infinitesimal transformations are

gμν → gμν + δξ gμν,

Φ → Φ + δξΦ,

Λ → Λ + δξΛ, (12)

where δξ depends on the nature of the fields, i.e. scalar, vector, etc.
If, for instance, we take Φ to be a scalar field, the δξ ’s are given by

δξ gμν = ∇μξν + ∇νξμ,

δξΦ = ∂μΦξμ,

δξΛ = ∂μΛξμ. (13)

Due to this symmetry, the following relation holds.∫
d4x

(
δA

δg
δξ gμν + δA

δΦ
δξΦ + δA

δΛ
δξΛ

)
= 0. (14)
μν
The coefficients of the first two terms are zero because of the
equations of motion and the last coefficient yields δA

δΛ
= √−g . The

equation reduces to∫
d4x

√−g(∂μΛ)ξμ = 0. (15)

Since this holds for all possible functions ξμ(x), we can conclude
that

∂μΛ(x) = 0, (16)

and hence that Λ is a constant of motion. Its value can be deter-
mined by the field equations together with the initial conditions
for all fields. Knowing this, let us again look at the equations (9)

δA

δgμν
= δ{√−g(L (gμν, ∂ gμν,Φ, ∂Φ) + Λ(x))}

δgμν
= 0.

These equations along with the constraint
√−g = 1 are the field

equations for unimodular gravity plus other fields. From (16) we
know that Λ is an integration constant. We conclude that the the-
ory given by (7) is classically equivalent to a fully diffeomorphism
invariant theory described by the Lagrangian

Ldiff = √−g
(
L (gμν, ∂ gμν,Φ, ∂Φ) + Λ

)
, (17)

apart from the different ways in which the parameter Λ appears.8

The quantity Λ plays the role of a cosmological constant in the
theory with explicit Planck mass. However, as we will see shortly,
this is not the case if Newton’s constant is induced dynamically.

We now want to combine the ideas of UG and scale invariance.
Considering only the gravitational and the scalar sectors, a general
Lagrangian containing scalar fields φi has the form:

L = −1

2
Kijφiφ j R̂ + 1

2
ĝμν∂μφi∂νφi − Uijklφiφ jφkφl. (18)

The result derived above tells us that the solutions of UG with this
Lagrangian are equivalent to the solutions of GR with Lagrangian

L = √−g

(
−1

2
Kijφiφ j R + 1

2

∑
i

gμν∂μφi∂νφi

− Uijklφiφ jφkφl − Λ

)
. (19)

Let us finally add to unimodular gravity and scale invariance the
requirement that the scalar potential should have a flat direction.
The potential for a theory containing the Higgs field h and an ad-
ditional scalar field χ is then given by

V (h,χ) = λ

4

(
h2 − α

λ
χ2

)2

. (20)

So, our requirements lead us to the scalar and gravitational parts
of the action (1) with β = 0 and standard gravity replaced by UG.
The corresponding Lagrangian, invariant under all diffeomorphisms
(a particular case of (19)), is

L = √−g

(
−1

2

(
ξχχ2 + ξhh2)R

+ 1

2
(∂μχ)2 + 1

2
(∂μh)2 − V (h,χ) − Λ

)
. (21)

Now, in order to facilitate the physical interpretation of this La-
grangian, we can do a change of variables (conformal or Weyl
transformation) of the following type

gμν = Ω(x)2 g̃μν. (22)

8 In [12] the authors presented a proof of the same statement for TDiff theories
using a similar type of arguments. However, to our understanding, this proof is in
fact not valid for general TDiff theories.
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If we choose Ω such that (ξχχ2 + ξhh2)Ω2 = M2
P , the action (21)

in terms of the new metric g̃μν reads

LE =
√

−g̃

(
−M2

P
R̃

2
+ K − U E (h,χ)

)
, (23)

and is said to be in the Einstein frame (see e.g. [19]). Here K is a
complicated non-linear kinetic term for the scalar fields, given by

K = Ω2
(

1

2
(∂μχ)2 + 1

2
(∂μh)2

)
− 3M2

P (∂μΩ)2. (24)

In our case where ξχ , ξh > 0, the kinetic form K is positive-
definite, which guarantees the absence of ghosts. The Einstein-
frame potential U E (h,χ) is given by

U E (h,χ) = M4
P

(ξχχ2 + ξhh2)2

[
V (h,χ) + Λ

]
, (25)

where the parameter Λ is related to initial conditions for scalar
fields and gravity and does not depend on space–time coordinates.
It is not a cosmological constant but rather the strength of a pecu-
liar potential.

3. Dark energy, inflation and cosmological constant

We now want to analyze the cosmological consequences of the
theory (1), working in the Einstein frame. Although the dynamics
of the general system described by (23) is very complicated due to
the non-canonical form9 of the kinetic term K , we can gain some
insight into the evolution of the system looking at the potential
part only.

The phenomenologically interesting domain of parameters,
explained below, corresponds to ξh � 1, ξχ 	 1, λ ∼ 1, α �
λξχ

v2

M2
P

≪ 1 (here v � 250 GeV is the Higgs vev). For this case

the kinetic mixing of two fields in K is indeed not essential. The
potential U E (h,χ) for Λ = 0,Λ > 0 and Λ < 0 is shown in Fig. 1.
For Λ = 0 it has two valleys around the lines h = ±√

α/λχ , corre-
sponding to the exact zero mode. As soon as Λ �= 0 the valleys get
a slope. If Λ > 0, the potential is positive for all field values and
does not have any minima but decreases if one moves away from
the origin along a valley. On the contrary, for Λ < 0 the potential
is negative for small χ and h and has a singularity at the origin.

For 0 < Λ � M4
P a typical behavior of the scalar fields is as fol-

lows. Like in the chaotic inflation scenario [21], it is expected that
initially both fields are displaced from their ground state values
and are generically larger than the Planck scale: the first term in
(25) dominates. Moreover, by assumption, ξh � ξχ , meaning that
for χ ∼ h the dynamics is mainly driven by the Higgs field, mov-
ing the system towards the valley. This corresponds to inflation
due to the Higgs field, suggested in [22]. When the value of the
Higgs field becomes of the order of the Planck scale, it is trapped
by the valley and oscillates there, producing particles of the SM
(this process is studied in detail in [23]). The correct spectrum of
perturbations is generated if ξh ∼ 20000 [22], for which the re-
heating temperature is Trh ∼ 1013 GeV. This part of the evolution
is quite similar to the hybrid inflation scenario [24]. The later evo-
lution of the universe depends crucially on the sign of Λ, which is
defined by initial conditions in UG. We would expect that with 50%
probability the universe was born in the state with Λ > 0. In this
case it will evolve along the valley towards a state with χ,h = ∞
with zero cosmological constant. At any finite evolution time the
universe must contain dark energy.

9 For the system containing just one scalar field the field transformation leading
to a canonically normalized kinetic term can be found easily (see, e.g. [20]). For
multiple fields we did not manage to find the required transformation.
Present cosmological observations allow to pin down the value
of the non-minimal coupling of the field χ . For the late time evo-
lution and α 	 1 (⇒ h 	 χ ) the dilaton field η with (almost)
canonical kinetic term is related to χ as

χ = M P exp

(
γ η

4M P

)
, γ = 4√

6 + 1
ξχ

. (26)

Its dynamics is practically decoupled from the dynamics of the
Higgs field (the deviation of it from the vev will be denoted by
φ in the Einstein frame). The corresponding equations of motion
have the form

η̈ + 3Hη̇ + dUη

dη
= Iη, (27)

φ̈ + 3Hφ̇ + m2
hφ = Iφ, (28)

where mh is the Higgs mass and

Uη = Λ

ξ2
χ

exp

(
− γ η

M P

)
. (29)

The source terms Iη,φ originate from the kinetic mixing K in
Eq. (24),

Iη ∝ 1

ξh

(
αξh

λξχ

) 1
2

(φ̈ + 3Hφ̇),

Iφ ∝
(

αξh

λξχ

) 1
2
(
η̈ + 3Hη̇ − γ

4M P
η̇2

)
, (30)

and can be safely neglected. The Hubble constant H is given by
the standard expression

H2 = 1

3M2
P

(
1

2
η̇2 + Uη + Cγ

a4
+ CM

a3

)
, (31)

where the two last terms correspond to radiation and matter
contributions to the energy density, and a is the scale factor. It
is amazing that here the exponential potential, proposed for a
quintessence field a long time ago in [25–27], appears automati-
cally, though with Λ not being a fundamental parameter but rather
a random initial condition.

The dynamics of the universe described by Eq. (27) with Iη = 0
has been studied in a number of works (for a recent review see
[28]). In [26,30] it was shown that for γ >

√
3 this model pos-

sesses attractors corresponding to scaling solutions. In that case
the energy density of the scalar field eventually scales like the
dominant component of the universe. Therefore, those models can-
not describe accelerated expansion. The situation is different for
γ <

√
3: the scalar component changes slower than radiation and

matter and eventually starts dominating. If γ is in this region, the
dynamics of η is that of a “thawing” quintessence field [29,30]. In
that scenario the scalar field at early times is nearly constant and
has ω � −1. When the Hubble friction gets weaker, the field starts
rolling down the exponential potential. At the same time ω grows
and moves away, although extremely slowly, from ω = −1.

Let us find a constraint on the parameter ξχ . The most con-
venient for us is the result of [31], which gives the relationship
between the parameter ω of the equation of state for dark energy
p = ωρ and the dark energy abundance Ωχ , valid for the thaw-
ing scenario realized by an exponential potential with γ <

√
3. It

reads [31]:

1 + ω = γ 2

3

[
1√
Ωχ

− 1

2

(
1

Ωχ
− 1

)
log

1 + √
Ωχ

1 − √
Ωχ

]2

. (32)
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Fig. 1. Potential for the Higgs field and the dilaton in the Einstein frame. Left: Λ = 0, middle: Λ > 0, right Λ < 0.
Taking the results of WMAP [32] for the equation of state −0.14 <

1 + ω < 0.12 and identifying Ωχ with the dark energy abundance
ΩDE � 0.73, we find that the value of ξχ must be in the interval

0 < ξχ < 0.07. (33)

Hence, γ � 1 <
√

3 which shows that γ is indeed in the correct
parameter region for the thawing scenario.

As for the value of Λ, it cannot be determined unambiguously,
since the value of the dilaton field is unknown. For typical values
appearing in run-away scenarios, η ∼ M P log(tM P )/2

√
ξχ [25,26]

(t is the present age of the universe), the initial value of Λ can be
as large as M4

P .
It has been shown in [26,30], that in this model (for Λ > 0)

the universe becomes dark energy dominated at late times, i.e.
Ωχ → 1. In this limit the parameter of the equation of state be-

comes ω → γ 2

3 − 1 and the universe will expand according to the

power law a(t) ∝ t2/γ 2
.

An important comment is now in order. The change of η with
time does not lead to any visible time variation of Newton’s con-
stant or of particle masses. In the Einstein frame the dilaton prac-
tically decouples from all the fields of the SM, and the amplitude
of the time-dependent corrections to masses, from Eq. (28), is of
the order of
φ

v
∼ Iφ

m2
h v

, (34)

which is too small to be tested in any observations.
To conclude, the cosmological evolution of a classical scale-

invariant theory with unimodular gravity and an exactly massless
dilaton typically leads to initial inflation (large ξh � 1 is required
to be in accordance with observations), then to the heating of the
universe and eventually, with a 50% chance, to accelerated expan-
sion in the late stages (ξχ 	 1 is required to fit observations).

4. Quantum theory

The analysis of the two previous sections was entirely classical.
Therefore, we will formulate the conditions, which should be sat-
isfied for the results to be valid in the quantum case as well. Since
the theory (21) is not renormalizable, the discussion in this sec-
tion will be on the level of wishful thinking and does not pretend
to any rigor (see, however, [33,34]).

As the dilatational symmetry of the theory is easier to see in
the Jordan frame, we will use it for the present discussion, which
in a number of respects resembles the one in [25,26,35]. Clearly,
the classical results survive if the dilatational symmetry remains
exact on the quantum level and if the dilatonal is still massless
in full quantum field theory. Like in the classical case, the exact
dilaton degeneracy of the ground state will guarantee the absence
of the cosmological constant, whereas the unimodular character
of gravity would induce, through initial conditions, the run-away
behavior (for Λ > 0) of the dilaton field at a late time in the ex-
pansion of the universe. If true, all dimensionful parameters of the
SM, including those coming from dimensional transmutation like
ΛQCD will change in the same way during the run-away of the
dilaton field. The deviation of dimensionless ratios (only they are
relevant for physics in a scale-invariant theory) from constants, due
to the cosmological evolution, will be strongly suppressed as in
(34) and thus be invisible. The dilaton will only have derivative
couplings to the fields of the νMSM, being a Goldstone boson re-
lated to the spontaneous breaking of dilatational invariance and
thus evade all the constraints [25,26,35] considered for the Brans–
Dicke field [36].

The required dependence of low-energy parameters such as
ΛQCD on the dilaton field would appear if the following strat-
egy is applied to the computation of radiative corrections in the
constant χ,h backgrounds [33,34] (see also [25,26]). Use the field-
dependent cutoff Q 2, related to the effective Planck scale in the
Jordan frame as Q 2 = ξχχ2 + ξhh2, and assume that the values
of all dimensionless couplings at this scale do not depend on Q 2.
With this prescription the non-trivial dimensionful parameters, ap-
pearing as a result of the renormalization procedure, would acquire
the necessary dependence on the dilaton field. It is this prescrip-
tion, which was effectively used in [22] to discuss radiative correc-
tions to the Higgs-inflaton potential. Note that the renormalization
procedure of [37] is completely different, and there is no surprise
that the results and conclusions of our present work and of [22]
are not the same as those of [37].

The requirement that the dilaton remains exactly massless on
the quantum level, or in other words that the quantum effective
potential has a flat direction (in classical theory this corresponds to
β = 0) is crucial for our findings. It is highly non-trivial as it is not
a consequence of scale symmetry. Still, the quantum field theories
constructed near the scale-invariant ground state 〈h〉 = 〈χ 〉 = 0
and the state with spontaneously broken scale invariance are com-
pletely different at the quantitative level. The theory with 〈h〉 =
〈χ 〉 = 0 in general does not have asymptotic scattering states10 (for
a review see e.g. [40]). In other words, it does not have particles at
all and thus cannot be accepted as a realistic theory. On the con-
trary, if the quantum scale invariance is spontaneously broken, the
theory does describe particles and thus may be phenomenolog-
ically relevant. These considerations single out the theories with
degenerate ground state, corresponding to β = 0 at the classical
level.11

In the cosmological setup the relevance of these arguments
is not obvious. Indeed, suppose that the flat direction is lifted,
i.e. β > 0 and consider late time classical evolution correspond-
ing to initial conditions with Λ > 0. A non-zero value of β leads

10 If it does, the exact propagators coincide with the free ones and the theory is
likely to be trivial in this case [38,39].
11 When quantum effects are included, the flat direction is not necessary associ-

ated with β = 0. Nevertheless, to simplify the discussion, we will refer to the case
with spontaneously broken scale invariance on the quantum level still quoting the
classical value β = 0.
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to a positive vacuum energy in the Einstein frame, Evac ∼ βM4
P .

As in Section 3, the scalar field η has a run-away behavior, lead-
ing to the breaking of scale invariance, whereas the universe is
expanding exponentially with the Hubble constant determined by
Evac. Certainly, there is nothing wrong with the classical solution
of this type, except the fact that it is unstable against scalar field
fluctuations which grow as in the inflationary stage [41]. Whether
this picture survives quantum-mechanically, is an open issue. If it
does, and if the notion of particles can be defined, we will get
a universe with non-zero cosmological constant, loosing thus an
explanation of its absence. However, the classical picture may hap-
pen to be misleading. Indeed, in the full quantum field theory,
any state including cosmological solutions, can be considered as
a superposition of quantum excitations above the vacuum state.
As no particles can be defined for the scale-invariant theory with
scale-invariant ground state,12 we would expect that the effective
particle-like excitations about the classical background can exist
only for a finite time, presumably of the order of the inverse Hub-
ble constant. If true, the requirement that the scale-invariant quan-
tum theory must be able to describe particles again singles out the
case corresponding to β = 0.

5. Conclusions

In this Letter we showed that the scale-invariant classical SM
and the νMSM coupled to unimodular gravity have all necessary
ingredients to describe the evolution of the universe, including
early inflation and late acceleration. The requirement of scale in-
variance and of the existence of a massless dilaton leads to a
theory in which all mass scales, including that of gravity, origi-
nate from one and the same source. The unimodular character of
gravity leads to the generation of an exponential potential for the
dilaton, ensuring the existence of dark energy. If the full quantum
field theory exhibits the same symmetries (for the explicit con-
struction see [33,34]), it will have the same properties. Moreover,
the argument can be reverted – the observation of an accelerated
universe with a dark energy component may tell that the under-
lying quantum field theory should be scale-invariant, and that this
scale invariance should be broken spontaneously, leading to the
massless dilaton.

The theory (1) with β = 0 and UG happens to be very rich
in applications. It can address all confirmed signals which suggest
that the SM is not complete: neutrino masses and oscillations, ex-
istence of dark and baryonic matter in the universe, early inflation
and late acceleration, leading to an extra argument against the ne-
cessity of new physics between the electroweak and the Planck
scale [42] (see also [43]). The discussion of particle physics ex-
periments and astrophysical observations that can confirm or rule
out this theory can be found in [44–48]. Our findings here indi-
cate that the equation of state parameter ω for dark energy must
be different from that of the cosmological constant, but also that
ω > −1, adding an extra cosmological test that could rule out the
νMSM.

12 The case when particles can be defined corresponds to free field theory, see
footnote 10. Then the Lagrangian (1) is simply a very complicated way to describe
this trivial theory, and the classical cosmological solution has nothing to do with
the exact quantum solution.
Acknowledgements

This work was supported by the Swiss National Science Founda-
tion. We thank F. Bezrukov, K. Chetyrkin, S. Sibiryakov and I. Tka-
chev for valuable comments.

References

[1] T. Asaka, S. Blanchet, M. Shaposhnikov, Phys. Lett. B 631 (2005) 151.
[2] T. Asaka, M. Shaposhnikov, Phys. Lett. B 620 (2005) 17.
[3] M. Shaposhnikov, JHEP 0808 (2008) 008.
[4] A. Zee, Phys. Rev. Lett. 42 (1979) 417.
[5] L. Smolin, Nucl. Phys. B 160 (1979) 253.
[6] M. Shaposhnikov, I. Tkachev, Phys. Lett. B 639 (2006) 414.
[7] A. Anisimov, Y. Bartocci, F.L. Bezrukov, arXiv: 0809.1097 [hep-ph].
[8] W. Buchmuller, N. Dragon, Nucl. Phys. B 321 (1989) 207.
[9] J.J. van der Bij, H. van Dam, Y.J. Ng, Physica 116A (1982) 307.

[10] F. Wilczek, Phys. Rep. 104 (1984) 143.
[11] A. Zee, in: Proceedings of 20th Annual Orbis Scientiae, Plenum, NY, 1985,

p. 211.
[12] W. Buchmuller, N. Dragon, Phys. Lett. B 207 (1988) 292.
[13] S. Weinberg, Rev. Mod. Phys. 61 (1989) 1.
[14] W.G. Unruh, Phys. Rev. D 40 (1989) 1048.
[15] E. Alvarez, JHEP 0503 (2005) 002.
[16] M. Henneaux, C. Teitelboim, Phys. Lett. B 222 (1989) 195.
[17] Yu.F. Pirogov, gr-qc/0609103.
[18] E. Alvarez, D. Blas, J. Garriga, E. Verdaguer, Nucl. Phys. B 756 (2006) 148.
[19] V. Faraoni, E. Gunzig, P. Nardone, Fund. Cosmic Phys. 20 (1999) 121.
[20] Y. Fujii, K. Maeda, The Scalar–Tensor Theory of Gravitation, Cambridge Univ.

Press, Cambridge, USA, 2003, p. 240.
[21] A.D. Linde, Phys. Lett. B 129 (1983) 177.
[22] F.L. Bezrukov, M. Shaposhnikov, Phys. Lett. B 659 (2008) 703.
[23] F. Bezrukov, D. Gorbunov, M. Shaposhnikov, On the initial conditions for Big

Bang, in preparation.
[24] A.D. Linde, Phys. Rev. D 49 (1994) 748.
[25] C. Wetterich, Nucl. Phys. B 302 (1988) 645.
[26] C. Wetterich, Nucl. Phys. B 302 (1988) 668.
[27] B. Ratra, P.J.E. Peebles, Phys. Rev. D 37 (1988) 3406.
[28] E.J. Copeland, M. Sami, S. Tsujikawa, Int. J. Mod. Phys. D 15 (2006) 1753.
[29] R.R. Caldwell, E.V. Linder, Phys. Rev. Lett. 95 (2005) 141301.
[30] P.G. Ferreira, M. Joyce, Phys. Rev. D 58 (1998) 023503.
[31] R.J. Scherrer, A.A. Sen, Phys. Rev. D 77 (2008) 083515.
[32] E. Komatsu, et al., WMAP Collaboration, arXiv: 0803.0547 [astro-ph].
[33] M. Shaposhnikov, D. Zenhausern, arXiv: 0809.3406 [hep-th].
[34] M.E. Shaposhnikov, I.I. Tkachev, arXiv: 0811.1967 [hep-th].
[35] C. Wetterich, Phys. Rev. D 77 (2008) 103505.
[36] C. Brans, R.H. Dicke, Phys. Rev. 124 (1961) 925.
[37] A.O. Barvinsky, A.Y. Kamenshchik, A.A. Starobinsky, arXiv: 0809.2104 [hep-ph].
[38] O.W. Greenberg, Ann. Phys. 16 (1961) 158.
[39] N.N. Bogolubov, A.A. Logunov, I.T. Todorov, Introduction to Axiomatic Quantum

Field Theory, W.A. Benjamin Inc., 1975.
[40] O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri, Y. Oz, Phys. Rep. 323 (2000)

183.
[41] V.F. Mukhanov, G.V. Chibisov, JETP Lett. 33 (1981) 532, Pis’ma Zh. Eksp. Teor.

Fiz. 33 (1981) 549.
[42] M. Shaposhnikov, arXiv: 0708.3550 [hep-th].
[43] K.A. Meissner, H. Nicolai, Phys. Lett. B 648 (2007) 312.
[44] A. Boyarsky, et al., Phys. Rev. Lett. 97 (2006) 261302.
[45] F.L. Bezrukov, M. Shaposhnikov, Phys. Rev. D 75 (2007) 053005.
[46] F.L. Bezrukov, Phys. Rev. D 72 (2005) 071303.
[47] D. Gorbunov, M. Shaposhnikov, JHEP 0710 (2007) 015.
[48] A. Boyarsky, J.W. den Herder, A. Neronov, O. Ruchayskiy, Astropart. Phys. 28

(2007) 303.


	Scale invariance, unimodular gravity and dark energy
	Introduction
	Scale-invariant unimodular gravity: The classical theory
	Dark energy, inflation and cosmological constant
	Quantum theory
	Conclusions
	Acknowledgements
	References


