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A B S T R A C T

The response of a NE-213 liquid-scintillator detector has been measured using tagged neutrons from 2 to 6 MeV
originating from an Am/Be neutron source. The neutron energies were determined using the time-of-flight
technique. Pulse-shape discrimination was employed to discern between gamma-rays and neutrons. The
behavior of both the fast (35 ns) and the combined fast and slow (475 ns) components of the neutron
scintillation-light pulses were studied. Three different prescriptions were used to relate the neutron maximum
energy-transfer edges to the corresponding recoil-proton scintillation-light yields, and the results were
compared to simulations. The overall normalizations of parametrizations which predict the fast or total light
yield of the scintillation pulses were also tested. Our results agree with both existing data and existing
parametrizations. We observe a clear sensitivity to the portion and length of the neutron scintillation-light pulse
considered.

1. Introduction

Organic liquid scintillators are typically employed to detect fast
neutrons in mixed neutron and gamma-ray fields. When exposed to
these two different types of radiation, such scintillators emit light with
dramatically different decay-time constants. Gamma-rays interact
dominantly with the atomic electrons of the scintillator atoms. The
freed electrons are almost minimum ionizing and produce very fast
flashes of light (10 s of ns decay times). In contrast, neutrons interact
dominantly with the hydrogen nuclei (and to a lesser extent, carbon
nuclei) of the scintillator molecules via scattering. Only the hydrogen
nuclei are given sufficient energy to produce a significant signal, and in
the neutron energy range from 2 to 6 MeV, the recoiling protons are far
from minimum ionizing and produce much slower flashes of light
(100 s of ns decay times). By examining the time dependence of the
scintillation-light intensity, differences in pulse shapes may be identi-
fied. Such pulse-shape discrimination (PSD) may be used to determine
whether or not the incident radiation was a neutron or gamma-ray.

The organic liquid scintillator NE-213 [1] has been a popular

detector medium since its introduction in the early 1960 s [2]. It is a
solution of aromatic molecules suspended in a xylene solvent.1 The
result is a flammable, corrosive, sharp-smelling liquid with a flash
point of ∼26 °C that poses a considerable health risk. Nevertheless, due
to its strong gamma-ray rejection properties, which are facilitated by
excellent PSD characteristics and high detection efficiency for fast
neutrons, NE-213 (first three scintillation-light decay constants: 3.16,
32.3, and 270 ns) has long set the standard for organic liquid
scintillators (and beyond). As a result, newly developed fast-neutron
detectors are often compared to it [3–6].

We have recently reported on a technique for tagging neutrons
emitted by actinide/Be-based radioactive sources [7]. In that paper, we
also discuss in detail the experimental apparatus and technique
employed here. In this paper, we present the results of our inaugural
investigation performed using this neutron-tagging technique – a
precision mapping of the response of a NE-213 liquid-scintillator
detector using neutrons tagged from 2 to 6 MeV.
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2. Apparatus

2.1. Actinide/Be-based source

An 18.5 GBq 241Am/9Be (Am/Be) source was employed for the
irradiations performed in this work. We note that the neutron-tagging
technique described below will work equally well for any actinide/Be-
based neutron source. Unwanted 60 keV gamma-rays associated with
the α-decay of 241Am were attenuated using a 3 mm thick Pb sheet. The
source radiated (1.106 ± 0.015) × 106 neutrons per second nearly iso-
tropically [8]. Fast neutrons were produced when the α-particles from
the decay of 241Am interacted with the 9Be. These neutrons had a
maximum energy of about 11 MeV [9]. Roughly 25% of the neutrons
had energy less than 1 MeV [10]. If the recoiling 12C was left in its first
excited state (about 55% of the time [10–12]), the freed neutron was
accompanied by an isotropically radiated prompt 4.44 MeV de-excita-
tion gamma-ray. The half-value layer (HVL) for 3.5 MeV gamma-rays
in lead is 1.51 cm, and above this energy, the HVL does not increase
with increasing gamma-ray energy. As a result, fewer than 20% of these
4.44 MeV gamma-rays were attenuated in the 3 mm Pb sleeve. Thus,
the radiation field associated with the lead-shielded Am/Be source was
to a large extent a combination of 4.44 MeV gamma-rays and their
associated fast-neutrons.

2.2. NE-213 liquid-scintillator detector

Fig. 1 presents the NE-213 liquid-scintillator detector employed in
this measurement. A 3 mm thick cylindrical aluminum cell 62 mm
deep by 94 mm in diameter, coated internally with EJ-520 TiO2-based
reflective paint [13], contained the NE-213. A 5 mm thick borosilicate
glass plate [14], attached using Araldite 2000 + glue [15], served as an
optical window. A pressurized nitrogen gas-transfer system was used to
fill the cell with nitrogen-flushed NE-213, and Viton O-rings [16] were
used to seal the filling penetrations. The filled cell was coupled to a
cylindrical PMMA UVT lightguide [17] 57 mm long by 72.5 mm in
diameter coated on the outside by EJ-510 [18] TiO2-based reflector.
The cell/lightguide assembly was attached to a spring-loaded, μ-metal
shielded 3 in. ET Enterprises 9821KB photomultiplier tube (PMT) and
base [19]. Gain for the NE-213 detector was set using standard
gamma-ray sources, resulting in an operating voltage of about
−2000 V. Typical signal risetime was 5 ns.

2.3. YAP(Ce) 4.44 MeV gamma-ray detectors

Fig. 2 presents a photograph of one of the YAP(Ce) gamma-ray
detectors provided by Scionix [20] that was employed in this measure-
ment. YAP(Ce) is an abbreviation for yttrium aluminum perovskit:
cerium, or YAlO3, Ce+ doped. YAP(Ce) is both radiation hard and
relatively insensitive to fast neutrons. Each detector was composed of a
cylindrical 1 in. long by 1 in. diameter crystal [21] attached to a 1 in.
Hamamatsu Type R1924 PMT [22]. Gains for the YAP(Ce) detectors
were set using standard gamma-ray sources with typical operating
voltages of about −800 V. Typical signal risetime was 5 ns. The energy
resolution for the 662 keV peak of 137Cs measured using such a
detector was about 10%. We stress that the YAP(Ce) detectors were
not used for gamma-ray spectroscopy, but rather to count the
4.44 MeV gamma-rays emitted by the source and thus provide a
reference in time for the corresponding emitted neutrons.

3. Measurement

3.1. Setup

Fig. 3 shows a simplified block diagram of the experimental setup.
As previously mentioned, the Am/Be source was placed within a 3 mm
thick Pb sleeve to attenuate the source-associated 60 keV gamma-rays.

Two YAP(Ce) detectors (for simplicity, only one is shown) were located
about 5 cm from the Am/Be source at source height. The threshold for
the YAP(Ce) detectors was about 350 keVee (keV electron equivalent).
The NE-213 detector was located 2.420 m from the Am/Be source and
also at source height. The threshold for the NE-213 detector was about
250 keVee. Both detectors triggered overwhelmingly on the source-
associated 4.44 MeV gamma-rays corresponding to the decay of the
first excited state of 12C, but they also registered a large number of
2.23 MeV gamma-rays associated with neutron capture on the hydro-
gen in the water and paraffin used as general radiation shielding (not
shown in this simplified illustration). The NE-213 detector also
triggered on the fast neutrons radiated from the source. By detecting
both the fast neutron and the prompt correlated 4.44 MeV gamma-ray,
neutron time-of-flight (TOF) and thus energy was determined. This
neutron-tagging technique enabled the mapping of the response of the
NE-213 cell to fast neutrons as a function of their kinetic energy. Note
that due to the energy invested in the 4.44 MeV gamma-ray, the
tagging technique restricted the maximum available tagged-neutron
energies to about 6 MeV.

3.2. Electronics and data acquisition

The analog signals from the detectors were split and sent to LeCroy
2249A (DC-coupled short gate SG) and 2249W (AC-coupled long gate
LG) CAMAC charge-to-digital converters (QDCs) and Phillips Scientific
715 NIM constant-fraction timing discriminators (CFDs). The discri-
minator logic signals were sent to LeCroy 4434 scalers and LeCroy
2228A CAMAC time-to-digital converters (TDCs). A CES 8210 branch
driver was employed to connect the CAMAC electronics to a VMEbus
and a SBS 616 PCI-VME bus adapter was used to connect the VMEbus
to a LINUX PC-based data-acquisition (DAQ) system. The signals were
recorded and processed using ROOT-based software [23]. Signals from
the NE-213 detector were used to trigger the DAQ and also provided
the start for the TOF TDC. As previously mentioned, the NE-213
detector QDCs included a 60 ns gated SG QDC and a 500 ns gated LG
QDC, where in both cases, the gates opened 25 ns prior to the arrival of
the analog pulse. The YAP(Ce) detector provided the stop signal for the
TOF TDC. We were particularly interested in two source-related event
types: (1) a fast neutron detected in the NE-213 detector (which started
the TOF TDC) and the corresponding 4.44 MeV gamma-ray detected in
the YAP(Ce) detector (which stopped the TOF TDC) and (2) a prompt,
time-correlated gamma-ray pair detected one in the NE-213 detector
and one in a YAP(Ce) detector (a gamma-flash event, see below). Such
a pair of gamma-rays can result from, for example, the α decay of
241Am to the higher excited states of 237Np.

Fig. 1. The NE-213 detector. Top: the scintillator “cup”. The optical boundary is
provided by a borosilicate-glass window (light brown). Bottom: The gray cylinder to
the left is the “cup”. The black cylinder to the right is the μ-metal shielded PMT and base
assembly. Figure from Ref. [6]. (For interpretation of the references to color in this figure
caption, the reader is referred to the web version of this article.)
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3.3. Energy calibration

Gamma-ray sources are typically used to calibrate organic scintilla-
tors as the light yield of the recoiling atomic electrons is linear above
about 100 keV [24,25]. However, the low Z value typical of liquid
scintillators means that gamma-ray interactions are dominated by
Compton scattering at energies of a few MeV. Thus, resolution-
broadened Compton edges must be carefully interpreted in order to
calibrate the detector. Two different prescriptions to extract the
Compton edge from a resolution-smeared distribution have been
reported by Flynn et al. [26] and Knox and Miller [24]. More recently,
with the aid of Monte Carlo simulations, it has become generally
accepted that the Compton edge lies somewhere between these
prescriptions [27–30]. Apparently, no clear consensus exists.

We simulated the response of our detector to gamma-rays (and
then neutrons, see below) using GEANT4 (version 10.00 patch2) with
the standard electromagnetic-interaction package and hadronic physics
list QGSP_BERT_HP which provided high-precision data-driven mod-
els for neutron interactions below 20 MeV [31,32]. The amplitude of
the detector signal was provided by a sensitive-detector class which
recorded the total energy deposited in the liquid-scintillator volume.
The detector was defined to be the NE-213 filled cell together with the
non-sensitive PMMA lightguide. For the purpose of the energy-
calibration simulation, a point source of gamma-rays was positioned
along the cylindrical symmetry axis of the cell at a distance of 1.5 cm
from the face. The gamma-rays were directed onto the cell along its
symmetry axis. Simulations of the deposited energy/scintillation-light
yield for the detector were performed for the gamma-rays coming from
22Na (511 keV and 1274 keV) and 137Cs (662 keV), with corresponding
Compton-edge-equivalent energies of 341 keVee, 1062 keVee, and
477 keVee, respectively. A non-linear, energy-dependent parametriza-
tion of the detector resolution measured for gamma-ray energies
between 0.5 MeVee (18%) and 4.0 MeVee (10%) was included in the
simulation. Note that this exact same parametrization was used to

smear the GEANT4-simulated detector response to produce resolution-
corrected neutron scintillation-light yield spectra (see below).

Fig. 4 shows a representative comparison between the GEANT4
simulation of the response of the detector to the gamma-rays coming
from a 22Na source and background-subtracted data obtained with a
22Na source. The blue histogram corresponds to the basic simulation of
the deposited energy and does not include resolution effects but clearly
illustrates the Compton edges at 341 keVee and 1062 keVee. The red
histogram corresponds to the simulation including the non-linear
parametrization of the energy-resolution effects detailed above. The
black dots result from the subtraction of non-source-related back-
ground from the measured data. This included cosmic-ray background
and experiment-hall background. The intensity of the cosmic-ray
background was addressed with an energy-dependent exponential
function, while the room background was addressed by identifying
dominant gamma-rays present in data taken simultaneously with a
HPGe detector. This background was then simulated as a combination
of the dominant gamma-rays – specifically, from 40K (1460 keV), 208Tl
(2614 keV, 583 keV, and 510 keV using the branching ratio 100:85:23)
and 511 keV positron annihilation.2 The overall agreement between the
measured data and simulation is very good. We attribute the very small
variations between 0.5 MeVee and 1.0 MeVee to room background
which we did not address. The enhanced strength at 1.4 MeV may be
due to the simultaneous detection of both the gamma-rays emitted by
22Na.

We compared the results of our simulations to the Compton-edge
prescriptions suggested by Flynn et al. [26] (dashed black arrows in
Fig. 4) and Knox and Miller [24] (solid black arrows in Fig. 4). When
the Flynn et al. approach was taken, we found it to overpredict
systematically the locations of the Compton edges by more than 10%.
When the Knox and Miller approach was taken, we found it to
underpredict systematically the locations of the Compton edges by less
than 3%.

4. Results

As previously mentioned, gamma-ray scintillations in NE-213 are

Fig. 2. Photograph of a YAP(Ce) detector. A cylindrical 1 in. long by 1 in. in diameter
crystal (right) was coupled to 1 in. diameter PMT. Figure from Ref. [7].

Fig. 3. A simplified schematic of the experimental setup. The Am/Be source, the Pb
sleeve, a single YAP(Ce) detector, and the NE-213 detector are all shown together with a
block electronics diagram. Figure from Ref. [7].
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Fig. 4. Simulated Compton scattered recoil-electron distributions (blue and red
histograms) together with data (black dots) for 22Na as a function of the deposited
energy/scintillation-light yield in MeVee. The blue histogram is the basic energy-
deposition simulation which excludes energy resolution but clearly illustrates Compton
edges at 341 keVee and 1062 keVee. The red histogram is the simulation including
resolution effects. The black dots result from the subtraction of non-source-related
background from the measured data. The angled solid black arrows indicate the locations
of the Compton edges determined using the method of Knox and Miller [24], while the
angled dashed black arrows indicate the locations of the Compton edges determined
using the method of Flynn et al. [26]. (For interpretation of the references to color in this
figure caption, the reader is referred to the web version of this article.)

2 Unfortunately, a “source-free” data set was not available.

J. Scherzinger et al. Nuclear Instruments and Methods in Physics Research A 840 (2016) 121–127

123



generally fast (10 s of ns decay times) while neutron scintillations are
much slower (100 s of ns decay times). The type of radiation incident
upon the NE-213 scintillator may thus be identified by examining the
time structure of the scintillation pulses. We used the standard “tail-to-
total” method [5,33,34]. With this method, the difference in the
integrated charge produced by the scintillation-light pulses in the LG
and SG QDCs was normalized to the integrated charge produced by the
scintillation-light pulse in the LG QDC according to

PS LG SG LG= ( − )/ . (1)

Fig. 5 presents TOF distributions acquired when the NE-213 reference
detector started the TOF TDC and the YAP(Ce) detector stopped the
TOF TDC. The top two panels have been presented and discussed in
detail in Ref. [7] and are included here for completeness. The top panel
illustrates that the separation between gamma-rays (recoiling elec-
trons) and neutrons (recoiling protons) was excellent. In the middle
panel, the data from the top panel have been projected onto the TOF
axis. The γ-flash and fast-neutron distributions are clearly identified.
The very low level of background consists of random events which
included cosmic rays, room background, Am/Be neutrons not corre-
lated with a 4.44 MeV gamma-ray, and Am/Be neutrons where the
4.44 MeV gamma-ray was missed due to YAP inefficiency or geometry.
In the bottom panel, our previously detailed calibration was applied to
the data and the resulting scintillation-light yield is displayed for the
SG QDC. It is this scintillation-light yield which we now proceed to
analyze in detail.

The neutron scintillation-light yield (due to recoiling protons) was
determined by converting from TOF to neutron kinetic energy, binning
in widths of 0.2 MeV, and filling the corresponding energy-calibrated
SG and LG QDC spectra. T0 was determined from the location of the
gamma-flash in the TOF spectra using the speed of light and measure-
ments of the distances between the YAP(Ce) detector, the NE-213
detector, and the Am/Be source. The neutron path length employed in
this measurement was 2.420 m. Based upon our 1.8 ns gamma-flash
and the detector thickness of 6.2 cm, we determined our energy
resolution to be 4% at 2 MeV and 5% at 4 MeV. If the TOF bin width
is sufficiently small and there was no smearing due to energy-
resolution effects, each of these spectra would demonstrate a sharp
cutoff corresponding to the neutron transferring all of its energy to the

recoiling proton. In our detector, resolution effects smeared this
maximum-transfer edge. Further, as in the case for locating the
Compton edge for the energy calibration of organic scintillators with
gamma-ray sources, there is no single prescription for relating the
maximum proton energy to the resolution-smeared maximum-transfer
edge. Thus, for each energy bin, we have investigated three edge-
determination prescriptions:

1. As suggested by Naqvi et al. [35], a Gaussian function was fitted to
the high-energy edge of the recoil-proton energy distribution and the
maximum-transfer edge was taken to be the half-height (HH)
position.

2. As suggested by Kornilov et al. [36], the location of the most
energetic minimum in the first derivative (FD) of the recoil-proton
energy distribution was associated with the maximum-transfer edge.

3. The maximum-transfer edge was taken as the turning point (TP) of
the Gaussian function fitted to the resolution-smeared edge. Note
that if the fitted Gaussian function described the resolution-smeared
maximum-transfer edge perfectly, then the location of its TP is by
definition identical to the minimum in the first derivative of the
recoil-proton energy distribution.

In each investigation, the non-linear correspondence between
recoiling electron (Ee) and recoiling proton (Ep) scintillation light-
yield has been represented in two ways:

E L
E

E L
=

+e
p

p
0

2

1 (2)

E C E E= {0.83 − 2.82[1 − exp(−0.25 )]}e p p
0.93

(3)

Eq. (2) is the same as Eq. (4) given in Ref. [36], where L0 and L1 are
adjustable parameters, and Eq. (3) is from Ref. [37], where C is an
adjustable parameter.

Fig. 6 compares the GEANT4-simulated and measured neutron
scintillation-light yield (due to recoiling protons) in the LG QDC for
neutrons having (5.0 ± 0.1) MeV kinetic energy (TOF ∼22 ns). In the
GEANT4 simulation, the light-yield parametrization presented in Eq.
(2) (see below for a discussion of light-yield parametrizations for NE-

Fig. 5. Time-of-flight (TOF) distributions obtained for a neutron-drift distance of 0.675 m. Top panel: pulse shape (PS) plotted against TOF. Middle panel: projection of the data from
the top panel onto the TOF axis. A PS =0.19 cut has been applied to separate gamma-rays and neutrons. The unshaded blue peak corresponds PS<0.19 while the shaded red distribution
corresponds PS >0.19. Bottom panel: scintillation-light yield (L) plotted against TOF for PS >0.19. The cut to select neutrons with energy (5.0 ± 0.1) MeV (TOF ∼22 ns) is indicated with
a black box. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.).
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213) has been employed, where parameter L1 was fixed at the Kornilov
et al. [36] value of 2.47. The light-yield scaling (parameter L0) was first
based on the HH method for positioning the maximum-transfer edge
(see the red curve at 5 MeV in the top panel of Fig. 7). The simulated
detector response is shown without resolution effects, and the location
of the maximum-transfer edge may be observed at about 2.36 MeVee.

As the degree of smearing of the simulated detector response due to
energy-resolution effects affects the location of the maximum-transfer
edge in the simulated detector response predicted by the various
prescriptions, the non-linear energy-dependent parametrization of
the detector resolution measured for gamma-ray energies between
0.5 MeVee and 4.0 MeVee that we employed in our calibration efforts
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Fig. 6. Simulated and measured neutron scintillation-light yield for (5.0 ± 0.1) MeV neutrons. The solid blue histogram shows the GEANT4-simulated detector response without
resolution effects and the solid red histogram shows the GEANT4-simulated detector response folded with the measured detector resolution. The simulated maximum-transfer edge is
clearly indicated. The dashed cyan histogram corresponds to the first derivative of the red histogram. Filled black squares correspond to measured data (statistical uncertainties are
shown) and filled black circles correspond to the first derivative of this measured distribution. The downward arrows point to the locations of the 5 MeV maximum-transfer edge
according to the FD (short dash), TP (solid), and HH (long dash) prescriptions. (For interpretation of the references to color in this figure caption, the reader is referred to the web
version of this article.)
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in this figure caption, the reader is referred to the web version of this article.)
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was again employed to accurately smear the simulated detector
response. The simulated detector response with resolution effects is
also shown. The arrows indicate the locations of the maximum-transfer
edge in the data according to the FD (2.29 MeVee), TP (2.32 MeVee),
and HH (2.36 MeVee) prescriptions. As expected, when the HH
evaluation of the data is compared to the simulation with HH-based
scaling, the agreement is essentially exact. The average location of the
5 MeV maximum-transfer edge is 2.33 MeVee, and all three predictions
based upon the data agree to about 1%. For these same 5 MeV
neutrons, with the HH method for positioning the maximum-transfer
edge fixed, we then varied the light-yield scaling in the GEANT4
simulation to the values obtained using the TP and FD prescriptions
(see the red curves at 5 MeV in the middle and bottom panels of Fig. 7).
In all three cases, the GEANT4 simulations were very close to the data
up to 2 MeVee, with the FD and TP results lying at most 5% and 3%
respectively above the HH results. Above 2 MeVee, comparison was
difficult due to a combination of lack of statistics and resolution effects.
For simulated (4.0 ± 0.1) MeV neutrons, light-yield scaling factors
derived from all three methods resulted in a constant 8% overestima-
tion of the location of the maximum-transfer edges extracted from the
data according to the procedure described above. At (3.0 ± 0.1) MeV
the difference between the simulation-predicted and data-extracted
edge location for the HH prescription remained at an 8% overestima-
tion, while for the TP and FD prescriptions, the discrepancy increased
to 12% and 18%, respectively. At lower energies, the degree of non-
linearity of the recoil-proton scintillation-light yield increases and this
may account for the increasing discrepancy. Note that the use of Eq. (3)
gives very similar results from 3 to 5 MeV.

Fig. 7 shows neutron scintillation-light yield (due to recoiling
protons) data, as a function of neutron kinetic energy, for the three
different maximum-transfer edge determinations together with exist-
ing results. The statistical uncertainties in our data are smaller than the
point size. Gagnon-Moisan et al. [38] used a PS digitizer and employed
a gamma-ray energy calibration similar to that of Ref. [24]. The tail-to-
total method was used in their analysis together with the HH
prescription for determining the maximum-transfer edge. Their data
agree well with our corresponding LG results and we note that the
method they used to integrate the total charge produced by the
scintillation light is very similar to that employed here. Naqvi et al.
[35] used ADCs (which we believe were peak-sensing) and employed
the gamma-ray energy calibration suggested in Ref. [24]. The HH
prescription was used for determining the maximum-transfer edge.
Their data agree well with our corresponding SG results, but it is not
possible to determine how much of the scintillation-light pulse was
integrated from Ref. [35]. Kornilov et al. [36] used a charge-sensitive
preamp together with an Ortec 460 delay-line amplifier and peak-
sensing ADCs. Again, it is difficult to quantify how much of the
scintillation pulse was integrated when the light yield was measured.
“Standard” (unspecified) gamma-ray energy calibrations were em-
ployed and the FD prescription was used to determine the max-

imum-transfer edge. Again their data agree well with our correspond-
ing SG results.

Thus, the results from Refs. [35,36], which used similar measure-
ment techniques, are both in good agreement with our SG results. This
could indicate that in these works, the entire charge associated with the
scintillation was not integrated. On the other hand, real differences in
the behavior of different samples of NE-213 are entirely possible and
were observed in Ref. [36].

In Fig. 7, the red curves shown in each panel display the scintilla-
tion-light yield parametrization described by Eq. (3) fitted to the
present LG data, while the blue curves display the scintillation-light
yield parametrization described by Eq. (2) fitted to the SG data. In each
case, the overall scale of the fitted function was allowed to float (see
below). Note that when the fitted functions employed were inter-
changed (that is, when Eq. (3) was fitted to our SG data and Eq. (2) was
fitted to our LG data) the quality of fit was as good. This is not
surprising as the scaled parametrizations differ by only about 3% over
this energy range.

Table 1 presents the scale factors (parameter L0 of Eq. (2) and
parameter C of Eq. (3)) obtained by fitting parametrizations to the
recoil-proton scintillation-light yield data obtained with the LG and SG
QDCs. For Eq. (2), parameter L1 was fixed at a value 2.47. In each case,
the HH, TP, and FD prescriptions for determining the location of the
maximum-transfer edge have been employed, and 20 data points
between 2 and 6 MeV were considered.

There is little to choose between the χ 2/d.o.f. values which are all
close to 1. Further, the ratios of scale parameters for the SG and LG
data do not differ significantly between any of the edge-determination
prescriptions or between the use of Eq. (2) or Eq. (3) for the
correspondence between the recoiling electron and recoiling proton
scintillation-light yield. Comparing the present LG values of L0 with
those presented in Ref. [36] where a similar value of L1 was used, our
values are a factor ∼1.2 higher. Thus, compared to Ref. [36], we have
collected a factor 1.2 more recoil-proton scintillation. On the other
hand, from the values of C presented in Table 1 which are only a few
percent above 1, it can be seen that our results are quite similar to
those presented in Ref. [37] and close to those presented in Ref. [38].

5. Summary and discussion

We have reported a detailed mapping of the response of a NE-213
detector to neutrons from 2 to 6 MeV emitted by a lead-shielded Am/
Be source and subsequently tagged by time-correlated gamma-ray
emission. Neutron/gamma pulse-shape discrimination was performed
using the gated tail-to-total QDC method, with charge-integration
periods set to 35 ns and 475 ns. The electron-energy calibration was
performed using standard gamma-ray sources and two prescriptions
for locating the corresponding Compton edges were examined. The
results were compared to GEANT4 simulations which considered both
energy-resolution effects and backgrounds. The Compton-edge pre-
scriptions of Knox and Miller [24] and Flynn et al. [26] differ by more
than 10% when applied to our data. The present GEANT4 simulations
suggest that the former underpredicts the actual edge position by ∼3%,
while the latter overpredicts by ∼10%. Consequently, we used the
prescription of Knox and Miller [24] scaled up by a factor 1.03.

The present neutron-tagging technique provided a continuous,
polychromatic, energy-tagged neutron beam from 2 to 6 MeV.
Neutron kinetic energy was determined by measuring the neutron
TOF relative to the prompt 4.44 MeV gamma-ray associated with the
α n+ Be → + C*9 12 process. Using this information, recoil-proton scin-
tillation-light yields were determined as a function of neutron kinetic
energy. Three different prescriptions were employed for identifying the
maximum energy-transfer edge of the recoiling protons in accumulated
neutron scintillation-light spectra. Two parametrizations (Eqs. (2), (3))
of the recoil-proton scintillation-light yield were investigated. Simple
scaling factors allowed for variations in the neutron scintillation-light

Table 1
Scale factors L0 and C from fits of Eqs. (2) and (3) to the present LG and SG data together
with ratios. “Edge” denotes the method used to determine the maximum-energy edge of
the recoil-proton scintillation-light yield.

Data Edge L0 (from Eq. (2)) χ2 /d.o.f C (from Eq. (3)) χ2 /d.o.f.

LG HH 0.704 ± 0.006 0.86 1.056 ± 0.009 1.20
SG HH 0.555 ± 0.005 0.98 0.828 ± 0.007 1.10
SG/LG HH 0.789 ± 0.010 0.784 ± 0.009
LG TP 0.702 ± 0.006 1.37 1.044 ± 0.010 1.41
SG TP 0.543 ± 0.005 1.27 0.810 ± 0.007 1.29
SG/LG TP 0.774 ± 0.010 0.776 ± 0.010
LG FD 0.689 ± 0.005 1.05 1.037 ± 0.005 0.74
SG FD 0.539 ± 0.005 1.19 0.813 ± 0.005 0.82
SG/LG FD 0.783 ± 0.010 0.784 ± 0.006
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yield, and after scaling, either parametrization fitted our LG and SG
data equally well.

GEANT4 was also used to study the effects of the three prescrip-
tions for the determination of the recoil-proton edge in the neutron
scintillation light-yield spectra. For a fixed light-yield parametrization,
we varied the prescription between HH, TP, and FD (both with and
without energy-resolution effects) for 3, 4, and 5 MeV neutrons. At
5 MeV, simulation and analysis agreed for all prescriptions at the 1%
level. At 4 MeV, all three GEANT4 predictions for the maximum-
transfer edge overestimated the location of the maximum-transfer edge
extracted from the data by 8%. At 3 MeV, the difference between the
edge locations extracted from the simulation and data for the HH
prescription remained at 8%, while for the TP and FD prescriptions, the
difference increased to 12% and 18%, respectively. A possible cause of
the discrepancy is an incomplete consideration of increasing quenching
of the scintillation as dE dx/ increases along the track of the recoiling
proton. This will be investigated in future work. Nevertheless, the HH
method produced the best results for our detector over our energy
range.

The present results indicate that for recoiling protons in the present
energy range, ∼78% (see Table 1) of the total integrated scintillation
intensity (integration period 475 ns) is contained with the first 35 ns of
the signal. Comparing the total light yield (LG) to previous measure-
ments, the present results are in good agreement with those of Gagnon-
Moisan et al. [38] and within a few percent of those of Cecil et al. [37],
the latter of which often used to estimate recoil-proton scintillation-
light output in the absence of a calibration. The present LG results are
higher by a factor ∼1.2 compared to those of Kornilov et al. [36] and
Naqvi et al. [35]. These previous measurements yield results which are
actually close to our SG results (integration period 35 ns), but it is
impossible to say if this discrepancy is due to a difference in effective
integration times as the pulse-processing method was different. At least
part of the discrepancy could be due to real differences in the response
of the liquid scintillator. Factors such as concentration of the active
scintillant/fluorescent materials in the base solvent and the presence of
dissolved oxygen will affect the relative recoiling proton-to-electron
scintillation-light yields. Indeed, it would seem that a dedicated
measurement of the recoil-proton scintillation-light yield must be
made on a case-by-case basis to obtain the best accuracy in precision
neutron measurements.

The present measurements have been made at a new neutron test
facility recently installed at Lund University [7]. This facility is being
used to measure the characteristics of neutron detectors as part of the
program to build the European Spallation Source. Development and
extension of this facility is ongoing with a view to precisely determining
the response of many materials to neutrons ranging in energies from
fast to thermal.
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