
Topology and its Applications 158 (2011) 551–571
Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

Incompressible surfaces in handlebodies and boundary reducible
3-manifolds

João Miguel Nogueira a,b,∗,1, Henry Segerman c,2

a Department of Mathematics, University of Texas at Austin, 1 University Station, C1200 Austin, TX 78712, USA
b CMUC, Department of Mathematics, University of Coimbra, Apartado 3008, 3001-454 Coimbra, Portugal
c Department of Mathematics and Statistics, The University of Melbourne, VIC 3010, Australia

a r t i c l e i n f o a b s t r a c t

Article history:
Received 21 January 2010
Received in revised form 13 November 2010
Accepted 13 November 2010

MSC:
57N10
57N35

Keywords:
Incompressible surface
π1-injective embedding
Handlebody
Boundary reducible 3-manifold

We study the existence of incompressible embeddings of surfaces into the genus two
handlebody. We show that for every compact surface with boundary, orientable or not,
there is an incompressible embedding of the surface into the genus two handlebody.
In the orientable case the embedding can be either separating or non-separating. We
also consider the case in which the genus two handlebody is replaced by an orientable
3-manifold with a compressible boundary component of genus greater than or equal to
two.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we study the existence of incompressible, but generally boundary compressible, embeddings of compact
surfaces with boundary in a boundary reducible 3-manifold3 with a compressible boundary component of genus greater
than or equal to two. In particular we study the case in which the 3-manifold is a handlebody of genus two, which we
denote by H2.4 This naturally extends to the case of a handlebody of genus greater than two.

This type of question was first studied by Jaco [3] who proved that there is a non-separating, incompressible embedding
of an orientable surface of any genus (and one or two boundary components) in H2. Jaco then asked whether there exist
separating, incompressible embeddings of surfaces with arbitrarily high genus in H2. This question was answered in the
affirmative independently by Eudave-Muñoz [1], Howards [2] and Qiu [4].

We extend Jaco’s, Qiu’s, Howards’ and Eudave-Muñoz’s results by proving that for any given compact surface with bound-
ary there is an incompressible embedding in a handlebody of genus greater than or equal to two. (That is, for a compact
surface of any genus and any number of boundary components greater than or equal to one there is such an embedding.) If
the surface is orientable we can make this embedding either non-separating or separating. If the surface is non-orientable
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Fig. 1. Separating incompressible embeddings in H2 of (a) a surface with genus two and one boundary component and (b) a torus with three boundary
components. For clarity, when one “band” of the surface is nested within another we only draw the inner band as it enters and exits the tube formed
between the outer band and ∂H2.

Fig. 2. Klein bottle with one boundary component incompressibly embedded in H2.

we can only expect to get a non-separating embedding as the handlebody is orientable. Some examples of the incompress-
ible embeddings that we construct can be seen in Figs. 1 and 2.

We make a further extension in Section 4, proving that we have similar incompressible embeddings in a 3-manifold with
a compressible boundary component of genus two or greater. With the same conditions on the 3-manifold, unpublished
work of Qiu [5] proves the existence of separating, incompressible embeddings of compact surfaces with any genus (and
one or two boundary components).

In this paper we study the property of a surface having a π1-injective embedding, which implies incompressibility.
In Section 2 we prove the following result:

Theorem 1.1. For each compact surface S with boundary there is a non-separating π1-injective embedding of S in H2 .

We prove in Section 3 that when S is orientable there is also a separating embedding:

Theorem 1.2. For each compact, orientable surface S with boundary there is a separating π1-injective embedding of S in H2 .

In Section 4, we extend these results to embeddings in an arbitrary boundary reducible 3-manifold M with a compress-
ible boundary component of genus greater than or equal to two. We say that such a boundary component B is of type ns if
there is a compression disk D for B such that ∂ D does not separate B . We obtain the following general theorems:

Theorem 1.3. Suppose M has a compressible boundary component of genus greater than or equal to two, of type ns. Then for each
compact surface S with boundary there is a non-separating π1-injective embedding of S in M. Furthermore, if S is orientable there is
also a separating π1-injective embedding of S in M.

Theorem 1.4. Suppose M has a compressible boundary component, B, of genus greater than or equal to two. Then for each compact,
orientable surface S with boundary there is a π1-injective embedding of S in M. Furthermore, if B has a (non-)separating compressing
disk in M then S has a (resp., non-)separating π1-injective embedding in M.

Remark 1.5. Consider a manifold M which is the union of two copies of T × [0,1] (where T denotes the torus) identified
to each other along a disk in each T × {0}. It is not hard to prove that M has a compressible boundary component of genus
greater than or equal to two, but no such boundary component of type ns. Therefore, M is an example of a manifold that
satisfies the conditions of Theorem 1.4 but not of Theorem 1.3.

In Sections 2 and 3 we use a similar standard technique to the one used by Qiu in [4]. We start with either a separating
or a non-separating incompressible disk in H2, and by adding certain boundary parallel bands to the disk we construct the
surfaces with the desired properties. For the extension to the embedding in a 3-manifold with a compressible boundary
component of genus greater than or equal to two, in Section 4, we first extend to compression bodies with a compressible
boundary component of genus greater than or equal to two. Then, for the general case, we use a compression body in M
obtained from a compressible boundary component of genus greater than or equal to two.

In this paper, for a given topological space X , |X | denotes the number of connected components of X .



J.M. Nogueira, H. Segerman / Topology and its Applications 158 (2011) 551–571 553
Fig. 3. Basepoint and generators for π1(H2).

Fig. 4. Incompressible surfaces embedded in the handlebody of genus 2, the first two steps. The second band added is nested within the previous one.

Fig. 5. Schematic diagrams of non-separating orientable surfaces within H2.

2. The non-separating case

2.1. Orientable surfaces

The goal of this section is to construct a non-separating, π1-injective embedding of each orientable compact surface with
boundary, of genus g and number b � 1 of boundary components, in H2.

First, fix a basepoint and generators for π1(H2) as in Fig. 3. The surfaces we will construct consist of a single non-
separating disk, embedded in the handlebody H2, with various bands connecting parts of the boundary of the disk,
contained within a small product neighborhood of ∂ H2. See Fig. 4. We will add bands in two stages: In the first stage
we increase the genus of the surface to the desired value g , with the surface having only one boundary component. In the
second stage we add bands to increase the number of boundary components to b.

In the first diagram of Fig. 4 we see the first added band, which we refer to as α1. The ith band will be referred to as αi ,
and we will abuse notation in also referring to the obvious corresponding generator of π1 of the surface as αi . In the second
diagram of Fig. 4 we see added the band α2, which is nested within α1, in the following manner: The band α2 starts at the
boundary of the disk, goes around the handlebody (see Fig. 4) and returns to the disk, enters the tunnel formed by α1 and
follows it around, then exits, goes around the handlebody again and ends by joining the boundary of the disk. In general αi

and αi−1 will be related similarly.
In this example, the image of α1 in π1(H2) is y3 and the image of α2 is y−1x−1 y3x.
We pass to a schematic picture in Fig. 5, where in place of a band we draw only its core curve, with a dot where the

band joins the disk and an arrow where it travels inside the tunnel formed by the previous band. In Fig. 5(a) we see the
same situation as in the second diagram of Fig. 4. Note that there are two parts of α2 outside of the α1 tunnel, one of which
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Fig. 6. Orderings of band ends around the disk. Fig. 5(c) corresponds to (a) in this figure, with k = 2.

corresponds to y−1x−1 (on the front side of the handlebody) and the other to x (on the back side). We could, if we chose,
continue with building α3 in the same way as α2. That is, one part would go around y−1x−1 before entering α2, and on
exiting the other part would go around x. We could continue this indefinitely, the front side curves growing concentrically
and the back side curves shrinking concentrically.

Instead however, in Fig. 5(b) we make what we call a changeover in the front side curve, looping it around to the back
side. The back side curve does not changeover yet. In Fig. 5(c) we continue what was the front side curve with an x loop on
the back side, and have no choice in this because the curves cannot cross if the surface is to be embedded. We do however
make a changeover in the back side curve, looping it through the x hole and around the front side of the handlebody. We
refer to these two changes in path as a pair of changeovers. In Fig. 5(d) we continue with yet another band, in this case
the front side curve is the first of a new pair of changeovers.

We pass once more to a yet more schematic picture in Fig. 6. Here we show only the pattern of band ends as they meet
the disk. We label the ends of αk as ak and a′

k , where a1 is the end on the front side of the handlebody, a′
1 on the back,

and in following αi from ai (a′
i) we enter the αi−1 tunnel at ai−1 (resp., a′

i−1).
In Fig. 6(a) we have waited until αk+1 (for some k � 2) to make the first changeover of the first pair of changeovers,

and then αk+2 for the second changeover. This is the point at which we switch from increasing genus to increasing the
number of boundary components, as will be proven later in this section. After a pair of changeovers we don’t have a choice
of where to add the ends of the next k − 2 bands in the boundary of the starting disk. On the band after adding these k − 2
bands, say α jk+1 for some positive j, we have a choice for the ends of the band. We choose to continue with another pair of
changeovers by adding α jk+1 as the first changeover and α jk+2 as the second. Again, for the next k − 2 bands we don’t have
a choice of where to add its ends on the disk. We continue this process until we have added the desired number of bands.
The continuation of the pattern obtained by the ends of the bands on the starting disk is as shown in Fig. 6(b) and (c).

Let Sn,k be the surface described above using n bands and starting the first changeover by adding the band αk+1, for
some k � 2.
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Fig. 7. Schematic diagrams of non-separating orientable surfaces within H2 with genus zero. The notation is the same as used in Fig. 5.

Lemma 2.1. Let S be a surface with boundary. Let S ′ be the surface obtained from S by adding a band B = [0,1] × [0,1], gluing the
two ends {0} × [0,1] and {1} × [0,1] of B to segments of ∂ S.

(a) If the two ends of B are glued to different components of ∂ S then |∂ S ′| = |∂ S| − 1.
(b) If the two ends of B are glued to the same component of ∂ S and B has an even number of half twists then |∂ S ′| = |∂ S| + 1.
(c) If the two ends of B are glued to the same component of ∂ S and B has an odd number of half twists then |∂ S ′| = |∂ S|.5

Proof. These statements are not difficult to verify. �
Proposition 2.2. Let k = 2g, for some natural number g � 1. Then Sn,k has genus g and n − 2g + 1 boundary components.

Proof. Denote by Σs the surface obtained from adding the first s bands in the construction of Sn,k . All bands added in the
construction in this section have an even number of half twists because ∂ H2 is orientable and the ends of each band meet
the boundary of the disk from the same direction.

The surface Σ0 is the starting disk so |∂Σ0| = 1. Let i be such that 2i < k.6 Assume that |∂Σ2i | = 1. By Lemma 2.1(b)
|∂Σ2i+1| = 2. By construction, the ends of the band α2i+2 are on the different boundary components of Σ2i+1. Therefore,
by Lemma 2.1(a), |∂Σ2i+2| = 1. By induction on i, |∂Σk| = 1.

By the construction of Sn,k we can check that the band ends of the bands after the first pair of changeovers, αk+1, . . . ,αn ,
are on the same boundary component. This means, by Lemma 2.1(b), that each of these bands added increases the number
of boundary components by one. Therefore, the number of boundary components of Sn,k is n−k+1. The Euler characteristic
of Sn,k is 1 − n so we conclude that Sn,k has genus g . �

We require a special case to obtain a surface with genus zero and arbitrarily many boundary components. We start with
the same non-separating disk as before and again denote the bands as αi . See Fig. 7 for the positions of the first three
bands. We continue adding bands as follows: the band αi goes around x on the front side of the handlebody, goes through
the tunnel formed by αi−1, goes around x−1 on the back of the handlebody and ends at the disk. The back side and front
side curves on the handlebody shrink concentrically. We denote the surface obtained by adding n bands following this
procedure by Sn,0.

Proposition 2.3. The surface Sn,0 has genus 0 and n + 1 boundary components.

Proof. The argument is similar to the proof of Proposition 2.2. �
Suppose that i : Sn,k → H2 is the inclusion map as constructed above and i∗ :π1(Sn,k) → π1(H2) the homomorphism

induced by i. As in Fig. 3, we denote by x and y the two generators of π1(H2). We will now prove that the embedded
surface in H2 given by i is incompressible by showing that i∗ is injective.

For k = 0, from the construction of Sn,0 we have that

i∗(αs) = x−(s−1) y3xs−1, for 1 � s � n.

For k � 2 assume that n = qk + r, where 0 � r < k.
Following the construction of the surface, the generators of π1(Sn,k) are α1,α2, . . . ,αn , and we have:

i∗(α1) = y3,

i∗(α2) = y−1x−1 y3x,

...

5 Note that the parity of the number of half twists is well defined for a band whose ends are attached to the same boundary component of S .
6 So we are considering surfaces obtained in the construction before the first pair of changeovers.
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i∗(αk) = (
y−1x−1)k−1

y3xk−1,

i∗(αk+1) = x−1i∗(αk)x,

i∗(αk+2) = x−1i∗(αk+1)(xy),

...

i∗(α(2 j)k) = (
x−k(y−1x−1)k) j−1

x−k(y−1x−1)k−1
y3(xk(xy)k) j−1

xk(xy)k−1,

i∗(α(2 j)k+1) = (
y−1x−1)i∗(α(2 j)k)(xy),

i∗(α(2 j)k+2) = (
y−1x−1)i∗(α(2 j)k+1)x,

...

i∗(α(2 j+1)k) = ((
y−1x−1)k

x−k) j(
y−1x−1)k−1

y3(xk(xy)k) j
xk−1,

i∗(α(2 j+1)k+1) = x−1i∗(α(2 j+1)k)x,

i∗(α(2 j+1)k+2) = x−1i∗(α(2 j+1)k+1)(xy),

...

Either q is even and we have:

...

i∗(αqk) = (
x−k(y−1x−1)k) q

2 −1
x−k(y−1x−1)k−1

y3(xk(xy)k) q
2 −1

xk(xy)k−1,

i∗(αqk+1) = (
y−1x−1)i∗(αqk)(xy),

i∗(αqk+2) = (
y−1x−1)i∗(αqk+1)x,

...

i∗(αqk+r) = (
y−1x−1)r(

x−k(y−1x−1)k) q
2 −1

x−k(y−1x−1)k−1
y3(xk(xy)k) q

2 −1
xk(xy)kxr−1.

Or q is odd and we have:

...

i∗(αqk) = ((
y−1x−1)k

x−k) q−1
2

(
y−1x−1)k−1

y3(xk(xy)k) q−1
2 xk−1,

i∗(αqk+1) = x−1i∗(αqk)x,

i∗(αqk+2) = x−1i∗(αqk+1)(xy),

...

i∗(αqk+r) = x−r((y−1x−1)k
x−k) q−1

2
(

y−1x−1)k−1
y3(xk(xy)k) q−1

2 xk(xy)r−1.

For the proof that i∗ is injective we use the following lemma. For a reduced word w , we denote by L(w) the length of
the word.

Lemma 2.4. Let F2 be the free group with two generators, g and h, and with identity element e. Consider

A = {
v1 g p v ′

1, v2 g p v ′
2, . . . , vn g p v ′

n

}
with p � 3,

where vi g p v ′
i , for i = 1, . . . ,n, is a reduced word on g and h, and vi , v ′

i are words where g, or g−1 , alternate with powers of h.
Furthermore, vi ends with a power of h and v ′

i starts with a power of h. Assume also that L(vi+1) > L(vi) and L(v ′
i+1) > L(v ′

i), for
i = 1,2, . . . ,n − 1. Take w to be a reduced word on the elements of A. That is, w is expressed as a product of elements of A or inverses
of those elements, with no consecutive cancelling terms. Then w �= e.

Proof. Let w = w1 w2 · · · ws where either wi ∈ A or w−1
i ∈ A and s ∈ N. If s = 1 then w = w1 and w �= e. Let s � 2 and

assume w = e. Then as w ∈ F2 there are two consecutive letters in w that are inverses of each other. However wi is a
reduced word, which means that two consecutive canceling letters cannot be part of the same wi . So, cancelling pairs in w
are defined by letters of different wi ’s. As either wi ∈ A or w−1

i ∈ A we have

wi = ui gεi pu′
i, i ∈ {1, . . . , s}, εi ∈ {−1,1},

where ui or u−1, and u′ or u′−1 are elements of {v j, v ′ : j = 1, . . . ,n}.
i i i j
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Fig. 8. Schematic diagrams of non-orientable surfaces within the handlebody. These diagrams show the first stage, which adds non-orientable genus.

Take ci = u′
iui+1 from which we can write wi wi+1 = ui gεi pci gεi+1 pu′

i+1.

If ci = e then L(u′
i) = L(ui+1). If the signs of εi and εi+1 are opposite then it follows that wi = w−1

i+1 which contradicts
the assumption on w . Therefore, when ci = e we have εi equal to εi+1, so the powers gεi p and gεi+1 p don’t cancel each
other. We have

w = u1 gε1 pu′
1u2 gε2 pu′

2 · · · ui gεi pu′
iui+1 gεi+1 pu′

i+1 · · · us gεs pu′
s

= u1 gε1 pc1 gε2 pc2 · · · ci−1 gεi pci gεi+1 pci+1 · · · cs−1 gεs pu′
s.

Canceling each ci as much as we can, for i = {1, . . . , s − 1}, either

a) ci = e, when ui and u′
i cancel each other, and, as above, εi = εi+1 which means the respective powers of g aren’t

canceled; or
b) ci = ht1 · · ·ht2 g±1, which can only happen if part of u′

i cancels the whole of ui+1; or
c) ci = g±1ht1 · · ·ht2 , which can only happen if part of ui+1 cancels the whole of u′

i ; or
d) ci = ht1 · · ·ht2 , which can only happen if part of u′

i (or ui+1) cancels the whole of ui+1 (resp., u′
i ) or when none of u′

i
and ui+1 is canceled;

where t1 and t2 represent some non-zero exponent.
As p � 3, the exponent εi p of g from the word wi , with i ∈ {1,2, . . . , s}, in w is never entirely canceled. Then L(w) � s.

Hence w �= e. �
Proposition 2.5. The homomorphism i∗ :π1(Sn,k) → π1(H2) is injective.

Proof. Take A = {i∗(α1), i∗(α2), . . . , i∗(αn)} and, using the words from above, write i∗(αi) = vi y3 v ′
i , for i = 1, . . . ,n. We

have that the vi y3 v ′
i , for i = 1, . . . ,n, are reduced words on x and y, and vi , v ′

i are words where y, or its inverse, alternates
with powers of x. Furthermore, vi ends with a power of x and v ′

i starts with a power of x. Also L(vi+1) > L(vi) and
L(v ′

i+1) > L(v ′
i), for i = 1,2, . . . ,n − 1. So, we are under the hypotheses of Lemma 2.4.

Let w = i∗(α) for some α ∈ π1(Sn,k) with α �= e. We can write W as a reduced word on the elements of A: w =
w1 w2 · · · ws , where either wi ∈ A or w−1

i ∈ A. Then by Lemma 2.4, w �= e. Hence i∗ is injective. �
The above results prove Theorem 1.1 for orientable surfaces.

2.2. Non-orientable surfaces

The setup for the non-orientable case is similar to the orientable case. We use the same generators for π1(H2) as in
Fig. 3. We again start with a single disk, as in Fig. 8. This time the first k bands will meet the disk from opposite directions,
and so have an odd number of half twists, and the constructed surfaces are non-orientable.

As before we refer to the bands as αi with ends ai , a′
i . Also, as in the orientable case there are two stages, and again the

first stage (adding the first k bands) produces (non-orientable) genus and the second stage produces boundary components.
We show an example of the first stage in Fig. 8. The band α1 is similar to as in the orientable case, except that one

end meets the disk from the other side, and so the image of it in π1(H2) is xy3. The band α2 spirals into the x handle
from both sides. We continue spiraling in, but we choose some point at which the two ends of the band cross over their
positions at which they meet the disk. We continue adding bands, spiraling outwards again, until the ends ai and a′

i are
adjacent and below a1 and a′

1 in the figure. This happens at α4 in Fig. 8, and in general will happen at an even sub-
script.

If we want the number of bands in the first stage, k, to be even, then we end the first stage here. If not then we add
one further band continuing the spiral outwards around the x handle, so that the ends of the band are adjacent and above
a1 and a′

1. See Fig. 9(3b). In Fig. 9 the two ends of the band cross over earlier than in Fig. 8, and we see the start of the
second stage for k equal to 1, 2 and 3.
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Fig. 9. Schematic diagrams of non-orientable surfaces within the handlebody. This shows the start of the second stage, for even k in (3a) and (4a), for k = 1
in (2c) and for other odd k in (4b).

The second stage is slightly different for the two cases: k even and k odd. We also have a different second stage for k = 1.
Fig. 9(3a) and (4a) shows the continuation for even k. In each of these diagrams we add a band whose ends are adjacent to
each other, and as they meet the disk from the same side they have an even number of half twists. The pattern continues
with further bands that add parts that continue moving concentrically outwards around both handles of the handlebody.
Each added band has adjacent ends that meet the disk from the same side.

Fig. 9(4b) shows the continuation for odd k � 3. Again we add a band whose ends are adjacent to each other and meet
the disk from the same side, and so have an even number of half twists. Once again the pattern continues on with new
bands with adjacent ends that meet the disk from the same side. This time it is a little less obvious where these bands
will go, but it isn’t hard to see that we can always continue the bands in a manner that spirals around the x handle in the
anti-clockwise direction.

Fig. 9(2c) shows the continuation for k = 1. Similarly to the case for even k, the pattern continues with adding parts that
move concentrically outwards around both handles of the handlebody.

Let Sn,k be the surface described above using n bands and ending the first stage at step k � 1.

Proposition 2.6. The surface Sn,k has non-orientable genus k and n − k + 1 boundary components.

Proof. Denote by Σs the surface obtained from adding the first s bands in the construction of Sn,k . In the construction
of Sn,k the ends of the first k bands meet the boundary of the disk from opposite directions and the ends of the remaining
n − k bands meet the boundary of the disk from the same direction. As ∂ H2 is orientable, the first k bands have an odd
number of half twists and the next n − k bands have an even number of half twists.

The starting disk is Σ0 so |∂Σ0| = 1. Let i be such that i < k. Assume that |∂Σi | = 1. As i + 1 � k, the band αi+1 has an
odd number of half twists. By Lemma 2.1(c) we have that |∂Σi+1| = 1. So, by induction on i we have that |∂Σk| = 1.

By the construction of Sn,k we can check that the band ends of αk+1, . . . ,αn are on the same boundary component. Also,
these bands have an even number of half twists. So, from Lemma 2.1(b) each of these bands added increases the number of
boundary components by one. Therefore the number of boundary components of Sn,k is n −k +1. As the Euler characteristic
of Sn,k is 1 − n the surface Sn,k has non-orientable genus k. �
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Suppose that i : Sn,k → H2 is the inclusion map as constructed above and i∗ :π1(Sn,k) → π1(H2) the induced homomor-
phism by i. As mentioned before, we denote by x and y the two generators of π1(H2).

Following the construction of the surface, the generators of π1(Sn,k) are α1,α2, . . . ,αn .
We have:

i∗(α1) = xy3,

i∗(α2) = x
(
xy3)x,

...

i∗(αk) = xk−1(xy3)xk−1,

...

Either k is even and we have:

...

i∗(αk+1) = y−1xk−1(xy3)xk−1x,

i∗(αk+2) = (
y−1x−1)y−1xk y3xk(xy),

...

i∗(αk+(n−k)) = (
y−1x−1)n−k−1

y−1xk y3xk(xy)n−k−1.

Or k is odd and we consider the two cases.
For k = 1 we have:

...

i∗(α2) = x
(
xy3)xy−1x−1,

i∗(α3) = (xy)x2 y3xy−1x−1(y−1x−1),
i∗(α4) = (xy)2x2 y3x

(
y−1x−1)3

,

...

i∗(αn) = (xy)n−2x2 y3x
(

y−1x−1)n−1
.

For k � 3 we have:

...

i∗(αk+1) = yxk−1(xy3)xk−1x,

i∗(αk+2) = x−1 yxk y3xkx,

i∗(αk+3) = x−2 yxk y3xkx2,

...

i∗(αk+(n−k)) = x−(n−k−1) yxk y3xkx(n−k−1).

Proposition 2.7. The homomorphism i∗ :π1(Sn,k) → π1(H2) is injective.

Proof. Take A = {i∗(α1), i∗(α2), . . . , i∗(αn)} and, using the words from above, write i∗(αi) = vi y3 v ′
i , for i = 1, . . . ,n. We

have that the vi y3 v ′
i , for i = 1, . . . ,n, are reduced words on x and y, and vi , v ′

i are words where y, or its inverse, alternates
with powers of x. Furthermore, vi ends with a power of x and v ′

i starts with a power of x. Also L(vi+1) > L(vi) and
L(v ′

i+1) > L(v ′
i), for i = 1,2, . . . ,n − 1. So, we are under the hypothesis of Lemma 2.4.

Let w = i∗(α) for some α ∈ π1(Sn,k) with α �= e. We can write W as a reduced word on the elements of A: w =
w1 w2 · · · ws , where either wi ∈ A or w−1

i ∈ A. Then by Lemma 2.4, w �= e. Hence i∗ is injective. �
From the constructions and results in Section 2, in particular Propositions 2.5 and 2.7, we obtain Theorem 1.1.
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Fig. 10. Basepoint and generators for π1(H2), separating case.

Fig. 11. Diagrams for the construction of separating surfaces.

3. The separating case

In this section we construct a separating π1-injective embedding of each compact, orientable surface with boundary, of
genus g and number b � 1 of boundary components, in H2. A separating surface in an orientable manifold must necessarily
be orientable, so we consider only this case. We fix a basepoint and generators as in Fig. 10, which differs very slightly from
the non-separating case.

Once again the surfaces consist of a single disk with various bands attached to its border contained within a small
product neighborhood of ∂ H2. See Fig. 11(a) and (b). We construct each surface in a number of steps. Each step consists of
adding two bands to the border of the disk. We refer to the bands added in step i as αi and βi . In Fig. 11(a) band α1 is to
the left and β1 to the right.

In Fig. 11(b) we have the second step. Similarly to in the non-separating cases, new bands start at the disk, travel
around the boundary of the handlebody until they return to the disk, travel through the tunnel formed by a previous band,
re-emerge at the other end of the tunnel, travel around the boundary of the handlebody and finally meet the disk. In
step i + 1, αi+1 travels through the tunnel formed by βi and βi+1 travels through the tunnel formed by αi . This means that
the αi bands always meet the disk approaching from the left, and the βi bands from the right.

In Fig. 11(c) we see the second step in schematic form, with the end points of the bands labelled. The band αi has
endpoints ai and a′

i and βi has endpoints bi and b′
i . The end a1 of α1 is on the front side of the handlebody as we view it,

a′
1 is on the back side and similarly for b1 and b′

1. For further bands, similarly to in the non-separating cases, we choose the
label ai+1 to be the end of αi+1 nearer to the end of βi labelled bi . Here “nearer” means in traveling along the band αi+1
towards the tunnel formed by βi . Similarly for the labelling of bi+1 and b′

i+1.
As we add further bands, we will never add new bands that pass through the subset of the right side of the boundary

of the handlebody, Rβ , shown shaded in Fig. 11(d). The region Rβ contains the core curve of β1. The complementary region
of Rβ in the half of the boundary of the handlebody shown in Fig. 11(d) is a disk. This disk has boundary containing all
of the boundary of the starting disk of our surfaces apart from a small neighborhood of the endpoints of β1. Thus, we can
encode the data of the curves on the right side of Fig. 11(c) as curves drawn on a disk with the same boundary as the
starting disk of our surfaces. We represent this disk in Fig. 12. The solid curves we draw on this disk will always cross the
line between b1 and b′

1 (not shown in the figure), as they have to travel around the handle. The curves cannot cross each
other, for otherwise the corresponding surface would have self-intersections.

There is a similar region Rα (not shown) on the left side, containing α1, and the above observations all go through
similarly. We get a second disk for curves on the left side of the handlebody, and we draw them on the same picture
in Fig. 12 as dashed lines. In the right diagram of Fig. 12 we continue adding bands, and can add as many as we want
following this pattern: adding ends moving from the top of the disk down and from the bottom of the disk up but not yet
meeting in the middle.
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Fig. 12. On the left, band ends around the disk at the second step. The solid lines between a1 and b2, and between a′
1 and b′

2 correspond to the curves on
the right side of Fig. 11(c). The dashed lines correspond to curves on the left side of that figure. On the right, we can continue this pattern as long as we
want before the ‘changeover’.

Fig. 13. Band ends around the disk at further steps. On the left, we continue the left diagram of Fig. 12 with the changeover at step 3. On the right, we
continue the left diagram by adding bands after the changeover. The lines correspond to curves on the boundary of H2 as in Fig. 12.

In Fig. 13 we modify the picture of the disk again to a rectangular form. Here a1, a′
1, b1 and b′

1 are at the corners of
the rectangle so the solid lines cross over the diagonal line from top left to bottom right, and dashed lines cross over the
diagonal from top right to bottom left. In the left diagram we have added up until α3 and β3, where we again have a form
of changeover analogous to in the non-separating case: we cross the band end a′

3, of α3, with the band end b3, of β3.
Again, we can continue the pattern before the changeover, back and forth from the top and from the bottom as many times
as we want, without meeting in the middle until, in this example, the third step. As in the non-separating case, we add
genus up until the changeover, and add boundary components afterwards, again by adding pairs of bands. In general, the
changeover occurs at step k � 2, where we follow a similar pattern: when adding the bands αk and βk we cross the band
end a′

k of αk with the band end bk of βk . After the changeover we no longer have a choice for where the ends of the bands
are to be added and must follow the pattern. See Figs. 14, 15 and 16 for the general case when k is odd. When k is even
we have a similar situation, in fact we can convert the figure to that case by reflecting the top and bottom end diagrams
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Fig. 14. The picture at the top of the disk for odd k.

along a vertical axis, swapping solid and dashed lines, and swapping all as with bs. The indices of the labels, whether or
not they have a prime, and the entire middle diagram are all unchanged.

We can continue adding pairs of bands in the pattern shown in Figs. 14, 15 and 16 indefinitely, but for the construction
of a particular surface we stop at some point. Let Sn,k be the surface described above using a total of n pairs of bands and
doing the changeover at step k � 2. At the very end of the construction we may need to add only one of the two next bands
in the same pattern as the general construction, and we let S ′

n,k to be the surface obtained from Sn,k by adding the extra
band αn+1 to Sn,k .

Proposition 3.1. The surface Sn,k (S ′
n,k) has genus g = k − 1 and 2n − 2g + 1 (resp., 2n − 2g + 2) boundary components.

Proof. Denote by Σs the surface obtained from adding the first s steps (pairs of bands) in the construction of Sn,k . As
in the proof of Proposition 2.2 all bands added have an even number of half twists. The surface Σ0 is the starting disk,
so |∂Σ0| = 1. Let i be such that i < k − 1. Assume that |∂Σi | = 1. The next band added is αi+1. As can be checked by
construction, the band βi+1 has its ends on the two boundary components defined by αi+1. Then |∂Σi+1| = 1. By induction
on i, we have |∂Σk−1| = 1.

At step k we do the changeover. By the construction of Sn,k , we can check that the bands ends of αk, . . . ,αn and of
βk, . . . , βn are on the same boundary component. This means, by Lemma 2.1(b), that each of these bands added increases
the number of boundary components by one. Therefore, the number of boundary components of Sn,k is 2n − 2(k − 1) + 1.
As the Euler characteristics of Sn,k is 1 − 2n the surface Sn,k has genus k − 1.
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Fig. 15. The picture of a middle section of the disk for odd k.

The surface S ′
n,k is obtained from Sn,k by adding the band αn+1 which increases the number of boundary components

by one. �
In this way we can get any genus g � 1 and any number of boundary components b � 1. To get genus g = 0 we

need a slightly different starting configuration. See Fig. 17(a). We start with the same disk as in the general separating
case and the first pair of bands, α1 and β1 again go three times around the x and y handles. However the ends do not
alternate around the disk: a1 and a′

1 are adjacent. The pattern continues in Fig. 17(b), with schematic diagrams in Fig. 17(c)
and (d) analogous to Fig. 12. We can continue indefinitely and there are never any choices to make. We denote the surface
obtained by adding n bands following this procedure by Sn,0 (and, by S ′

n,0 the surface obtained from Sn,0 by adding the
band αn+1).

Proposition 3.2. The surface Sn,0 (S ′
n,0) has genus 0 and 2n + 1 (resp., 2n + 2) boundary components.

Proof. The argument is similar to the proof of Proposition 3.1. �
Suppose that i : Sn,k → H2 is the inclusion map as constructed above and i∗ :π1(Sn,k) → π1(H2) the induced map by i.

As mentioned before, we denote by x and y two generators of π1(H2). Following the surface construction the generators of
π1(Sn,k) are α1,α2, . . . ,αn, β1, β2, . . . , βn .

If k = 0 we have:

i∗(α1) = x3,

i∗(β1) = y3,

i∗(α2) = x−1i∗(β1)x,
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Fig. 16. The picture at the bottom of the disk for odd k.

i∗(β2) = y−1i∗(α1)y,

...

i∗(αn) = x−1i∗(βn−1)x,

i∗(βn) = y−1i∗(αn−1)y.

If k � 2 assume that n = q(2k − 1) + r, where 0 � r < 2k − 1. When k is odd (similarly for even k) we have:

i∗(α1) = x3,

i∗(β1) = y3,

i∗(α2) = xi∗(β1)x,

i∗(β2) = yi∗(α1)y,

...

i∗(α2k−2) = xi∗(β2k−3)x,

i∗(β2k−2) = yi∗(α2k−3)y,
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Fig. 17. Diagrams for the construction of separating surfaces of genus zero.

i∗(α2k−1) = (xy)k−1x3(yx)k−1,

i∗(β2k−1) = (yx)k−1 y3(xy)k−1,

i∗(α(2k−1)+1) = x−1i∗(β2k−1)x,

i∗(β(2k−1)+1) = yi∗(α2k−1)y−1,

i∗(α(2k−1)+2) = x−1i∗(β(2k−1)+1)x−1,

i∗(β(2k−1)+2) = y−1i∗(α(2k−1)+1)y−1,

...

i∗(α(2k−1)+2k−2) = x−1i∗(β(2k−1)+2k−3)x−1,

i∗(β(2k−1)+2k−2) = y−1i∗(α(2k−1)+2k−3)y−1,

i∗(α2(2k−1)) = (
x−1 y−1)k−1

x−1(yx)k−1 y3(xy)k−1x
(

y−1x−1)k−1
,

i∗(β2(2k−1)) = (
y−1x−1)k−1

y(xy)k−1x3(yx)k−1 y−1(x−1 y−1)k−1
,

i∗(α2(2k−1)+1) = x−1i∗(β2(2k−1))x,

i∗(β2(2k−1)+1) = yi∗(α2(2k−1))y−1,

i∗(α2(2k−1)+2) = xi∗(β2(2k−1)+1)x,

i∗(β2(2k−1)+2) = yi∗(α2(2k−1)+1)y,

...

i∗(α(2 j−2)(2k−1)+2k−2) = xi∗(β(2 j−2)(2k−1)+2k−3)x,

i∗(β(2 j−2)(2k−1)+2k−2) = yi∗(α(2 j−2)(2k−1)+2k−3)y,

i∗(α(2 j−1)(2k−1)) = (xy)k−1[x−1(y−1x−1)k−1
y(xy)k−1] j−1

x3[(yx)k−1 y−1(x−1 y−1)k−1
x
] j−1

(yx)k−1,

i∗(β(2 j−1)(2k−1)) = (yx)k−1[y
(
x−1 y−1)k−1

x−1(yx)k−1] j−1
y3[(xy)k−1x

(
y−1x−1)k−1

y−1] j−1
(xy)k−1,

i∗(α(2 j−1)(2k−1)+1) = x−1i∗(β(2 j−1)(2k−1))x,

i∗(β(2 j−1)(2k−1)+1) = yi∗(α(2 j−1)(2k−1))y−1,

i∗(α(2 j−1)(2k−1)+2) = x−1i∗(β(2 j−1)(2k−1)+1)x−1,

i∗(β(2 j−1)(2k−1)+2) = y−1i∗(α(2 j−1)(2k−1)+1)y−1,

...
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i∗(α(2 j−1)(2k−1)+2k−2) = x−1i∗(β(2 j−1)(2k−1)+2k−3)x−1,

i∗(β(2 j−1)(2k−1)+2k−2) = y−1i∗(α(2 j−1)(2k−1)+2k−3)y−1,

i∗(α(2 j)(2k−1)) = (
x−1 y−1)k−1

x−1(yx)k−1[y
(
x−1 y−1)k−1

x−1(yx)k−1] j−1
y3

× [
(xy)k−1x

(
y−1x−1)k−1

y−1] j−1
(xy)k−1x

(
y−1x−1)k−1

,

i∗(β(2 j)(2k−1)) = (
y−1x−1)k−1

y(xy)k−1[x−1(y−1x−1)k−1
y(xy)k−1] j−1

x3

× [
(yx)k−1 y−1(x−1 y−1)k−1

x
] j−1

(yx)k−1 y−1(x−1 y−1)k−1
,

i∗(α(2 j)(2k−1)+1) = x−1i∗(β(2 j)(2k−1))x,

i∗(β(2 j)(2k−1)+1) = yi∗(α(2 j)(2k−1))y−1,

i∗(α(2 j)(2k−1)+2) = xi∗(β(2 j)(2k−1)+1)x,

i∗(β(2 j)(2k−1)+2) = yi∗(α(2 j)(2k−1)+1)y,

...

Either q is odd and we have:

...

i∗(α(q−1)(2k−1)+2k−2) = xi∗(β(q−1)(2k−1)+2k−3)x,

i∗(β(q−1)(2k−1)+2k−2) = yi∗(α(q−1)(2k−1)+2k−3)y,

i∗(αq(2k−1)) = (xy)k−1[x−1(y−1x−1)k−1
y(xy)k−1] q−1

2 x3[(yx)k−1 y−1(x−1 y−1)k−1
x
] q−1

2 (yx)k−1,

i∗(βq(2k−1)) = (yx)k−1[y
(
x−1 y−1)k−1

x−1(yx)k−1] q−1
2 y3[(xy)k−1x

(
y−1x−1)k−1

y−1] q−1
2 (xy)k−1,

i∗(αq(2k−1)+1) = x−1i∗(βq(2k−1))x,

i∗(βq(2k−1)+1) = yi∗(αq(2k−1))y−1,

i∗(αq(2k−1)+2) = x−1i∗(βq(2k−1)+1)x−1,

i∗(βq(2k−1)+2) = y−1i∗(αq(2k−1)+1)y−1,

...

i∗(αq(2k−1)+r) = x−1i∗(βq(2k−1)+(r−1))x−1,

i∗(βq(2k−1)+r) = y−1i∗(αq(2k−1)+(r−1))y−1.

Or q is even and we have:

...

i∗(α(q−1)(2k−1)+2k−2) = xi∗(β(q−1)(2k−1)+2k−3)x,

i∗(β(q−1)(2k−1)+2k−2) = yi∗(α(q−1)(2k−1)+2k−3)y,

i∗(αq(2k−1)) = (
x−1 y−1)k−1

x−1(yx)k−1[y
(
x−1 y−1)k−1

x−1(yx)k−1] q
2 −1

y3

× [
(xy)k−1x

(
y−1x−1)k−1

y−1] q
2 −1

(xy)k−1x
(

y−1x−1)k−1
,

i∗(βq(2k−1)) = (
y−1x−1)k−1

y(xy)k−1[x−1(y−1x−1)k−1
y(xy)k−1] q

2 −1
x3

× [
(yx)k−1 y−1(x−1 y−1)k−1

x
] q

2 −1
(yx)k−1 y−1(x−1 y−1)k−1

,

i∗(αq(2k−1)+1) = x−1i∗(βq(2k−1))x,

i∗(βq(2k−1)+1) = yi∗(αq(2k−1))y−1,

i∗(αq(2k−1)+2) = xi∗(βq(2k−1)+1)x,
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i∗(βq(2k−1)+2) = yi∗(αq(2k−1)+1)y,

...

i∗(αq(2k−1)+r) = xi∗(βq(2k−1)+(r−1))x,

i∗(βq(2k−1)+r) = yi∗(αq(2k−1)+(r−1))y.

For the surface S ′
n,k we continue by adding the word i∗(αn+1) similarly.

Lemma 3.3. Let F2 be the free group with two generators, g and h, with identity element e. Consider

A = {
v1 g p v ′

1, v2 g p v ′
2, . . . , vn1 g p v ′

n1

}
,

B = {
u1hpu′

1, u2hpu′
2, . . . , un2 hpu′

n2

}
, with p � 3,

where vi g p v ′
i , for i = 1, . . . ,n1 , and uihpu′

i , for i = 1, . . . ,n2 are reduced words on g and h, and vi , v ′
i , ui and u′

i are words where g,
or its inverse, alternates with h, or its inverse. Furthermore, vi (ui ) ends with h or h−1 (resp., g or g−1), and v ′

i (u′
i ) starts with h or h−1

(resp., g or g−1). Assume also that L(vi+1) > L(vi), L(v ′
i+1) > L(v ′

i), for i = 1,2, . . . ,n1 − 1 and L(ui+1) > L(ui), L(u′
i+1) > L(u′

i),
for i = 1,2, . . . ,n2 − 1. Take w to be a reduced word on the elements of A or B. That is, w is expressed as a product of elements of A
or B, or inverses of those elements, with no consecutive cancelling terms. Then w �= e.

Proof. Let w = w1 w2 · · · ws where each wi , for i = 1, . . . , s is a reduced word on either the elements of A or the elements
of B , with the condition that if wi is a word on the elements of A (or B) then wi+1 is a word on the elements of B
(resp., A). Note that from Lemma 2.4 we have wi �= e, for i = 1, . . . , s.

If s = 1 then w = w1 and w �= e. Let s � 2. After reducing the w ′
i as words of g and h, from Lemma 2.4 we have either:

wi = ci g pi di g p′
i c′

i if wi is a word on the elements of A, or

wi = cih
pi dih

p′
i c′

i if wi is a word on the elements of B,

where di is some reduced word on g and h, and ci , c′
i , or its inverses, are in {ui, u′

i, vi, v ′
i} and also |pi |, |p′

i | � 2, for
i = 1, . . . , s. Then we get either:

wi wi+1 = ci g pi di g p′
i c′

ici+1hpi+1di+1hp′
i+1 c′

i+1, or (1)

wi wi+1 = cih
pi dih

p′
i c′

ici+1 g pi+1di+1 g p′
i+1 c′

i+1. (2)

Let li = c′
ici+1. We also have, for i = {1, . . . , s − 1},

a) li = e, when c′
i and ci+1 cancel each other; or

b) li = h±1 · · ·h±1, when part of c′
i (ci+1) cancels ci+1 (resp., c′

i) in case (1) (resp., case (2)); or
c) li = g±1 · · · g±1, when part of c′

i (ci+1) cancels ci+1 (resp., c′
i) in case (2) (resp., case (1)); or

d) li = h±1 · · · g±1, when neither c′
i nor ci+1 in case (1) is canceled; or

e) li = g±1 · · ·h±1, when neither c′
i nor ci+1 in case (2) is canceled.

Therefore, as |pi |, |p′
i| � 2, for i = 1, . . . , s the powers pi and p′

i are never canceled. This implies that L(w) > s and
w �= e. �
Proposition 3.4. The homomorphism i∗ :π1(Sn,k) → π1(H2) is injective.

Proof. Take

A = {
i∗(α2i−1)

∣∣ 1 � 2i − 1 � n, i ∈ N
} ∪ {

i∗(β2i)
∣∣ 2 � 2i � n, i ∈ N

}
and

B = {
i∗(β2i−1)

∣∣ 1 � 2i − 1 � n, i ∈ N
} ∪ {

i∗(α2i)
∣∣ 2 � 2i � n, i ∈ N

}
.

Using the words from above we can write i∗(α2i−1) = v2i−1x3 v ′
2i−1, i∗(β2i) = v2i x3 v ′

2i , and i∗(β2i−1) = u2i−1 y3u′
2i−1,

i∗(α2i) = u2i y3u′
2i . We have that vi x3 v ′

i and ui y3u′
i , for i = 1, . . . ,n, are reduced words on x and y, where the words

vi , v ′
i , ui and u′

i are words where x, or its inverse, alternate with y, or its inverse. Furthermore, vi (ui) ends with y
(resp., x), and v ′

i (u′
i ) starts with y (resp., x). Also, L(vi+1) > L(vi), L(v ′

i+1) > L(v ′
i), L(ui+1) > L(ui) and L(u′

i+1) > L(u′
i), for

i = 1, . . . ,n − 1. So, we are under the hypothesis of Lemma 3.3.
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Fig. 18. Examples of the subspace H in cases (b) (H = P1 ∪D Q ) and (c) (H = P1 ∪D P1) of Lemma 4.1.

Let w = i∗(α) for some α ∈ π1(Sn,k) with α �= e. We can write w as a reduced word on the elements of A ∪ B: w =
w1 w2 · · · ws , for some s ∈ N, where the wi ’s alternate between being words in either the elements of A or the elements
of B . Then by Lemma 3.3, w �= e. Therefore i∗ is injective. �

The same argument, with the extra word i∗(αn+1) included, proves that i∗ :π1(S ′
n,k) → π1(H2) is injective. A similar

argument also works for the case when k is even.
The above construction and results, and in particular Proposition 3.4, prove Theorem 1.2.

4. Incompressible surfaces in boundary reducible 3-manifolds

Consider a closed surface F− , not necessarily connected. Take F− × [0,1] and add a finite number of 1-handles to
F− × {1}. A 3-manifold obtained in this way is said to be a compression body. Dually a connected compression body can be
obtained from a connected surface F+ , by taking F+ × [0,1] and adding a finite number of 2-handles to F+ × {0}.

Let M be a compact 3-manifold with a compressible boundary component B of genus greater or equal than two.
Take the compressible boundary component B of M and consider B × [0,1] ⊂ M where we view B as B × {1}. As B is

compressible there is a compressing disk for B × {0} in M . We say that a (disjoint) collection of such compressing disks
{D1, D2, . . . , Dn}, for some n ∈ N, is maximal if any other compressing disk for B × {0} in M either intersects or is isotopic
to some disk in the collection.7 Consider the compression body obtained from B × [0,1] by adding the 2-handles defined
by the compressing disks in a maximal collection of compressing disks for B × {0} in M . We denote this compression
body by C , ∂+C = B and ∂−C = ∂C − B . Let N be defined by M = C ∪∂−C N . We have that ∂−C is incompressible in N ,
otherwise some isotopy class of compressing disks for B × {0} would be missing from the construction of C . In addition
∂−C is incompressible in C , because C is obtained from ∂−C × [0,1] by adding a collection of 1-handles to ∂−C × {1}. This
means that there is no compressing disk for ∂−C in C . We refer to such a compression body as a maximal compression
body of B in M .

Consider a connected compression body C where ∂+C has genus greater than or equal to two and such that ∂+C is
compressible in C . From now on C will denote a compression body with these properties.

Let Ts be a punctured torus with s punctures and take P s = Ts × [0,1] and denote by Q a solid torus.

Lemma 4.1. There are subspaces H, C∗ ⊂ C giving the decomposition C = C∗ ∪ J H , where C∗ ∩ H = J is a collection of annuli or disks
properly embedded in C , such that

(a) H = Q ∪D Q = H2 , or
(b) H = P s1 ∪D Q , or
(c) H = P s1 ∪D P s2 ,

for some si ∈ {0,1}, i = 1,2, D is a separating disk in H and C, and J is one disk or one annulus in case (a) and (b) and a collection of
two disks or annuli in case (c) (see Fig. 18).

Proof. Let us take C obtained from a closed surface F × [0,1] by adding a collection of 1-handles to F × {1}. Consider a
graph G where the vertices correspond to the components of F × [0,1] and the edges correspond to the 1-handles. Here
we assume that C is connected and so G is a connected graph.

Assume first that G has two or more cycles. We can slide the ends of two 1-handles along F × {1} and other 1-handles
until they are both on the same component of F × [0,1]. Then by cutting along a disk J we get C = C∗ ∪ J H where H
is a handlebody of genus two. Note that in this case H contains an essential compressing disk that is separating, and an
essential compressing disk that is non-separating, in both H and C .

Now assume that G has precisely one cycle. If all components of F are spheres then the genus of ∂+C is one. This is a
contradiction to the assumption that ∂+C has genus greater than or equal to two. Therefore at least one component of F
has genus greater than or equal to one.

7 A maximal collection of compressing disks always exists for B because B is compressible in M (and has finite genus).
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• If there is a component of F × [0,1] with genus one then we slide one 1-handle to be a loop on this vertex of G and if
necessary, slide the other 1-handles around (altering the corresponding graph G) to leave only one 1-handle connecting
this component to the other components. So, now there is a disk J in C such that C = C∗ ∪ J H , where H = P0 ∪D Q .

• If, on the other hand, there is no component of F with genus one then take a component F1 with positive genus. We
slide one 1-handle to be a loop on this vertex of G and again leave only one 1-handle connecting this component to
the other components. We take a simple closed curve a in F1 separating a punctured torus from the rest of F1 and we
slide both ends of the 1-handle to this punctured torus. Taking F × [0,1] we get a separating annulus A = a × [0,1]. By
cutting along this annulus we get C = C∗ ∪ J H where H = P1 ∪D Q and J = A.

Note that also in this case H contains an essential compressing disk that is separating, and an essential compressing disk
that is non-separating, in both H and C .

Finally, assume that G is a tree. If the components of F are all spheres apart possibly from at most one torus component
then the genus of ∂+C is less or equal than one. As in the previous case, this gives a contradiction to the assumption that
∂+C has genus greater than or equal to two. If the components of F are all spheres apart from a single surface of genus
g � 2 then the genus of ∂+C is also g � 2. Then ∂+C is incompressible in C , as the existence of a compressing disk would
mean that no genus g component of F exists. So, F must have more than one component of genus greater than or equal to
one. Take two of these components, say F1 and F2, and slide 1-handles if necessary until each Fi × [0,1] is adjacent to two
edges in G and one edge connects F1 × [0,1] to F2 × [0,1]. We have different cases depending on if F1 and F2 are tori or
are surfaces of higher genus:

• If F1 and F2 are both tori then cut the two 1-handles attached to each of them that does not connect them to each
other. We denote by H the component with the 1-handle attaching F1 and F2. So, we get C = C∗ ∪ J H where H =
P0 ∪D P0 and J is a collection of two disks.

• Without loss of generality, we assume F1 is a torus and F2 has genus greater than or equal to two. We cut the 1-handle
attached to F1 but not to F2 along a disk. Consider a simple closed curve a in F2 cutting a punctured torus from F2.
We slide the 1-handle connecting F1 and F2 to this punctured torus and if necessary, slide other 1-handles until there
are no other 1-handles attached to the punctured torus. Taking F × [0,1] we get an annulus A = a × [0,1]. By cutting
along this annulus and the disk we get C = C∗ ∪ J H where H = P0 ∪D P1 and J is a collection of a disk and an annulus.

• Finally, assume that both F1 and F2 have genus greater than or equal to two. Take simple closed curves ai in Fi cutting
a punctured torus from Fi , i = 1,2, and we slide the 1-handle connecting F1 and F2 to these punctured tori and all
other 1-handles off of the punctured tori. By taking F×[0,1] we get the annuli Ai = ai ×[0,1], for i = 1,2. We cut along
this annuli and we get C = C∗ ∪ J H where H = P1 ∪D P1 and J = A1 ∪ A2.

Note that in this case H contains an essential compressing disk that is separating in both H and C (and no essential
non-separating, compressing disk in either H or C ). �

Let S be a surface embedded in H2 = Q ∪D Q as in the previous sections. Let E be the starting disk of the construction
of the embedding of S in H2. Then, by construction, S is in a regular neighborhood E × [0,1] ∪ ∂ H2 × [0,1] of E ∪ ∂ H2. We
know that the embedding of S is constructed from a finite collection of bands parallel to ∂ H2 attached to E . So, we can
take a collection of points {x1, x2} ⊂ ∂ H2 − ∂ E such that S ⊂ E × [0,1] ∪ ∂ H2 × [0,1] − xi × [0,1], for i = 1,2. Therefore,
in the same way we constructed the π1-injective embedding of S in H2 we construct a π1-injective embedding of S in
H = P s1 ∪D Q and also in H = P s1 ∪D P s2 , for si ∈ {0,1}, i = 1,2. We will prove the π1-injectivity in Proposition 4.2. Note
that if H is as in Lemma 4.1(a) or (b) we can construct the embedding of S in H following any of the previous sections
as H has both an essential separating disk and a non-separating disk; if H is as in Lemma 4.1(c) we can only construct S
following Section 3 as H has an essential separating disk but no non-separating disks.

Let i : S → H be the embedding discussed above and l : H → H2 the inclusion map. By construction we have the com-
mutativity of the following diagram:

H2

S

i

j H .

l

Let C be a compression body as referred above. As in Lemma 4.1 we have the decomposition C = C∗ ∪ J H , where
C∗ ∩ H = J and J is a collection of disks and annuli where at most two components are annuli. Therefore, π1(C) =
π1(C∗) ∗π1( J ) π1(H) is a free product with amalgamation along the group π1( J ), which is the trivial group, Z or Z ∗ Z.

Consider the inclusion h : H → C∗ ∪ J H . Then we have a proper embedding of S in C , induced by j, given by g = h ◦ j
where the boundary of S lies in ∂+C .

Proposition 4.2. The induced homomorphism g∗ :π1(S) → π1(C) is injective.
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Proof. We know that i = l ◦ j. Therefore, for the induced homomorphisms we have commutativity of the following diagram:

π1(H2)

π1(S)

i∗

j∗
π1(H).

l∗

Let C be obtained from C by adding a 2-handle along each core of the annulus components of J . Then C = C∗ ∪ J H ,

where C∗ and H are obtained from C∗ and H by the addition of the 2-handles along annulus components of J , and J is
one or two separating disks in C . Consider k : C → C the inclusion map. The induced homomorphism k∗ :π1(C) → π1(C) is
onto. Let l̄ : H → H2 also be the inclusion map. So the inclusion map l of H in H2 can be written as the composition of l̄
and the inclusion of H in H . Then, as π1(C) = π1(C∗) ∗ π1(H) the homomorphism f ∗ :π1(C) → π1(H2) defined by

f ∗(a) =
{

l̄∗(a) if a ∈ π1(H),

e if a ∈ π1(C∗),

where e is the identity element of π1(H2), is onto. Let f∗ = f ∗ ◦k∗ . Consider also the inclusion maps h : H → C and h = k◦h.
Therefore, the following diagram is commutative:

π1(H2) π1(C)
f ∗

π1(H)

l∗

h∗

h∗

π1(C).

k∗

From the commutativity of these diagrams we have the commutativity of the following diagram:

π1(H2)

π1(S)

i∗

j∗

g∗

π1(H)

l∗

h∗
π1(C).

f∗

As f∗ is surjective and i∗ is injective we have that g∗ = h∗ ◦ j∗ is injective. This gives us the conclusion of the proposi-
tion. �

Consider the inclusion map q : C → M and also the embedding p : S → M , where p = q ◦ g .

Lemma 4.3. The induced homomorphism q∗ :π1(C) → π1(M) is injective.

Proof. Assume M is connected and let N be defined by M = C ∪S N . C is connected but N may not be, and we let
N1, N2, . . . , Nn be the connected components of N . The components S1, S2, . . . , Sm of S are incompressible boundary com-
ponents of both C and the Ni . We build M from C and the Ni by gluing along the S j ’s. At each gluing, we apply either
van Kampen’s theorem (if this is the first time we join a particular Ni to C ) or perform an HNN extension (if this is not the
first time we join a particular Ni to C ). In both cases the fundamental group of the component containing C injects into the
fundamental group of the resulting manifold after the gluing along S j (this uses the injectivity of π1(S j) into both π1(C)

and π1(Ni)). Thus by induction, π1(C) injects into π1(M). �
Proposition 4.4. The induced homomorphism p∗ :π1(S) → π1(M) is injective.

Proof. We have from Proposition 4.2 that g∗ is injective and from Lemma 4.3 that q∗ is injective. These imply that p∗ is
injective. �
Proof of Theorem 1.3. Let M be a 3-manifold and B a compressible boundary component of genus greater than or equal
to two, of type ns. Consider a maximal compression body, C , in M obtained from B . As in the proof of Lemma 4.1, we
consider a graph G where the vertices correspond to the components of ∂−C , and the edges correspond to the 1-handles.
Each compressing disk of B in M can be seen as the co-core of a 1-handle and (by possibly changing G) corresponds to a
point in the corresponding edge of G .

Assume B is of type ns. So, it has a compressing disk D in M where ∂ D is non-separating in B , and so D is necessarily
non-separating in M . This implies that the point in G (possibly changed by considering a different 1-handle decomposition
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of C ) corresponding to D is non-separating. Therefore, G has at least one cycle. Then, from the proof of Lemma 4.1, C has
a decomposition as in Lemma 4.1(a) or (b). In both cases, H has an essential disk that is separating, and an essential disk
that is non-separating, in both H and M . In fact, from Lemma 4.1(a) or (b) the disk D (as denoted there) is also separating
in M and a non-separating disk of Q (as denoted in the lemma) is also non-separating in M . Let D1 be an essential
non-separating disk in H and M . Then we can construct embeddings of surfaces in H , and hence in C and M , following
Section 2 and the discussion in this section. Note that we start this construction in H with a non-separating essential disk
in H , with the same property in C and M . So, we construct a non-separating embedding in M for each orientable, and non-
orientable, compact surface with boundary. Now, let D2 be an essential separating disk in H and M . Then we can construct
embeddings of surfaces in H , and hence in C and M , following Section 3 and the discussion in this section. As the starting
disk is separating in M we construct a separating embedding for all orientable, compact surfaces with boundary in M . By
Proposition 4.4 these embeddings are π1-injective. This completes the proof of Theorem 1.3. �
Proof of Theorem 1.4. Consider the compressible boundary components of M with genus greater than or equal to two. If
one of these components is of type ns then we have Theorem 1.3 and our result follows. Otherwise no boundary component
is of type ns. So all compressing disks D of a boundary component B in M are such that ∂ D separates B . Fix a choice
of compressing disk D of a compressible boundary component B of M . As before, let C denote the maximal compression
body defined by B in M . As B is not of type ns, the compression body C has the decomposition given by Lemma 4.1(c).
The disk D is dual to a 1-handle in a 1-handle decomposition of C and D is a compressing disk of ∂+C so we can adjust
the decomposition such that D is the separating disk in H from Lemma 4.1(c). We follow Section 3 and the discussion
in this section to construct the embeddings of orientable surfaces in H . Although the surfaces constructed in this way are
separating in H and C they are not necessarily separating in M . We have two cases. If D is (non-)separating in M then the
surfaces are (resp., non-)separating in M . By Proposition 4.4 these embeddings are π1-injective. Since the choice of D was
arbitrary, this completes the proof of Theorem 1.4. �
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