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a b s t r a c t

This paper presents a numerical method for solving a class of fractional optimal control
problems (FOCPs). The fractional derivative in these problems is in the Caputo sense.
The method is based upon the Legendre orthonormal polynomial basis. The operational
matrices of fractional Riemann–Liouville integration and multiplication, along with the
Lagrangemultiplier method for the constrained extremum are considered. By this method,
the given optimization problem reduces to the problem of solving a system of algebraic
equations. By solving this system,we achieve the solution of the FOCP. Illustrative examples
are included to demonstrate the validity and applicability of the new technique.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Fractional order dynamics appear in several problems in science and engineering such as viscoelasticity [1,2],
bioengineering [3], dynamics of interfaces between nanoparticles and substrates [4], etc. It is also shown that the materials
with memory and hereditary effects and dynamical processes including gas diffusion and heat conduction in fractal porous
media can be modeled by fractional order models better than integer models [5].

Although the optimal control theory is an area in mathematics which has been under development for years but the
fractional optimal control theory is a very new area in mathematics. An FOCP can be defined with respect to different
definitions of fractional derivatives. But the most important types of fractional derivatives are the Riemann–Liouville and
the Caputo. General necessary conditions of optimality have been developed for fractional optimal control problems. For
instance, in [6,7] the authors have achieved the necessary conditions of optimization for FOCPs with the Riemann–Liouville
derivative and also have solved the problem numerically by solving the necessary conditions. There also exist other
numerical simulations for FOCPs with Riemann–Liouville fractional derivatives such as [8]. In [9], the necessary conditions
of optimization are achieved for FOCPs with the Caputo fractional derivative. There exist numerical simulations for such
problems such as [9,10], where the author has solved the problem by solving the necessary conditions approximately. The
interested reader can see [11–16] for some recent advances on the fractional differential equations.

In the current paper, we focus on optimal control problems with the quadratic performance index and the dynamic
system with the Caputo fractional derivative. We solve the problem directly without using Hamiltonian formulas. Our
tools for this aim are the Legendre orthonormal basis and the operational matrix of fractional integration. Our problem
formulation is as follows:

J =
1
2

∫ t1

t0
[q(t)x2(t)+ r(t)u2(t)]dt, (1)

C
t0D

α
t x(t) = a(t)x(t)+ b(t)u(t), (2)
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x(t0) = x0,

where q(t) ≥ 0, r(t) > 0, b(t) ≠ 0, and the fractional derivative is defined in the Caputo sense,

C
t0D

α
t x(t) =


1

Γ (1 − α)

∫ t

t0
(t − τ)−α

dn

dτ n
x(τ )dτ , 0 < α < 1,

ẋ(t), α = 1.
(3)

The method we use here consists of reducing the given optimal control problem to a set of algebraic equations. We expand
the fractional state rate C

t0D
α
t x(t) and control variable u(t) with the Legendre orthonormal polynomial basis with unknown

coefficients. Then the operational matrices of the Riemann–Liouville fractional integration andmultiplication are utilized to
achieve a linear system of algebraic equations, instead of performance index (1) and dynamical system (2) in terms of the
unknown coefficients. Finally, the method of constrained extremum is applied which consists of adjoining the constraint
equations derived from the given dynamical system to the performance index by a set of undetermined Lagrangemultipliers.
As a result, the necessary conditions of optimality are derived as a system of algebraic equations in the unknown coefficients
of C

t0D
α
t x(t) and u(t) and the Lagrange multipliers. These coefficients are determined in such a way that the necessary

conditions for extremization are imposed. Also illustrative examples are included to demonstrate the applicability of the
new approach. In [10], the problem is solved by a discrete iterative method. The main advantage of the new method is that
with the use of only few number of Legendre basis we achieve satisfactory results. Also we refer the interested reader to
[3,17–21] for more research works in the subject.

This paper is organized as follows. In Section 2, we present some preliminaries in fractional calculus. In Section 3, we
describe the basic formulation of the Legendre basis required for our subsequent development. Section 4 is devoted to the
formulation of the fractional optimal control problems. In Section 5, we discuss on the convergence of the method. Finally
in Section 6, we report our numerical findings and demonstrate the accuracy of the new numerical scheme by considering
two test examples. Section 7 consists of a brief summary.

2. Some preliminaries in fractional calculus

Without loss of generality, in Eqs. (1)–(2) consider t0 = 0, t1 = 1 and t ∈ [0, 1]. It is obvious that with a linear
transformation we can transform each closed interval into another.

Definition 1. A real function f (t), t > 0 is said to be in the space Cµ, µ ∈ R if there exists a real number p(> µ) such that
f (t) = tpf1(t), where f1(t) ∈ C[0,∞), and it is said to be in the space Cm

µ iff f (m) ∈ Cµ,m ∈ N.

Definition 2. The Riemann–Liouville fractional integral operator of order α ≥ 0 of a function f ∈ Cµ, µ ≥ −1 is defined as

0Iαt f (t) =
1

Γ (α)

∫ t

0
(t − τ)α−1f (τ )dt, α > 0, t > 0, (4)

0I0t f (t) = f (t).

As a property for the left Riemann–Liouville fractional integration we have

0Iαt t
k
=

Γ (k + 1)
Γ (k + 1 + α)

tα+k, k ∈ N


{0}, t > 0. (5)

Definition 3. The fractional derivative of f (t) in the Caputo sense is defined as follows

C
0D

α
t f (t) =

1
Γ (n − α)

∫ t

0
(t − τ)n−α−1 dn

dτ n
f (τ )dτ ,

n − 1 < α < n, n ∈ N, f ∈ Cm
−1. (6)

On Lp(0, 1) (1 < p < ∞) we have the semigroup property for the left Riemann–Liouville fractional integration almost
every where [22]

0Iαt 0I
β
t = 0I

α+β
t , (α, β > 0), (7)

where Lp(0, 1) is the space of Lebesgue measurable functions f on [0, 1] such that

‖f ‖p =

[∫ 1

0
|f (t)|pdt

] 1
p

< ∞.

With the aid of semigroup property (7) we have the following properties [22]:
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(1) For real values of α > 0, the Caputo fractional derivative provides operation inverse to the Riemann–Liouville
integration from the left

C
0D

α
t 0I

α
t f (t) = f (t), α > 0, f (t) ∈ C[0, 1]. (8)

(2) If f (t) ∈ Cn
[0, 1], then

0Iαt
C
0D

α
t f (t) = f (t)−

n−1−
j=0

1
j!
t j(Dj

t f )(0), n − 1 < α ≤ n,

where Cn
[0, 1] is the space of functions, which are n times continuously differentiable on [0, 1] and Dj

t is j times
differentiation of function f . In particular, if 0 < α ≤ 1 and f (t) ∈ C1

[0, 1] then

0Iαt
C
0D

α
t f (t) = f (t)− f (0). (9)

3. Properties of the Legendre basis

3.1. The Legendre polynomials

The Legendre polynomials are orthogonal polynomials on the interval [−1, 1] and can be determined with the following
recurrence formula:

Li+1(y) =
2i + 1
i + 1

yLi(y)−
i

i + 1
Li−1(y), i = 1, 2, . . .

where L0(y) = 1 and L1(y) = y. By the change of variable y = 2t − 1 we will have the well-known shifted Legendre
polynomials. Here, p′

m(t)s are the shifted Legendre polynomials of order m which are defined on the interval [0, 1] and can
be determined with the following recurrence formula:

p′

m+1(t) =
2m + 1
m + 1

(2t − 1)p′

m(t)−
m

m + 1
p′

m−1(t), m = 1, 2, 3, . . .

p′
0(t) = 1, p′

1(t) = 2t − 1. (10)

Now we define pm(t) =
√
2m + 1p′

m(t). For polynomials pm(t),m = 0, 1, . . .we have∫ 1

0
pi(t)pj(t)dx =


1, i = j,
0, i ≠ j. (11)

The analytical form of the shifted Legendre polynomial of degree i, pi(t) is as follows

pi(t) =
√
2i + 1

i−
k=0

(−1)i+k (i + k)!tk

(i − k)!(k!)2
. (12)

3.2. The function approximation

Suppose that H = L2[0, 1] and

{p0, p1, . . . , pm} ⊂ H, m ∈ N


{0},

be the set of Legendre polynomials and

Y = Span{p0, p1, . . . , pm},

and f be an arbitrary element in H . Since Y is a finite-dimensional vector space, f has the unique best approximation out of
Y such as y0 ∈ Y , that is

∃y0 ∈ Y ; ∀y ∈ Y ‖f − y0‖2 ≤ ‖f − y‖2,

where ‖f ‖2 =
√
< f , f >.

Since y0 ∈ Y , there exist unique coefficients cj, j = 0, . . . ,m such that

f (t) ≃ y0 =

m−
j=0

cjpj = CTΨ , (13)
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where cj can be calculated as follows [24]

cj =< f (t), pj(t) >, (14)

and we have

CT
= [c0, . . . , cm],

Ψ T
= [p0, . . . , pm].

The fractional integration of the vector Ψ can be approximated as

0Iαt Ψ ≃ IαΨ , (15)

where Iα is the (m+1)×(m+1) Riemann–Liouville fractional operational matrix of integration.We construct Iα as follows,
Consider (4). With the aid of Eqs. (5), (12) we calculate 0Iαt pi(t), i = 0, 1, . . . ,m as follows

0Iαt pi(t) =
1

Γ (α)

∫ t

0
(t − τ)α−1pi(τ )dτ =

√
2i + 1

i−
k=0

(−1)i+k (i + k)!
(i − k)!k!Γ (k + 1 + α)

tk+α. (16)

Now we approximate tk+α by m + 1 terms of the Legendre basis

tk+α ≃

m−
j=0

bjpj, (17)

where

bj =

∫ 1

0
tk+αpj(t)dt =


2j + 1

j−
l=0

(−1)j+l(j + l)!
(j − l)!(l!)2(l + k + α + 1)

. (18)

So we have

0Iαt pi(t) ≃

m−
j=0

Bijpj(t),

where

Bij =


(2i + 1)(2j + 1)

i−
k=0

j−
l=0

(−1)i+k+j+l(i + k)!(j + l)!
(i − k)!k!Γ (k + 1 + α)(j − l)!(l!)2(l + k + α + 1)

.

So we achieve the left Riemann–Liouville operational matrix Iα as follows

Iα =

 I11 I12 · · · I1(m+1)
...

I(m+1)1 I(m+1)2 · · · I(m+1)(m+1)

 , (19)

where

Iij = Bi−1j−1, 1 ≤ i, j ≤ m + 1.

In [14], the operational matrix of the fractional Caputo derivative is constructed where for our basis Ψ is as follows

Dα =

 D11 D12 · · · D1(m+1)
...

D(m+1)1 D(m+1)2 · · · D(m+1)(m+1)

 , (20)

where

Dij = B̂i−1j−1, 1 ≤ i, j ≤ m + 1,

B̂ij =


(2i + 1)(2j + 1)

i−
k=⌈α⌉

j−
l=0

(−1)i+k+j+l(i + k)!(j + l)!
(i − k)!k!Γ (k + 1 − α)(j − l)!(l!)2(l + k − α + 1)

.

Althoughwedo not use the operationalmatrix of the fractional derivative for solving problem (1), wewill need it in Section 5
when we discuss on the convergence of the method.
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4. Solving fractional optimal control problems

Consider the following fractional optimal control problem

J =
1
2

∫ 1

0
[q(t)x2(t)+ r(t)u2(t)]dt, (21)

C
0D

α
t x(t) = a(t)x(t)+ b(t)u(t), (22)

x(0) = x0.

We expand the fractional derivative of the state variable by the Legendre basis Ψ

C
0D

α
t x(t) ≃ CTΨ (t), (23)

U(t) ≃ UTΨ (t), (24)

where

CT
= [c0, . . . , cm], (25)

UT
= [u0, . . . , um], (26)

are unknown. Using (9) and (19), x(t) can be represented as

x(t)=0 Iαt
C
0D

α
t x(t)+ x(0) ≃ (CT Iα + dT )Ψ , (27)

where Iα is the fractional operational matrix of integration of order α and

dT = [x0, 0, . . . , 0].

Also using (13) and (14) we approximate functions a(t), b(t), q(t), r(t) by the Legendre basis as:

a(t) ≃ ATΨ , b(t) ≃ BTΨ , (28)

q(t) ≃ Q TΨ , r(t) ≃ RTΨ , (29)

where

AT
= [a0, . . . , am], BT

= [b0, . . . , bm], (30)

Q T
= [q0, . . . , qm], RT

= [r0, . . . , rm], (31)

and we have

aj =

∫ 1

0
a(t)pj(t)dt, bj =

∫ 1

0
b(t)pj(t)dt,

qj =

∫ 1

0
q(t)pj(t)dt, rj =

∫ 1

0
r(t)pj(t)dt,

j = 0, 1, . . . ,m.

Using Eqs. (24), (27) and (29), the performance index J can be approximated as

J ≃ J[C,U] =
1
2

∫ 1

0
[(Q TΨ (t))((CT Iα + dT )Ψ (t)Ψ (t)T (CT Iα + dT )T )+ (RTΨ (t))(UTΨ (t)Ψ T (t)U)]dt. (32)

Using Eqs. (23), (24), (27) and (28), the dynamical system (22) can also be approximated as

CTΨ − ATΨΨ T (CT Iα + dT )T − BTΨΨ TU = 0. (33)

Consider ATΨΨ T and BTΨΨ T given in the following:

ATΨΨ T
= [v1(t), . . . , vm+1(t)],

BTΨΨ T
= [w1(t), . . . , wm+1(t)].

Now we approximate ATΨΨ T and BTΨΨ T by Ψ as:

vi(t) ≃ ṽi1p0 + · · · + ṽi(m+1)pm,
wi(t) ≃ w̃i1p0 + · · · + w̃i(m+1)pm,
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where

ṽij =

∫ 1

0
vi(t)pj−1dt,

w̃ij =

∫ 1

0
wi(t)pj−1dt, 1 ≤ i, j ≤ m + 1,

and we achieve the operational matrices of multiplication as:

Ṽ = [ṽij]1≤i,j≤m+1, W̃ = [w̃ij]1≤i,j≤m+1,

and we have

ATΨΨ T
≃ Ψ T Ṽ T , (34)

BTΨΨ T
≃ Ψ T W̃ T . (35)

Now using Eqs. (34) and (35) in (33) we obtain:

CTΨ − Ψ T Ṽ T (CT Iα + dT )T − Ψ T W̃ TU = 0,

or

(CT
− (CT Iα + dT )Ṽ − UT W̃ )Ψ = 0, (36)

and finally using (36) we convert the dynamical system (22) to the following linear system of algebraic equations:

(CT
− (CT Iα + dT )Ṽ − UT W̃ ) = 0. (37)

Let

J∗[C,U, λ] = J[C,U] + [CT
− (CT Iα + dT )Ṽ − UT W̃ ]λ,

where

λ =


λ0
λ1
...
λm

 , (38)

is the unknown Lagrange multiplier. Now the necessary conditions for the extremum are

∂ J∗

∂C
= 0,

∂ J∗

∂U
= 0,

∂ J∗

∂λ
= 0. (39)

(Of course ∂ J∗

∂C = 0, is the system ∂ J∗

∂cj
= 0 j = 0, . . . ,m.) The above equations can be solved for C,U, λ using the Newton

iterative method. By determining C,U , we can determine the approximate values of u(t) and x(t) from (24) and (27),
respectively. The method we presented here is based on Rietz direct method for solving variational problems. Also we refer
the interested reader to [23].

5. On the convergence of the method

In this section, we discuss on the convergence of the method presented in Section 4. First we will find an error upper
bound for the operational matrix of the fractional integration Iα and derivative Dα introduced in Section 3.2. To this aim, we
restate a theorem from [24].

Theorem 1. Suppose that H is a Hilbert space and Y is a closed subspace of H such that dim Y < ∞ and {y1, y2, . . . , yn} is any
basis for Y . Let x be an arbitrary element in H and y0 be the unique best approximation to x out of Y . Then

‖x − y0‖2
2 =

G(x, y1, y2, . . . , yn)
G(y1, y2, . . . , yn)

,

where

G(x, y1, y2, . . . , yn) =


⟨x, x⟩ ⟨x, y1⟩ · · · ⟨x, yn⟩
⟨y1, x⟩ ⟨y1, y1⟩ · · · ⟨y1, yn⟩
...

...
...

⟨yn, x⟩ ⟨yn, y1⟩ · · · ⟨yn, yn⟩

 .
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Consider the following statement:

eαI := Iα.Ψ − 0Iαt Ψ ,

eαI =


eαI 0
eαI 1
...

eαI m

 .
We call eαI error vector of the operational matrix. In (17) when we approximated tk+α we had

tk+α ≃

m−
j=0

bjpj,

where bjs obtained by the best approximation. Hence according to Theorem 1 we havetk+α −

m−
j=0

bjpj


2

=


G(tk+α, p0, . . . , pm)

G(p0, . . . , pm)

 1
2

.

So according to (16) and (17) we have

‖eαI i‖2 =

0Iαt pi(t)−

m−
j=0

Bijpj(t)


2

≤
√
2i + 1

i−
k=0

 (i + k)!
(i − k)!k!Γ (k + 1 + α)

 G(tk+α, p0, . . . , pm)
G(p0, . . . , pm)

 1
2

, 0 ≤ i ≤ m. (40)

In the same way we find an error upper bound for Dα

‖eαDi‖2 ≤
√
2i + 1

i−
k=⌈α⌉

 (i + k)!
(i − k)!k!Γ (k + 1 − α)

 G(tk−α, p0, . . . , pm)
G(p0, . . . , pm)

 1
2

, (41)

0 ≤ i ≤ m,

where

eαD := Dα.Ψ −
C
0 Dαt Ψ ,

eαD =


eαD0
eαD1
...

eαDm

 .
In the above discussion with the aid of Theorem 1 we presented the error upper bounds for the operational matrices of

integration and derivative in terms of Gram determinant G. Now we show that with increase in the number of Legendre
polynomials, the error vectors eαD and eαI tend to zero. To this aim, we state the following fact from [25].

Theorem 2. Suppose that, function f ∈ L2[0, 1] is approximated by qn(t) as follows

qn(t) = λ0p0(t)+ · · · + λnpn(t),

where

λi =

∫ 1

0
pi(t)f (t)dt, i = 0, 1, . . . , n.

Consider

sn(f ) =

∫ 1

0
[f (t)− qn(t)]2dt,

then we have

lim
n→∞

sn(f ) = 0.
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Now by considering Theorems 1 and 2 and Eqs. (40) and (41) we can easily observe that with increase in the number of
the Legendre basis, the error vectors eαD and eαI tend to zero.

Consider problem (1), of course when t0 = 0 and t1 = 1. By considering (9) it is easy to see that problem (1) is equivalent
to the following problem:

J[x] =
1
2

∫ 1

0


q(t)(0Iαt

C
0D

α
t x(t)+ x0)2 + r(t)


1

b(t)
C
0D

α
t x(t)−

a(t)
b(t)

x(t)
2


dt.

Obviously the set of Legendre polynomials form a basis for the space

D1[0, 1] = {f (t)|f is continuously differentiable on interval [0, 1]},

with uniform norm ‖f ‖ = ‖f ‖∞+‖f ′
‖∞. ConsiderMn as n-dimensional subspace ofD1[0, 1] generated by {pi|i = 0, . . . , n}.

So each element ofMn is in the form

α0p0 + · · · + αnpn,

where α0, . . . , αn are arbitrary real numbers and on each setMn the functional J leads to a function J[α0p0 + · · · + αnpn] of
n variables α0, . . . , αn. We choose α0, . . . , αn in such a way that minimize J , denoting the minimum byµn and the element
ofMn which yields the minimum by xn. Clearly

Mn ⊂ Mn+1,

so we have

µn ≥ µn+1.

Theorem 3. Consider the functional J , then

lim
n→∞

µn = µ,

where

µ = inf
x∈D1[0,1]

J[x].

Proof. Given any ϵ > 0 let x∗ be such that

J[x∗
] < µ+ ϵ,

such an x∗ exist for any ϵ > 0 by the definition of µ. Since J[x] is continuous on D1[0, 1]

|J[x] − J[x∗
]| < ϵ, (42)

provided that ‖x − x∗
‖ < δ(ϵ). Let ηn be an element of Mn s.t.

‖ηn − x∗
‖ < δ.

Obviously such an ηn exists for sufficiently large n. Then using (42), we find that

µ ≤ µn ≤ J[ηn] < µ+ 2ϵ.

Since ϵ is arbitrary, it follows that

lim
n→∞

µn = µ. �

As mentioned above, µm is the minimum of the functional J on the set Mm. Also for each element x(t) ofMm we have

x(t) = x0p0 + · · · + xmpm = XTΨ ,

so we obtain
C
0D

α
t x(t) = XT C

0D
α
t Ψ (t) = XT .Dα.Ψ (t)+ XT .eαD.

We consider XT .Dα as CT and we also have

x(t) = CT .Iα.Ψ (t)+ CT eαI + XT
0 I
α
t e
α
D + dTΨ .

Now we demonstrate problem (1) onMm as follows

J =
1
2

∫ 1

0
[(Q TΨ (t)+ eq)(CT .Iα.Ψ (t)+ CT eαI + XT

0 I
α
t e
α
D + dTΨ )2 + (RTΨ (t)+ er)(UTΨ (t))2]dt, (43)

CT .Ψ (t)+ XT .eαD = (ATψ(t)+ ea)(CT .Iα.Ψ (t)+ CT eαI + XT
0 I
α
t e
α
D + dTΨ )+ (BTΨ (t)+ eb)(UTΨ (t)), (44)
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where Q , R, A, B achieved in (28)–(31) by the least squares approximation, and eq, er , ea, eb are remainders of
approximations. In Section 4, by considering (23) and (27) we achieved (32) and (33). Then we calculated the operational
matrices of multiplication Ṽ and W̃ for ATΨΨ T and BTΨΨ T in (34) and (35). We show the error of the operational matrices
of multiplication as:

ATΨΨ T
= Ψ T Ṽ T

+ ev,
BTΨΨ T

= Ψ T W̃ T
+ ew,

where

evT =


ev1
ev2
...

evm+1

 , ewT
=


ew1
ew2
...

ewm+1

 ,
vi(t) = ṽi1p0 + · · · + ṽi(m+1)pm + evi ,
wi(t) = w̃i1p0 + · · · + w̃i(m+1)pm + ewi .

Finally, after using the operational matrices of multiplication we achieved the approximated form of problem (1) onMm

J ≃ J[C,U] =
1
2

∫ 1

0
[(Q TΨ (t))((CT Iα + dT )Ψ (t)Ψ (t)T (CT Iα + dT )T )+ (RTΨ (t))(UTΨ (t)Ψ T (t)U)]dt. (45)

(CT
− (CT Iα + dT )Ṽ − UT W̃ )Ψ (t) = 0. (46)

In (39) using the Lagrangemultiplier methodwe achieved theminimum of the functional J of problem (45)–(46) onMm, call
it µ̂m. Theorem2 ensures that asm → ∞, then eαI , e

α
D, er , eq, ea, eb, ev, ew tend to zero. Sowe can observe that asm increases

Eq. (46) gets close to Eq. (33) and Eq. (33) also gets close to Eq. (44) continuously. Also the same is true for functional J . As
m increases the functional J in (45) gets close to functional J in (43). So we can deduce that for large enough values ofm, µ̂m
and µm will be close to each other. On the other hand, from Theorem 3 we had

lim
m→∞

µm = µ,

so we can conclude that

lim
m→∞

µ̂m = µ.

6. Illustrative test problems

In this section we apply the method presented in Section 4 to solve the following two test examples.

6.1. Example 1

Consider the following time invariant problem

J =
1
2

∫ 1

0
[x2(t)+ u2(t)]dt,

subject to the system dynamics
C
0D

α
t x(t) = −x(t)+ u(t),

with initial condition:

x(0) = 1.

Our aim is to find u(t)which minimizes the performance index J . For this problem we have the exact solution in the case of
α = 1 as follows

x(t) = cosh(
√
2t)+ β sinh(

√
2t),

u(t) = (1 +
√
2β) cosh(

√
2t)+ (

√
2 + β) sinh(

√
2t),

where

β = −
cosh(

√
2)+

√
2 sinh(

√
2)

√
2 cosh(

√
2)+ sinh(

√
2)

≃ −0.98.
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Fig. 1. Approximate solutions for x(t)with α = 0.8 andm = 3, 4, 5.

As (23) and (24) we approximate C
0D

α
t x(t) and u(t). By means of (19) we calculate the operational matrices of fractional

integration. These matrices for whenm = 3 and α = 0.8, 0.9, 0.99, 1 are given in the following

I0.8 =

 0.5965 0.2952 −0.0200 0.0059
−0.2952 0.0942 0.1650 −0.0156
−0.0200 −0.1650 0.0595 0.1186
−0.0059 −0.0156 −0.1186 0.0449

 ,

I0.9 =

 0.5472 0.2941 −0.0097 0.0026
0.2941 0.04210 0.1477 −0.0071

−0.0097 −0.1477 0.0250 0.1013
−0.0026 −0.0071 −0.1013 0.0181

 ,

I0.99 =

 0.5046 0.2894 −0.0009 0.0002
−0.2894 0.0038 0.1310 −0.0006
−0.0009 −0.1310 0.0021 0.0861
−0.0002 −0.0006 −0.0861 0.0015

 ,

I1 =



1
2

1

2
√
3

0 0

−
1

2
√
3

0
1

2
√
15

0

0 −
1

2
√
15

0
1

2
√
35

0 0 −
1

2
√
35

0


.

So by (27) we approximate x(t)while dT = [1, 0, 0, 0]. Also, according to (28)–(31) we have

AT
= [−1, 0, 0, 0], BT

= Q T
= RT

= [1, 0, 0, 0].

According to (34) and (35) we also achieve, Ṽ = −I4×4 and W̃ = I4×4, where I4×4 is the identity matrix. Finally by solving
(39) we achieve vectors C and U for α = 0.8, 0.9, 0.99, 1. We show them by Cα and Uα as

CT
0.8 = [−0.6889, 0.2666,−0.0586, 0.0208],

UT
0.8 = [−0.1773, 0.0978,−0.0068, 0.0066],

CT
0.9 = [−0.7025, 0.2898,−0.0560, 0.0135],

UT
0.9 = [−0.1717, 0.1035,−0.0091, 0.0042],

CT
0.99 = [−0.7164, 0.3062,−0.0517, 0.0073],

UT
0.99 = [−0.1667, 0.1075,−0.0115, 0.0025],

CT
1 = [−0.7180, 0.3085,−0.0511, 0.0066],

UT
1 = [−0.1661, 0.1078,−0.0118, 0.0023].

After substituting Cα and Uα in (24), (27) we achieve u(t) and x(t) for different values of α, respectively.
In Table 1, the absolute error of x(t) for when α = 1 is demonstrated. In Figs. 1 and 2, the state variable x(t) and the

control variable u(t) are plotted for α = 0.8 and different values of m. It is obvious that with increase in the number of
the Legendre basis, the approximate values of x(t) and u(t) converge to the exact solutions. Figs. 3 and 4 demonstrate the
approximation of x(t) and u(t) for different values of α together with the exact solution for α = 1.
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Fig. 2. Approximate solutions for u(t)with α = 0.8 and m = 3, 4, 5.

Fig. 3. Approximate solutions of x(t) for m = 3 and α = 0.8, 0.9, 0.99, 1 and exact solution for α = 1.

Fig. 4. Approximate solutions of u(t) form = 3 and α = 0.8, 0.9, 0.99, 1 and exact solution for α = 1.

Table 1
Absolute error of x(t) in Example 1 when α = 1.

t M = 3 M = 4 M = 5

0 −0.00123 −0.0000899 −0.00000625
0.1 0.000341 0.0000477 0.0000134
0.2 0.000508 0.0000325 0.0000212
0.3 0.000112 0.00000774 0.0000324
0.4 −0.000287 0.0000213 0.0000473
0.5 −0.000397 0.0000643 0.0000620
0.6 −0.000150 0.000103 0.0000749
0.7 0.000293 0.000112 0.0000888
0.8 0.000629 0.0000914 0.000107
0.9 0.000371 0.0000941 0.000131

6.2. Example 2

This example considers a time varying fractional optimal control problem. Find the control u(t) which minimizes the
performance index J given in Example 1 subject to the following dynamical system

C
0D

α
t x(t) = tx(t)+ u(t),

x(0) = 1.
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Fig. 5. Approximate solutions for x(t)with α = 0.8 andm = 3, 4, 5.

Fig. 6. Approximate solutions for u(t)with α = 0.8 and m = 3, 4, 5.

Fig. 7. Approximate solutions of x(t) form = 5 and α = 0.8, 0.9, 0.99, 1 and exact solution for α = 1.

Fig. 8. Approximate solutions of u(t) for m = 5 and α = 0.8, 0.9, 0.99, 1 and exact solution for α = 1.

In Figs. 5 and 6, the state variable x(t) and the control variable u(t) are plotted for α = 0.8 and different values of m. It is
obvious that with increase in the number of the Legendre basis, the approximate values of x(t) and u(t) converge to the
exact solution. Figs. 7 and 8 demonstrate the approximation of x(t) and u(t) for different values of α together with the exact
solution for α = 1.

Test problems 1 and 2 have been solved in [10] by a different way. Our results, shown in Figs. 1–8 are in good agreement
with the results demonstrated in [10]. But we achieved satisfactory numerical results with at last 5 numbers of the Legendre
basiswhile in [10], number of approximations starts in 10 and increases up to 320. So it isworth to point out thatwe achieved
our numerical results with very small order of approximations.
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7. Conclusion

In the present work we developed an efficient and accurate method for solving a class of fractional optimal control
problems. By utilizing the Legendre basis and the operational matrices of fractional integration and multiplication and the
Lagrange multiplier method for constrained optimization we reduced the main problem to the problem of solving a system
of algebraic equations. Illustrative examples presented to demonstrate the validity and applicability of the new method.
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