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SUMMARY

p53 is well known for its tumor suppressor role, but
this protein also has a poorly understood role in
the regulation of metabolism. Human studies have
implicated a common polymorphism at codon 72 of
p53 in diabetic and pre-diabetic phenotypes. To un-
derstand this role, we utilized a humanized mouse
model of the p53 codon 72 variants and monitored
these mice following challenge with a high-fat diet
(HFD). Mice with the arginine 72 (R72) variant of
p53 developed more-severe obesity and glucose
intolerance on aHFD, compared tomicewith the pro-
line 72 variant (P72). R72 mice developed insulin
resistance, islet hypertrophy, increased infiltration
of immune cells, and fatty liver disease. Gene expres-
sion analyses and studies with small-molecule inhib-
itors indicate that the p53 target genes Tnf and
Npc1l1 underlie this phenotype. These results shed
light on the role of p53 in obesity, metabolism, and
inflammation.
INTRODUCTION

The p53 tumor suppressor protein has a well-established role in

the suppression of cancer (Levine and Oren, 2009). This protein

confers its tumor-suppressive activities predominantly by acting

as a transcription factor, transactivating over 200 different target

genes. p53 has also been found to be a critical factor governing

innate and adaptive immune responses, reproduction, develop-

ment, neural degeneration, and aging (Chang et al., 2012; Dani-

lova et al., 2008; Levine et al., 2011; Menendez et al., 2013;

Poyurovsky and Prives, 2010). More recently, the relationship

between p53 and metabolism has become the focus of new

studies, particularly with the revelation that the role of p53 in

metabolism may be essential to its tumor suppressor function

(Li et al., 2012; Long et al., 2013; Maddocks et al., 2013; Vousden

and Ryan, 2009). Additionally, considerable evidence points to a

crucial role for p53 in metabolic diseases such as cardiovascular
Cell
disease, obesity, and type 2 diabetes (Minamino et al., 2009; Or-

tega et al., 2014; Sano et al., 2007; Tavana et al., 2010).

Genetic polymorphisms arise over time and are largely

responsible for population diversity. Though largely considered

innocuous, some SNPs can have significant biological conse-

quences (Chen and Shen, 2015; De Iuliis et al., 2015). The

most-common p53 SNP occurs at amino acid codon 72, where

the nucleotide sequence CCC or CGC encodes proline (P72) or

arginine (R72) at this residue, respectively (rs1042522; P72R).

Interestingly, the frequency of the R72 variant is associated

with increasing latitude and colder winter temperatures (Beck-

man et al., 1994; Shi et al., 2009). A number of studies indicate

that the codon 72 polymorphism of p53 alters its function. In

response to DNA damage, the P72 variant promotes enhanced

cell-cycle arrest (Pim and Banks, 2004; Thomas et al., 1999),

whereas the R72 variant is a superior inducer of apoptosis (Az-

zam et al., 2013; Bergamaschi et al., 2006; Dumont et al.,

2003; Kung et al., 2015). These studies prompted a number of ef-

forts to correlate the codon 72 polymorphism with cancer risk,

but the contribution of this polymorphism to cancer risk is only

weakly supported (Whibley et al., 2009), and genome-wide asso-

ciation studies (GWASs) on the codon 72 SNP of p53 have failed

to reveal significant associations of this SNP with cancer risk

(http://www.gwascentral.org).

In contrast to the lack of cancer associations, GWAS analyses

have uncovered significant associations between the R72

variant and increased BMI (Speliotes et al., 2010). In addition,

large-scale candidate gene analyses have pointed to a role for

this SNP in susceptibility to type 2 diabetes (Gaulton et al.,

2008). Importantly, this association was replicated in an inde-

pendent analysis (Burgdorf et al., 2011). These studies, com-

bined with the finding that p53 plays a role in insulin resistance

in mice (Minamino et al., 2009), prompted us to use a mouse

model for the codon 72 polymorphic variants to shed light on

the mechanism whereby these variants influence obesity, meta-

bolism, and diabetic phenotypes. The mouse model uses a ‘‘hu-

manized p53 knockin’’ (Hupki) of each variant that recapitulates

human phenotypes (Frank et al., 2011; Luo et al., 2001). To study

the association between the codon 72 polymorphism of p53 and

diabetes, we studied the response of these mice to a high-fat

diet (HFD).
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RESULTS

R72 Hupki Mice Develop Excess Adiposity on a HFD
We analyzed isogenic P72 and R72 Hupki mice backcrossed to

C57Bl/6J for over ten generations. Young male P72 and R72

mice between 4 and 6 weeks of age were fed a normal chow

diet (CD) for 10 weeks, followed by a HFD for 8 weeks (see sche-

matic; Figure 1A). Compared to P72 mice, R72 mice showed

mildly increased weight gain on the CD (p = 0.05). Notably, how-

ever, R72 mice showed markedly increased weight gain on the

HFD, compared to P72 (p = 0.002 at week 18; Figures 1B and

1C). The increased weight gain in HFD R72 mice was accompa-

nied by an increased accumulation of fat in both subcutaneous

and visceral areas (Figure 1D, red arrows). Body composition

analysis with proton magnetic resonance spectroscopy (1H-

MRS) revealed that the body fat content was >20% greater in

HFD R72 compared to P72 mice (Figures 1E and 1F). There

was a modest increase in food consumption by R72 mice during

the HFD period (Figures 1G and 1H), but analyses in metabolic

cages revealed no differences in oxygen consumption, C02
release, food intake, physical activity, or other parameters in

P72 and R72 mice that might have explained the increased

weight gain (Figures S1A–S1G).

R72 Hupki Mice Develop More-Severe Glucose
Intolerance and Insulin Resistance on a HFD
To determine whether the codon 72 polymorphism of p53 con-

tributes to the development of phenotypes associated with

type 2 diabetes, we performed glucose tolerance tests (GTTs)

during the CD and HFD periods. After the CD, no differences in

glucose tolerance were observed between P72 and R72 mice

(Figures 2A and 2B). In contrast, after the HFD R72 mice showed

significantly more-impaired glucose tolerance compared to P72

mice (Figures 2C, 2D, and S2A–S2D). Serum insulin levels were

higher following fasting and glucose challenge in R72 compared

to P72 mice (Figure 2E). This result suggested that R72-associ-

ated glucose intolerance is unlikely to be due to reduced insulin

production. Upon examining the pancreas, we did not see

significant differences in islet numbers, ratio of islet-associated

endocrine cell populations, or proliferative potential of islet cells

between P72 and R72 mice after HFD (Figures S2E–S2H). Inter-

estingly, histopathological analysis of these pancreases re-

vealed significantly larger islets in R72 mice (Figures 2F and

2G). R72 islets also showed increased levels of fibrosis, as as-

sessed by Sirius Red staining; qRT-PCR analyses of genes asso-

ciated with fibrosis confirmed this result (Figures 2H–2J). More-

over, R72 islets also showed increased senescence-associated

b-galactosidase (SA-b-gal) (Figure S2I). The combined data sug-

gest that, although R72 mice do not show evidence for impaired

production of insulin after HFD, they do show signs of pancreatic

dysfunction that are often seen in pre-diabetes. These results

suggest that impaired glucose tolerance in R72 mice may be

due to insulin resistance. To address this issue, a hyperinsuline-

mic-euglycemic clamp was performed to assess insulin sensi-

tivity in R72 and P72mice. The basal (fasting) blood glucose con-

centration and hepatic glucose production (HGP) were similar in

R72 and P72mice (Figures 2K and 2L). The glucose-infusion rate

(GIR) needed to maintain euglycemia during the clamp was
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significantly lower in R72 than P72 mice, indicating insulin resis-

tance (Figure 2M). There were non-significant reductions of the

glucose disposal rate and HGP suppression during the insulin

clamp in R72 compared to P72 mice, and the insulin-stimulated

uptake of deoxyglucose trended lower in adipose and muscle

tissues of R72 mice (Figures S2J–S2N), suggesting hepatic

and peripheral insulin resistance in R72 mice following a HFD.

R72 Mice Develop Adipose Inflammation and NAFLD
after HFD
The inflammatory responseplaysa critical role in the development

of obesity and insulin resistance (Stienstra et al., 2011). p53 regu-

lates insulin resistance in part through its ability to mediate an in-

flammatory response in adipose tissue (Minamino et al., 2009).

Analysis of adipose tissue inP72andR72mice followingaHFDre-

vealed a markedly increased number of Adgre1 (F4/80)-positive

monocytes/macrophages in the adipose tissue of R72 mice (Fig-

ures 3A, 3B, S3A, and S3B). R72mice on a HFDdevelopedmark-

edly enlarged livers and signs of steatosis (Figures 3C–3E) and

fibrosis (Figures 3F–3H). There was no increase in F4/80-positive

cells in the R72 liver, but there was a dramatic increase in infil-

trating cells staining positively for the phosphorylated form of the

p65 subunit of NF-kB, indicative of increased inflammatory cells

(FiguresS3C–S3F). Elevated inflammation isa featureofnon-alco-

holic steatohepatitis (NASH) (Firneisz, 2014). NASHand non-alco-

holic fatty liver disease (NAFLD) are closely associatedwith insulin

resistance (Gruben et al., 2014). Moreover, p53 has been impli-

cated in the progression from steatosis to NASH (Tomita et al.,

2012). To demonstrate a connection between hepatic steatosis

and insulin resistance in R72 mice, we examined the insulin-

signaling pathway in the livers of the mice used for the hyperinsu-

linemic-euglycemic clamp experiments. The levels of p53 were

similar in R72 and P72 livers following a HFD, but the phosphory-

lation of Akt1, a marker for insulin-signaling activity, was signifi-

cantly decreased in the livers of R72 mice (Figures 3I and 3J).

This demonstrates that hepatic insulin resistance is associated

with steatosis and fibrosis in HFD R72 mice.

Altered Expression of p53-Regulated Genes in HFD R72
Liver
To explore the potential mechanisms underlying HFD-induced

alterations in the liver, we performed qRT-PCR to evaluate

the expression changes in the livers of HFD-fed mice of genes

reported to be regulated by p53, particularly those with roles

in the metabolism pathway (Goldstein and Rotter, 2012; Liang

et al., 2013). Our initial analysis of known p53 target genes

associated with cell-cycle arrest and apoptosis, including

Cdkn1a(p21),Mdm2, Pmaip1 (Noxa), andDram1 revealed no dif-

ferences were observed in the expression of Mdm2 and Dram1

between P72 and R72 HFD livers. In contrast, the expression

of Cdkn1a(p21) was increased 5-fold, and Pmaip1 (Noxa) was

increased 2-fold in the livers of R72 mice, compared to P72 (Fig-

ure 4A). It is of note that both CDKN1A(p21) and PMAIP1 (Noxa)

are biomarkers of NAFLD and NASH (Aravinthan et al., 2013;

Bechmann et al., 2010).

These findings prompted us to analyze a larger set of

p53-regulated genes in P72 and R72 livers following a HFD. In

particular, we analyzed the expression of p53-regulated genes
s



Figure 1. Higher Body Weight and Fat Content in R72 Hupki Mice on HFD

(A) P72 andR72malemice of age 4–6weeks (n = 20 each genotype) were fed a normal diet (chow diet [CD]) for 10weeks and then switched to a high-fat diet (HFD)

for 8 weeks. Mouse weight and food consumption were monitored weekly, and GTT was performed after both CD and HFD regimens.

(B) Progression of mouse weight throughout CD and HFD regimens; n = 20 each genotype. Error bars mark SE. The statistical trends of weight gain between P72

and R72 mice after CD and HFD were calculated using mixed effect models for longitudinal data analysis.

(C) Representative photos of P72 and R72 mice at the beginning of the experiment, post-CD, and post-HFD (left to right).

(D) Representative photos of P72 and R72 mice showing increased accumulation of subcutaneous and visceral fat in R72 mice. Arrows mark fat accumulation.

(E) Body fat mass measured by proton magnetic resonance spectroscopy (1H-MRS) after HFD; n = 8 each genotype. Error bars mark SE. The double asterisk

denotes p < 0.005.

(F) Body fat and lean mass measured by 1H-MRS in HFD mice and normalized to whole body weight. The asterisk denotes p < 0.05.

(G) The average number of calories consumed by each mouse per week; n = 20 mice each genotype. Error bars mark SE. The dashed line marks the switch from

CD to HFD after week 10.

(H) The accumulated number of calories consumed by each mouse throughout the study; n = 20 mice each genotype. Error bars mark SE. The dashed line marks

the switch from CD to HFD after week 10.

See also Figure S1.
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Figure 2. HFD Causes More-Severe Insulin Resistance in R72 Mice

(A) Glucose tolerance test (GTT) after CD. Mice were fasted for 16 hr and intraperitoneally injected with glucose solution (2 mg/g body weight). Blood glucose

concentration was measured before the injection and at 15, 30, 60, 90, and 120 min post-injection; n = 20. Error bars are SEs.

(B) Quantification of AUC (area under curve) for GTT results after CD. Error bars mark SE.

(C) GTT after HFD; n = 20. Error bars mark SE.

(D) Quantification of AUC for GTT after HFD. Error bars mark SE.

(E) Serum insulin concentrations in mice before (fasting) and 15 min after intraperitoneal glucose injection (2 mg/g body weight); n = 10. Error bars are SEs. The

asterisk denotes p < 0.05.

(F) H&E staining of the pancreas in HFD mice. Dashed lines mark pancreatic islets of Langerhans. The scale bar represents 50 mm.

(G) Average size of pancreatic islets in Hupki mice; n = 5. Error bars mark SE.

(H) Sirius Red staining to detect fibrosis in the pancreas after HFD. The scale bar represents 100 mm.

(I) Quantification of Sirius Red staining in pancreas between P72 and R72 mice after HFD; n = 5. Error bars mark SE. The asterisk denotes p < 0.05.

(J) qRT-PCR to detect mRNA levels of marker genes associated with fibrosis in pancreas after HFD; n = 4. Error bars mark SE. The single and double asterisks

denote p < 0.05 and <0.005, respectively.

(K–M) Basal (6 hr fasting) blood glucose levels (K), hepatic glucose production (HGP) (L), and glucose infusion rate (M) during hyperinsulinemic-euglycemic clamp

analysis in HFD mice; n = 8.

See also Figure S2.
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Figure 3. R72 Mice Develop More-Severe NAFLD after HFD

(A) Increased infiltration of immune cells in adipose tissues (arrows) in R72mice, as shown by H&E staining post-HFD. The scale bar represents 100 mm in 103 and

50 mm in 403 images.

(B) Relative numbers of infiltrating immunecells inwhite adipose tissues betweenP72 andR72mice; n = 5. Error barsmarkSE. The triple asterisksdenote p< 0.0005.

(C) Representative photos of livers post-HFD. The scale bar represents 1 cm.

(D) Average weight of left lateral lobe of livers between P72 and R72 mice after HFD; n = 8. Error bars mark SE. The asterisk denotes p < 0.05.

(E) H&E staining of livers post-HFD. Arrowheadsmark formation of lipid droplets. Asterisksmark infiltrating immune cells. The scale bar represents 100 mm in 103

and 50 mm in 403 images.

(F) Sirius Red staining to detect fibrosis in liver after HFD. The scale bar represents 100 mm.

(G) Quantification of Sirius Red staining in liver between P72 and R72 mice after HFD; n = 5. Error bars mark SE. The asterisk denotes p < 0.05.

(H) qRT-PCR to detect mRNA levels of marker genes associated with fibrosis in liver after HFD; n = 4. Error bars mark SE. The single and double asterisks denote

p < 0.05 and <0.005, respectively.

(I) Whole-cell lysates were extracted from livers of Hupki mice after hyperinsulinemic-euglycemic clamp analysis. Lysates were subjected to western blot analysis

to detect p53, total Akt, and phosphorylated Akt at serine 473. Gapdh was used as the loading control.

(J) Quantification of signal intensities in (I) obtained using ImageJ software. The level of p53 was normalized to Gapdh, and the level of phosphorylated Akt (p-Akt)

was normalized to the level of total Akt. Protein levels in P72 samples were set as 1-fold. Error bars mark SE. The asterisk denotes p < 0.05.

See also Figure S3.
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Figure 4. The Codon 72 Polymorphism of

p53 Differentially Regulates DNA Binding

and Expression of p53-Regulated Genes

Associated with Lipid Metabolism and

Inflammation

(A) qRT-PCR to detect mRNA levels of p53 target

genesassociatedwithcell-cyclearrest (Cdkn1a(p21)

and Mdm2), senescence (Cdkn1a(p21)), and

apoptosis (Pmaip1(Noxa) and Dram1) in livers of

HFD-fed mice; n = 4. Error bars mark SE. The single

and double asterisks denote p < 0.05 and <0.005,

respectively.

(B) qRT-PCR to detect mRNA levels of p53-regu-

lated genes associated with glucose homeostasis

in livers of HFD-fed mice; n = 4. Error bars mark

SE. The single and double asterisks denote p <

0.05 and <0.005, respectively.

(C) qRT-PCR to detect mRNA levels of p53-regu-

lated genes associated with lipid metabolism in

livers of HFD-fed mice; n = 4. Error bars mark SE.

The single and double asterisks denote p < 0.05

and <0.005, respectively.

(D) qRT-PCR to detect mRNA levels of p53-regu-

lated genes associated with inflammation in livers

of HFD-fed mice; n = 4. Error bars mark SE. The

single and double asterisks denote p < 0.05 and

<0.005, respectively.

(E) Diagram of the Pck1 gene, along with three po-

tential p53 responsive elements (REs). The start site

of transcription (TSS) isdenoted+1,andthe locations

of potential p53 REs are shown relative to TSS. Ex,

exon; N, spacers between consensus p53 half-sites.

(F) Chromatin immunoprecipitation of p53 in livers

harvested from HFD-fed mice. Immunoprecipi-

tated DNA was eluted and analyzed by qPCR

using primers flanking potential Pck1 p53 REs.

Experiments were performed in triplicate from four

biological replicates. Error bars mark SE. The

asterisk denotes p < 0.05.

(G) Diagram of the Npc1l1 gene, along with three

potential p53 REs. The TSS is denoted +1, and the

locations of potential p53 REs are shown relative

to TSS.

(H) Chromatin immunoprecipitation of p53 in livers

harvested from HFD-fed mice. Immunoprecipi-

tated DNA was eluted and analyzed by qPCR us-

ing primers flanking potential Npc1l1 p53 REs.

Experiments were performed in triplicate from four

biological replicates. Error bars mark SE. The

asterisk denotes p < 0.05.

(I) Diagram of the Ccl2 gene, along with three potential p53 REs. The TSS is denoted +1, and the locations of potential p53 REs are shown relative to TSS.

(J) Chromatin immunoprecipitation of p53 in livers harvested from HFD-fed mice. Immunoprecipitated DNA was eluted and analyzed by qPCR using primers

flanking potential Ccl2 p53 REs. Experiments were performed in triplicate from four biological replicates. Error bars mark SE. The asterisk denotes p < 0.05.

(K) Diagram of the Tnf gene, along with three potential p53 REs. The TSS is denoted +1, and the locations of potential p53 REs are shown relative to TSS.

(L) Chromatin immunoprecipitation of p53 in livers harvested from HFD-fed mice. Immunoprecipitated DNA was eluted and analyzed by qPCR using primers

flanking potential Tnf p53 REs. Experiments were performed in triplicate from four biological replicates. Error bars mark SE. The asterisk denotes p < 0.05.

See also Figure S4.
associated with glycolysis (Pgm2, Igfbp3, Prkab2, Sesn1, Sesn2,

and Pten), gluconeogenesis (G6pc, Pck2, Aqp3, and Aqp9), lipid

metabolism (Ppargc1a, Ppargc1b, Gamt, Pck1, Apom, Lpin1,

and Npc1l1), and inflammation (Ccl2, Ccl4, Adgre1(F4/80), Tnf,

Cd68, Cxcl10, Adipoq, and Pde3b). Among the glycolysis- and

gluconeogenesis-associated genes that we tested, there were

no marked changes in gene expression, although three genes
2418 Cell Reports 14, 2413–2425, March 15, 2016 ª2016 The Author
(Pgm2, Igfbp3, and Prkab2) showedmodestly increased expres-

sion and three genes (Sesn1, Pten, and Aqp9) showed modestly

reduced expression in R72 livers compared to P72 (Figure 4B).

With regard to lipid-metabolism-associated genes, the R72

livers showed reduced expression of p53-regulated genes that

positively regulate fatty acid oxidation (Ppargc1b, Gamt, and

Lpin1) and lipid transport/elimination (Pck1 and Apom). Notably,
s



Npc1l1, the main protein responsible for absorption of dietary

cholesterol, was expressed 7-fold greater in R72 livers (Fig-

ure 4C). Additionally, there was a clear trend for an increased in-

flammatory signature in R72 livers. Several pro-inflammatory

genes were significantly increased in R72 livers, whereas two

anti-inflammatory genes (Adipoq andPde3b) showed decreased

expression (Figure 4D). Of these p53-regulated genes, four have

been implicated in NAFLD and insulin resistance: PCK1, which is

repressed by p53, and TNF, CCL2, and NPC1L1, which are

induced by p53 (Hacke et al., 2010; Haukeland et al., 2006; Min-

amino et al., 2009; Nomura et al., 2009; She et al., 2000; Zhang

et al., 2014). We confirmed the differences in protein level of

Pck1, Ccl2, and Tnf by immunohistochemistry and western blot-

ting (Figures S4A–S4J). We next performed chromatin immuno-

precipitation to determine whether the R72 variant shows

increased binding to the p53-response elements in these four

genes. Notably, chromatin immunoprecipitation in the livers of

HFD mice revealed increased binding of the R72 variant to at

least one canonical p53-binding site in the promoters of all four

genes, thus revealing increased DNA binding as the mechanism

(Figures 4E–4L).

TheMetabolic Phenotype in R72Mice Is Exacerbated by
a HFD
The possibility existed that R72 mice were prone to hepatic fat

accumulation, steatosis, and fibrosis on a normal CD, as a result

of aging or some other factor. Thus, we examined P72 and R72

male mice on a CD for 18 weeks (long CD or ‘‘LCD’’). Similar to

what we observed after 10 weeks of CD, R72 mice showed a

mild increase in the body mass after LCD, along with a modest

increase in body and liver fat accumulation (Figures 5A–5C and

5F–5I). Importantly, however, the GTT assay revealed no differ-

ence in glucose tolerance between P72 and R72 mice after

LCD (Figures 5D and 5E). Additionally, there was no increase

in Adgre1 (F4/80)-positive cells in the R72 adipose tissue

compared to P72 (Figures S5A–S5C) and no evidence of

increased inflammatory cells in R72 livers after LCD (Figures

S5D–S5G). The gene expression profiles of p53-regulated genes

revealed only two genes with modest increase in expression in

R72 liver: Ppargc1a and Cdkn1a(p21) (Figures 5J–5L). These

data indicate that the propensity for fat accumulation may be

inherent to R72mice but that the development of hepatic steato-

sis, fibrosis, and insulin resistance is greatly exacerbated by

a HFD.

Tnf and Npc1l1 Are ‘‘Early Responder’’ p53-Regulated
Genes Induced following a HFD in R72 Livers
The physiological phenotypes associated with type 2 diabetes,

such as obesity and inflammation, are known to form a positive

feedback loop to exacerbate the disease (Ota, 2013). To gain a

clearer picture of the sequence of events mediated by p53

following exposure to a HFD, we used a short-term (7-day) treat-

ment with a HFD (short HFD or ‘‘SHFD’’) on 4-week-old male

mice of both genotypes. Notably, after SHFD, R72 displayed

significantly higher weight increase (Figures 6A–6C). We next

analyzed in the livers of these mice the level of p53 and the

expression of p53-regulated genes previously found to be differ-

entially expressed between P72 and R72 after a long-term HFD.
Cell
The steady-state level of p53 protein was similar between P72

and R72 before and after SHFD (Figures S6A and S6B), and

we found no significant differences in the expression of any

p53-regulated genes between P72 and R72, prior to exposure

to SHFD (Figures S6C–S6E). After SHFD, three genes showed

notable differences between P72 and R72 livers: these were

Npc1l1 (3-fold difference), Cdkn1a(p21) (2-fold difference), and

Tnf (2-fold difference; Figures 6D–6F). Due to the differences in

Cdkn1a(p21) on LCD shown previously, we chose to focus on

Npc1l1 and Tnf (Figure 5K). Immunohistochemical analysis of

the livers of P72 and R72 mice showed no differences in control

mice butmarkedly increased Tnf staining in R72mice after SHFD

(Figures 6G and 6I). This increase was accompanied by a

marked accumulation of Tnf-positive cells in R72 adipose tissues

(Figure S6F), a mild increase of hepatocyte vacuolization (Fig-

ure S6G), and increased fat accumulation in R72 livers, as as-

sessed by Oil Red O staining (Figures 6H and 6J). These findings

all preceded the signs of increased inflammation, aswe detected

no differences in the levels of inflammatory cells and macro-

phages present in the livers of P72 and R72 mice (Figures S6H

and S6I). These results indicate that R72 mice appear to be

more vulnerable to HFD-induced fat accumulation in the liver,

even with limited exposure to a HFD. Further, these data suggest

that genes such as Tnf and Npc1l1 are ‘‘early responders’’ to a

HFD in R72 livers and that these genes are likely involved with

the initiation and subsequent development of NAFLD in R72

mice.

Increased Tnf and Npc1l1 Underlie the R72 Response to
a HFD
Because small-molecule inhibitors of Tnf and Npc1l1 were

readily available, we sought to test whether these inhibitors

could alleviate the effects of a short-term HFD (SHFD) in R72

mice. Toward this end, we treated both SHFD-fed P72 and

R72 mice with daily treatment of C87, a Tnf inhibitor, or ezeti-

mibe, an Npc1l1 inhibitor (Figure 7A). Both inhibitors led to signif-

icantly decreased percent weight gain and Oil Red staining (fat

accumulation) in R72 mice compared to P72 mice, resulting in

complete elimination of the increased fat accumulation (Figures

7B–7D) and weight gain (Figure S7) seen in R72 mice fed with a

SHFD. These data firmly implicate these two p53-regulated

genes in the differential response of R72 mice to a HFD.

DISCUSSION

In human studies, two groups found that the R72 variant of p53 is

associated with increased risk for type 2 diabetes (Burgdorf

et al., 2011; Gaulton et al., 2008). However, the underlying

basis for this association was unknown. In this work, we took

advantage of a mouse model of the codon 72 polymorphism of

p53 to address this issue and found that mice possessing the

R72 variant of p53 are more obesity prone and that this is asso-

ciated with pathological changes in multiple tissues (Figure 7E).

One of the strongest risk factors for type 2 diabetes is obesity

(Wang et al., 2005). R72 Hupki mice gained weight more readily

on either CD or HFD compared to P72 mice (Figure 1B). More-

over, the increased obesity phenotype in HFD R72 mice coin-

cided with increased glucose intolerance and insulin resistance
Reports 14, 2413–2425, March 15, 2016 ª2016 The Authors 2419



Figure 5. Increased Metabolic Dysfunction

and Transcriptional Regulation in R72 Mice

Are Dependent on a HFD

(A) P72 and R72 male mice of age 4–6 weeks (n =

5) were fed by CD for 18 weeks (long chow diet or

‘‘LCD’’).

(B) Representative images of P72 and R72 mice

after LCD.

(C) Weight comparison between P72 and R72

mice at 4 weeks old or after different diet regi-

mens.

(D) GTT after LCD; n = 20. Error bars mark SE.

(E) Quantification of AUC for GTT after LCD; n = 5.

Error bars mark SE.

(F) Representative images of P72 and R72

mice showing slightly increased accumulation of

visceral fat in R72 mice after LCD. The arrow

marks fat accumulation.

(G) Representative images of livers after LCD. The

scale bar represents 1 cm.

(H) Average weight of left lateral lobe of livers be-

tween P72 and R72 mice after LCD; n = 5. Error

bars mark SE.

(I) H&E staining of livers after LCD. Arrowheads

mark visible liver vacuolation. The scale bar rep-

resents 100 mm in 103 and 50 mm in 403 images.

(J–L) Total RNA were extracted from livers after

LCD and subjected to qRT-PCR to detect mRNA

levels of p53-regulated genes associated with (J)

lipid metabolism, (K) cell-cycle arrest/senes-

cence/apoptosis, and (L) inflammation; n = 3. Error

bars mark SE. The asterisk denotes p < 0.05.

See also Figure S5.
(Figure 2). These data suggest that the R72 variant may pre-

dispose individuals to obesity, which subsequently leads to

increased susceptibility to type 2 diabetes. In support of this hy-

pothesis, a recent cohort study of over 2,500 Dutch and Finnish

subjects found a significant association between R72 and

increased waist circumference (Reiling et al., 2012). Similarly, a

separate study showed that the association between BMI and

diabetes is much stronger in homozygous R72 individuals
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(Gloria-Bottini et al., 2011). A recent study

demonstrated that p53 protected against

diet-induced obesity by inducing brown

fat differentiation (Molchadsky et al.,

2013). Therefore, one possibility based

upon our combined findings and informa-

tion in the literature is that instead of ‘‘pro-

moting’’ obesity, the R72 variant may

have impaired ability to suppress HFD-

induced obesity. Our findings contradict

a previous study using an exon 4 knockin

mouse model for the codon 72 variants of

p53. This study found no significant

metabolic differences or pre-diabetic

phenotypes in P72 and R72 mice (Reiling

et al., 2014). However, the latter study did

not use a HFD, only normal chow, and our

data indicate that the phenotypes of P72
and R72 mice are very similar on normal chow. Instead, we

find that a HFD effectively reveals the differences in metabolic

phenotypes between P72 and R72 mice.

Evolutionarily, P72 first appears in the p53 gene of new world

monkeys. Sequencing efforts have failed to detect the presence

of R72 in other primates, suggesting that the emergence of mod-

ern human species coincided with the initial emergence of R72

(Puente et al., 2006). Whether this allele was subject to natural



Figure 6. A Short-Term HFD in P72 and R72 Mice Reveals a Subset of ‘‘Early Responder’’ p53-Regulated Genes

(A) P72 and R72 male mice of age 4–6 weeks (n = 5) were fed by HFD for 1 week (short HFD or ‘‘SHFD’’).

(B) Average weight of Hupki mice before and after SHFD; n = 5.

(C) Average percent of weight increase of Hupki mice before and after SHFD; n = 5 mice each genotype. The asterisk denotes p < 0.05.

(D) mRNA levels of p53 target genes Cdkn1a(p21) and Pmaip1(Noxa) after SHFD; n = 4. Error bars mark SE. The asterisk denotes p < 0.05.

(E) mRNA levels of p53-regulated genes associated with lipid metabolism after SHFD; n = 4. Error bars mark SE. The asterisk denotes p < 0.05.

(F) mRNA levels of p53-regulated genes associated with inflammation after SHFD; n = 4. Error bars mark SE. The asterisk denotes p < 0.05.

(G) IHC staining of Tnf in Hupki mouse liver after SHFD. The scale bar represents 50 mm.

(H) Oil Red O staining of livers after SHFD. Red precipitation signals mark fat accumulation. The scale bar represents 100 mm.

(I) Quantification of Tnf staining in livers between P72 and R72 mice after SHFD; n = 5. Error bars mark SE. The asterisk denotes p < 0.05.

(J) Quantification of Oil Red staining in livers between P72 and R72 mice after SHFD; n = 5. Error bars mark SE. The triple asterisk denotes p < 0.0005.

See also Figure S6.
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Figure 7. Tnf and Npc1l1 Inhibitions Rescue

R72-Increased Fat Accumulation in the Liver

after SHFD

(A) P72 and R72malemice of age 4–6 weeks (n = 5)

were subjected to SHFD with or without daily

treatment of C87 (Tnf inhibitor) or ezetimibe

(Npc1l1 inhibitor).

(B) Oil Red O staining of livers after SHFD with or

without treatments of C87 or ezetimibe. The scale

bar represents 100 mm.

(C) Quantification of Oil Red staining in livers be-

tween P72 and R72 mice after SHFD with or

without treatments of C87 or ezetimibe; n = 5. Error

bars mark SE. The triple asterisk denotes p <

0.0005.

(D) Average reduction of Oil Red staining in livers

after SHFD with treatments of C87 or ezetimibe;

n = 5. Error bars mark SE. The double asterisk

denotes p < 0.005.

(E) Proposed model of the impact of R72 on

obesity and pre-diabetic phenotypes. In R72 mice,

a HFD results in obesity and insulin resistance. The

effect of a HFD on R72 mice appears to be sys-

tematic, causing enlarged islets and fibrosis in the

pancreas, increased infiltration of immune cells

into adipose and liver tissues, as well as NAFLD.

Inhibition of two R72-preferential p53-regulated

genes, Tnf and Npc1l1, reduces fat accumulation

in the liver. This could be a potential strategy to

treat/prevent obesity and metabolic diseases

associated with R72 genotype.

See also Figure S7.
selection remains controversial (Beckman et al., 1994; Khan

et al., 2011; Sucheston et al., 2011). Multiple hypotheses have

been posed in favor of natural selection, including that the R72

variant promotes optimal implantation and reproduction due to

increased transactivation of the implantation factor LIF (Kang

et al., 2009) or that it enhances tolerance to colder winter tem-

peratures (Shi et al., 2009). In light of our experiments showing

that R72 favors lipid accumulation and weight gain, we posit

that R72 may have emerged during human evolution due to its

ability to provide an advantage for environmental adaptations,

such as famine and cold exposure. R72 would also be predicted

to enhance the success of child-bearing during famine, which

supports the fecundity hypothesis. We speculate that our ances-

tors may have undergone a positive selection for the R72 allele,

which favored energy storage, as this would be advantageous

during times of famine (Sellayah et al., 2014). However, in mod-
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ern society, this positive selection is lost,

and instead, the R72 allele is associated

with obesity and type 2 diabetes. Accord-

ing to the most-recent genomic seq-

uencing data, the R72 variant of p53 ex-

ists in approximately 5.6 billion people

worldwide, of which 2.3 billion are homo-

zygous (Abecasis et al., 2012). With a

viable animal model, a better understand-

ing of the mechanisms behind R72-asso-

ciated obesity and diabetes has become

feasible. Because obesity is also a risk factor for some forms

of cancer, the association between R72 and obesity may explain

the weak but persistent associations found between this codon

72 variant and cancer (Park et al., 2014).

Mechanistically, our work points to differences in at least two

p53-regulated genes as potentially responsible for the obesity,

insulin resistance, and NAFLD phenotypes evident in R72

mice. These genes, which show increased induction in the R72

liver at the earliest time points of HFD, but not CD, are Tnf and

Npc1l1. Whereas our data clearly indicate that R72 protein binds

preferentially to the p53-binding sites in these genes, we have

failed to find evidence for differential phosphorylation or pro-

tein-protein interactions that may explain this differential binding

ability (C.-P.K., unpublished data). Of these two genes, Tnf has

been linked with obesity-induced insulin resistance, and recent

studies show reduced blood glucose levels in patients treated



with TNF inhibitors (Antohe et al., 2012). Npc1l1 plays a role in

cholesterol absorption, and the Npc1l1 inhibitor ezetimibe

lowers cholesterol levels and shifts HDL (high-density lipopro-

tein)-to-LDL (low-density lipoprotein) ratios (Park, 2013). Our

data therefore clarify the potential association of the R72 variant

of p53 with body waist circumference and type 2 diabetes. They

also indicate that studies of the efficacy of some of these agents,

such as TNF and NPC1L1 inhibitors, toward alleviating diabetes

in humans may warrant further investigation.

EXPERIMENTAL PROCEDURES

Diet-Induced Obesity

The generation and analysis of Hupki P72 and R72mice, and backcrossing in a

C57Bl/6J background for over ten generations, was described previously

(Frank et al., 2011). The experiments with mice complied with all federal and

institutional guidelines as per IACUC protocols. Mice were housed in plastic

cages with ad libitum diet and maintained at 22�C with a 12-hr dark/12-hr light

cycle. Wild-type C57Bl/6 mice were purchased from The Jackson Laboratory.

Normal CD was obtained from LabDiet (Pico-Vac Diet 20; 3.75 kcal/gm; 21%

fat calories). The HFD was customized and purchased from Harlan Labora-

tories (TD. 130886; 4.4 kcal/g; 49% fat calories). Mouse weight and food con-

sumption were monitored weekly throughout the duration of the experiments.

Body composition (lean and fat mass) was measured with nuclear magnetic

resonance spectroscopy (Echo MRI 3-in-1 analyzer). For rescue experiments

with inhibitors, prior to 7-day exposure to a HFD, 5-week-old mice were

weighed and then administered with tumor necrosis factor alpha (TNF-a) inhib-

itor C87 (10 mg/kg; EMD Millipore; 530796) or NPC1L1 inhibitor ezetimibe

(10 mg/kg; Cayman Chemical; 16331) via intraperitoneal (i.p.) injection and

oral gavage, respectively. Treatments were performed daily, and mice were

weighed and euthanized for liver harvesting by the end of 7-day period.

GTT and Insulin ELISA

Mice were fasted overnight for 16 hr in cages with paper bedding. Eachmouse

was weighed, and glucose dose was calculated for 2 mg/kg body weight

(glucose solution was prepared in 0.9%NaCl). Concentration of blood glucose

of each mouse was determined by glucometer (OneTouch Ultra; LifeScan) in

tail vein blood at time 0 before glucose was administered through i.p. injection.

After injection, blood glucose level was measured at 15, 30, 45, 60, 90, and

120 min. For the insulin ELISA, mice were fasted overnight for 16 hr in cages

with paper bedding. Glucose challenge was performed by i.p. injection at

2 mg/kg body weight. Blood was collected before the injection and at

10 min after the injection. Blood samples were kept at room temperature for

15 min and subject to centrifugation at 13,000 g for 10 min. Insulin concentra-

tion was measured in serum using an Ultra-Sensitive Mouse Insulin ELISA Kit

(Crystal Chem; 90080).

Hyperinsulinemic-Euglycemic Clamp

Hyperinsulinemic-euglycemic clamp and radioisotopic tracer kinetic studies

were done to evaluate insulin sensitivity in the whole body, as well as the

liver, adipose tissue, and muscle as described previously (Carr et al.,

2013). The mice were anesthetized, and the right internal jugular vein was

cannulated. After 4 days of recovery to the pre-surgery weight, the mice

were fasted for 6 hr (7 a.m.–1 p.m.) and a bolus intravenous injection of

5 mCi of [3-3H] glucose was administered, followed by continuous intrave-

nous infusion at 0.05 mCi/min. Baseline glucose kinetics was measured for

120 min followed by hyperinsulinemic clamping for 120 min. A priming

dose of regular insulin (16 mU/kg; Humulin; Eli Lilly) was given intravenously,

followed by a continuous infusion at 2.5 mU/kg/min. Blood glucose level was

maintained at 140 mg/dl via a variable infusion of 20% glucose. 2-deoxy-D-

[1-14C] glucose was injected 45 min before the end of the clamping, and

blood samples were collected to estimate glucose uptake. The mice were

euthanized, and liver, epididymal white adipose tissue (WAT), and gastrocne-

mius muscle were excised, frozen immediately in liquid nitrogen, and stored

at �80�C for analysis of glucose uptake.
Cell
Statistical Analysis

Data are expressed as means ± SEM. For statistical analysis, data were

analyzed by two-sided unpaired Student’s t test (GraphPad Prism), ANOVA

post hoc test with Bonferroni’s adjustment (for GTT AUC analysis), or mixed

effect models for longitudinal data analysis (for the trends of weight gain be-

tween groups). Data were considered significant if p < 0.05.
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