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TYPE RECONSTRUCTION IN A-CALCULUS 229 

Mindley, 1969; Leiss, 1987; Leivant, 1983; McCracken, 1984; Mitchell, 
1988; Pfenning, 1988; and Wand, 1987), the main problem of whether 
typability in the full polymorphic i-calculus F2 of Girard (1972) and 
Reynolds (1974) is decidable, remains open. A recent result of Henglein 
and Mairson (1991) shows that this problem is DEXPTIME-hard. 

Instead of attacking the main problem in its full generality, several 
people have suggested a ramification of the problem by “rank.” In this 
paper we consider the notion of rank which is equivalent to the notion of 
rank introduced by Leivant (1983). Another stratified system for F2 was 
recently introduced in Giannini and Ronchi Della Rocca (1991). The two 
systems are incomparable in the sense that strata of one are not in general 
fully contained in strata of the other. Leivant (1983) considers the problem 
of type reconstruction for F2, as well as for the conjunctive type discipline 
of Coppo and Dezani-Ciancaglini ( 1979, 1981). Leivant sketches a proof of 
decidability of type reconstruction for conjunctive types whose rank is 
restricted to 2. McCracken (1984) presents an algorithm which is based on 
the ideas of Leivant (1983) for deciding typability in the polymorphic 
i-calculus of rank 2. However, none of those algorithms was proven 
correct’ and full versions of the proceedings papers (Leivant, 1983; 
McCracken, 1984) have never been published. 

In this paper we show, using a different method of proof than in 
(Leivant, 1983; McCracken, 1984) that for the polymorphic I-calculus of 
rank 2, denoted AZ, the typability problem is decidable. This system, 
together with the notion of a rank, is presented in Section 2. More 
precisely, we show that typability in A2 is polynomial-time equivalent to 
the typability in ML. Thus, by the results of (Kanellakis, Mairson, and 
Mitchell, to appear, and Kfoury, Tiuryn, and Urzyczyn, to appear), 
typability in /i, is DEXPTIME-complete. 

We also show that, for every extension of A, with constants that are 
assigned universally polymorphic types, the typability problem is decidable 
too. As a corollary, we derive the decidability of the typability problem for 
an extension of ML that consists in allowing a form of “polymorphic 
abstraction” and any constants assigned universally polymorphic types. We 
consider such an extension of ML mainly to rectify a typing anomaly of the 
original system, as discussed by Milner (1978, p. 356). 

One of the main technical results used in establishing the recursive 
reducibility of typability in /i, to that in ML is the property that, without 
affecting the power of typability of the system, we can restrict ourselves to 

’ The algorithm D in McCracken (1984, p. 311), as stated in the paper, is clearly incorrect. 
For example, procedure “alphavary” in the 3rd line of the algorithm should IX applied to the 
environment A and not only to the type of X. 
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instantiations (of bound type variables) with quantifier-free types. This 
result is shown in Section 3. 

The class of functions numeralwise representable in ,4, is strictly larger 
than the class of functions representable in the finitely typed A-calculus 
(e.g., the exponential function is representable in A*). On the other hand, 
it follows from the result of Leivant (1989) and Tiuryn (1988) that the 
former class of functions is contained in the class of elementary recursive 
functions. This result is again a consequence of the above mentioned 
property of A*, namely, restricting /i, to instantiations with quantifier-free 
types does not affect the power of typability of AZ. 

We conclude the paper with the result that for every k > 2, the problem 
of type reconstruction in the polymorphic A-calculus of rank k, extended 
with a suitably chosen set Ck of constants with types of rank 1, is 
undecidable. This system is denoted A,[C,]. We reduce the typability 
problem for ML+ to the typability problem for A,[&] (ML+ is ML 
extended with “polymorphic recursion” as defined in Henglein (1988), 
Kfoury, Tiuryn, and Urzyczyn (1988), and Mycroft (1984)). The 
undecidability of the semi-unification problem (proved in Kfoury, Tiuryn, 
and Urzyczyn, to appear) implies the undecidability of typability in ML+, 
which thus implies the undecidability of typability in A,[C,]. 

In order to avoid a possible confusion we briefly discuss what we believe 
are three different approaches to type reconstruction problems. Suppose we 
are given a system /-- for deriving assertions of the form A t-M: (T, where 
A is an environment which assigns types to object variables, M is a term 
of the A-calculus, and r~ is a type. 

The lirst and most popular type reconstruction problem is: given a term 
A4, decide whether there exist A and 0 such that A k M: 0 is derivable. We 
refer to this problem as the type reconstruction problem for t-. 

The second problem, which we call the strong type reconstruction 
problem for k (see Tiuryn, 1990, where the name was introduced) is: given 
A and M, is there B and 0 such that B extends A (i.e., B does not change 
types assigned to variables by A-it is perhaps more appropriate to call 
“constants” these “variables” with pre-assigned types) and B t M: CT is 
derivable. Hence, strong type reconstruction problem represents the situa- 
tion of built-in constants which come with a typing as a part of the design 
of the language. Typical of such constants are if-then+lse and the fixed- 
point operator. 

The third and the most general problem is the problem of type 
reconstruction for partially typed terms. The freedom with which we can 
constrain relationships between types is much greater here than in the 
previous two cases. A partially typed term (see Boehm, 1985) has some or 
all of the following features: constants are typed (as in the case of strong 
type reconstruction); some object abstractions may be equipped with types 
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and some may be untyped; type application either is explicit (i.e., a term is 
applied to an explicit type) or it is implicit (i.e., it is marked by an applica- 
tion of a term to a “place-holder”) type abstraction is obligatory (i.e., the 
reconstruction of missing type information cannot introduce new type 
abstractions). In order to state the problem of type reconstruction for 
partially typed terms we need a type derivation system k for terms which 
are fully typed, i.e., terms in which every object abstraction is typed and all 
type applications and type abstractions are explicit. Then the problem is 
formulated as follows: given a partially typed term M and an environment 
A (a typing of constants), can A4 be completed to fi by inserting the 
missing type information, so that for some environment B which extends A 
and for some type O, B t--A: o is derivable. 

The ordinary problem of type reconstruction is obviously a special case 
of the strong type reconstruction problem (with the empty environment). 
Hence undecidability of the former implies undecidability of the latter but 
not necessarily the other way round.2 Because of the obligatory type 
abstraction and (at least implicit) obligatory type application there is no 
clear relationship between the first two problems and the problem for 
partially typed terms. The latter problem was shown to be undecidable by 
Boehm (1985) for the system F, with explicit typing. 

2. SYSTEM A,: THE POLYMORPHIC J-CALCULUS OF RANK k 

We adopt the “Curry view” of the polymorphic A-calculus, in which pure 
terms of the I-calculus are assigned type expressions involving universal 
quantifiers, rather than then “Church view” where terms and types are 
defined simultaneously to produce typed terms. 

The terms of the pure L-calculus are defined as usual by the grammar 
A4 ::= x I( (AX M). The types we assign to pure A-terms are defined 
by the grammar 

z ::= a I(Vct a)1 (a -+ 7) 

where c1 ranges over an infinite set of type variables. We call a type of the 
form (VU a) a V-type, and a type of the form (0 + r) a ~inction type. We 
use the standard convention according to which arrows associate to the 
right, i.e., fJt+ ... +c7, is an abbreviation for (a, + . . + (a, _ 2 + 
(a,- i -+ a,)) ... ). Types which differ only by names of bound variables 
(bound by V) are considered equal (cc-conversion). 

* However, we do not have any natural example supporting this remark. 
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We classify types according to the following induction. First define 

R(0) = {open types > = {types not mentioning V} 

and then, for all k 2 0, define R(k + 1) as the smallest set such that 

R(k+ 1)z R(k)u {( a+~)laER(k),z~R(k+l)}u{(V/cco)lo~R(k+l)}. 

The set of all types is: R(w) = U {R(k) 1 k E 01. R(k) is the set of types of 
rank k. For example, Va (c( + V/3 (a-+/l)) is a type of rank 1 and t/cc 
(a + a) + VP /? is a type of rank 2 but not of rank 1. It is easy to prove 
inductively that a type (T has rank k iff there is no instance of V falling in 
e in the negative scope (i.e., left hand side) of k nested instances of + . 
Hence our definition of rank is equivalent to the notion of rank introduced 
in Leivant (1983). It also follows from this observation that every type is 
assigned a rank; i.e., R(o) is the set of all types. Since R(k) E R(k + 1) it 
follows that if a type G has a rank k, then it has every rank n > k. 

An assertion is an expression of the form A t- M: z, where A is a type 
environment (a finite set {x1 : c , , . . . . X, : a,} associating at most one type 
0 with each variable x), M a term, and T a type-and the rank of this asser- 
tion is the rank of the type 0, + . .. + (T, -+ z. In particular an assertion 
A k M : r is of rank 2 iff z is of rank 2 and all the environment types are 
of rank 1. A[x : G] is the environment obtained from A by removing a pair 
(x : r) from A (if there is one) and adding (x : a). 

For every k 20, we define A, as the fragment of the polymorphic 
lb-calculus which is a restriction of F, to assertions of rank k. A precise 
definition of A, is given in Fig 1; it is the usual type inference system of the 
polymorphic A-calculus where all assertions in a derivation are restricted to 
be of rank k. 

VAR 

INST 

GEN 

APP 

ABS 

Al-z:0 (x: u) E A 

A I- M : Van 
A I- M : o[a := T] 

Al-M:a 
A I- M : Qa.o 

AFM:u-+r, Ai-N:o 
A F (M N) : r 

A[z : u] !- M : I- 
A + (Xz M) : u + r 

Q G FVA) 

FIG. 1. System Ak: all assertions are of rank k. 



TYPE RECONSTRUCTION IN I,-CALCULUS 233 

We use ,4k to denote both a type inference system (as a set of rules for 
deriving assertions) and the set of terms typable in that system (i.e., the 
terms M such that for some A and o, A k A4 : (r is derivable in A,). 
LJ {A,lk~Oj =Fz is the full polymorphic A-calculus. If X is any type 
inference system, then we will be using the notation A t,, A4 : r to denote 
that A j- M : z is derivable in X. 

D’(a) is the set of free type variables in the type (T (i.e., variables which 
are not bound by a quantifier) and W(A) is the set of free type variables 
in the environment A, defined by FV(A)= /J (FP’(,)J (x : G)E A]. By 
a[~ := r] we denote the result of substituting r for all free occurrences of 
c( in c ( a renaming of bound variables may be necessary before the sub- 
stitution is performed in order to avoid clashes of variables). In general, 
performing the substitution o[cc := T] may increase the rank of (T. The 
resulting rank depends on the rank oft and how deep in the negative scope 
of + are free occurrences of rr in C. 

3. SYSTEM A; 

In this section we introduce a type inference system A; (see Fig. 2) 
which is based on a more restrictive set of types than the system AZ. The 
main result of this section shows that these two systems are equivalent with 
respect to typable terms. Because AT is more restrictive, it is easier to 
analyze the problem of type reconstruction. 

In order to define A; we have to restrict types of rank 2 to a special syn- 
tactic form. Let S(0) be the set of all open types; let S( 1) be the set of all 
types of the form t/cl, . .. Vcr, 5, where 5 E S(0). Let S(2) be the set of all 

VAR Akx:u (x : u) E A 

INST- 
A I- M : Va.o 

A k M : cr[a := r] 

GEN 

APP 

ABS 

AkM:a 
A k M : ‘#cur 

Al-M:o-+r, Al-N:o 
Ak(M N):T 

A[x : CT] I- M : T 
A I- (Xx M) : o -+ T- 

r E S(0) 

Q 6 FV(A) 

FIG. 2. System .4; : all environment types in S( 1 ), all derived types in S(2). 
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types of the form Vu, . . . Vu, (a, + . . . -+ grn -+ T), where crI, . . . . grn E S( 1) 
and z E S(0). 

Let us observe that S( 1) is a proper subset of types of rank 1 and S(2) 
is a proper subset of types of rank 2. Types in S( 1) are what is called in 
ML type schemes. Types in S(2) form a minimal class for which it is 
possible to have in the language procedures which pass univerally 
polymorphic (i.e., of type in S(1)) parameters. 

There are two differences between /i ; and &. The first is in the type 
restrictions: in /i y all environment types are in S( 1) and all derived types 
in S(2). The second difference is between INST and INST-. Observe that 
the derived type z in the premise of the ABS rule must not be a V-type in 
order to guarantee that the derived type 0 + r in the conclusion of the 
same rule be in S(2). 

LEMMA 1. Let M be an arbitrary term. If M is A, typable then M is A, 
typable. 

Proof. For all A and CJ, if A t--,,; M : c then A tnl M : CT. i 

We shall show that the converse of Lemma 1 is also true, thus estab- 
lishing the equivalence of A; and /1* with respect to typability. 

We consider types where some of the quantifiers are marked with # , i.e., 
types that mention both V and V#. By a partially marked type we mean a 
type where some (possible none, possibly all) of the quantifiers are marked 
with # . If CJ is any partially marked type, then (a) # is the totally marked 
type obtained by marking all quantifiers in CJ. The notion of rank intro- 
duced in the previous section naturally applies to partially marked types. 

The marker # is used to distinguish quantifiers introduced by applica- 
tions of the INST rule from all other quantifiers. This distinction is made 
explicit in the system A# of Fig. 3. The essential difference between A2 and 
/1: is the difference between INST and INST” (where the notation V(#’ 
means that the quantifier may or may not be marked). The APP rule is 
changed to APP# in /i# just to accommodate this difference between 
INST and INST#. 

For partially marked types e and r~‘, we write CJ z C’ for syntactic 
equality up to erasure of all markers. 

LEMMA 2. Let M be an arbitrary term. M is A, typable iff M is AT 
typable. 

Proqf: This is immediate from the definitions. 1 

LEMMA 3. Let CT be a partially marked type. If CT is a derived type in A,# 
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VAR Al-x:o (x : u) E A 

INST# 
A k M : V(#)a.o 

A I- M : u[a := (T)#] 

GEN 

APP# 
A k M : o -+ T, Al-N:a’ 

Ak(M N):r 
u cz 0’ 

ABS 
A[x : u] k I.4 : T 

A k (Xz M) : u + r 

FIG. 3. System A: : all assertions are of rank 2, all environment types are unmarked 
( #-free). 

(i.e., there are a term M and an environment A such that A t--,,: A4 : a), then 
no unmarked quantifier in (T is within the scope of a marked quantifier, 

(J#( . ..(VJ#~...(Vfi...)...)...). 

for any type variables c( and /3. 

Proof: The property of partially marked types defined in the statement 
of the lemma is preserved by all the inference rules of A: and holds for all 
types in the environment (by definition). 1 

We require throughout that in every type o the bound variables are 
disjoint from the free variables, Bv(a)nFV(a) = /25, and no variable is 
bound more than once. This requirement is satisfied by a-conversion. 

DEFINITION 4 (( )’ ). We define a mapping that assigns to every 
partially marked type C, an unmarked type c’: 

1. CC’ =cL, 01 is a type variable, 

2. (a+T)‘=va.(a* +p), where z. = Va. p and p is not a V-type, 

3. (va.a)* =vc.rJ-, 

4. (V’#@..o)’ = 0’ 

In 2 above, G denotes a finite (possibly empty) set of type variables 
{ a,, ci2, . . . . a,,}, and Vii denotes Via, Vu,. . .Va,. The map ( )’ accomplishes 
two things-first, it displaces unmarked quantifiers leftward (as much as 

64319812.1 
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possible without changing the “meaning” of types) and, second, it 
eliminates all marked quantifiers. For example, 

(Vu v#p(u + p) + V#y V’s(y + 6))’ = VG(Vu(u + /I) + y + 6) 

LEMMA 5. For every 0 <k < 2 and for every partially marked type a of 
rank k, a’ E S(k) and FV(a) E FV(a*). 

Proof If a is a partially marked type of rank k and a’ is an unmarked 
type obtained from a by erasing all marked quantifiers, then obviously a’ 
is of rank k too, FV(a) E FV(a’), and a’ = (a’).. Hence it suffices to prove 
the lemma for types a without marked quantifiers, in which case we also 
prove that FV(a) = FV(a ’ ). The proof is easy. Technically it proceeds by 
double induction: on k and on the structure of a. For a E R(O), the result 
is obvious, because a * = a. 

Let 0 <k < 2 and assume that the result holds for k and for all a. For 
a E R(k + 1), we proceed by induction on the definition of types. If a is a 
type variable, the result is obvious. 

If a=ai+a*ER(k+l), then a,ER(k) and a,ER(k+l). We have 
a; E S(k) by the induction hypothesis (on k), and a; = VZ.p E S(k + 1) by 
the induction hypothesis (on the definition of types), where p is not a 
V-type. This means that ai + p E S(k + 1) and V&!. (a; + p) = a’ E S(k + l), 
as desired. Moreover, 

Fv(a*) = FV(oi) u FV(p) - {z} 

= FV(oi) u FV(a;) 

= FV(a,) u FV(a,) = FV(a). 

If a=Va.a,ER(k+l), then a,ER(k+l). We have aiES(k+l) by the 
induction hypothesis (on the definition of types), so that Vcl.a; = 
a’ E S(k + l), as desired. Moreover, FV(a’) = FV(ai) - {g} = FV(a,) - 
{cc> = FV(a). 1 

LEMMA 6. Let a1 and a2 be derioed types in AT such that ai E az and 
a1, a,ER(l). Zf ai=V/T?,.~l and a;=Vfi2.n2, where n1 and ?t2 are not 
V-types, then we can rename bound variables in a1 and a2 (u-conversion) so 
that (1) rc1=rc2 and (2) pIcj?z or $zcB1. 

Proof: Consider the tree representation ri of ai, i = 1,2. All quantifiers 
appear along the rightmost path of Ti. We rename all bound variables, 
and permute all adjacent quantifiers, so that a1 and a2 are (syntactically) 
identical after erasure of all markers. The conclusion of the lemma follows 
from the definition of ( )’ and Lemma 3. 1 
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LEMMA 7. Let o be a partially marked type, T a totally marked type, and 
a a type variable. Then a’[~ := ~‘1 = (a[~ :=r])‘. 

Proof. This follows from the definition of ( )’ (the hypothesis that r is 
totally marked is essential). 1 

If A is a type environment then 

A’={(x:a’)l(x:a)EA} 

Every type g in A is unmarked, so that W(o) = W(a ’ ), and therefore 
FV(A)=FV(A’). 

LEMMA 8. Let M be an arbitrary term. If M is A,# typable then M is 
A; typable; more specifically, for every (partially marked) type (T and 
environment A, if A t-n? M : CJ then A’ E,,,; M : c’. 

Proof: The proof is by induction on the length n > 1 of derivations 9 
in /12#: 

9 = A, k,,:M, : o,, . . . . A,, k,,; M, : a,,. 

For n= 1, if A, k-,: M, : a1 then clearly A; t--,,; M, : a’, by one 
application of VAR in both derivations. 

For brevity, we write t instead of t-- ,,: and k,,; throughout this proof; 
it will be clear from the context whether the derivation is in nf or in A;. 

If the nth step in 9, with n 3 2, is an application of APP#, then we have 
in /if 

A t-M:a,+z 

A kiV:a, 

A FMN: T, 

where a1 g a2. Let 7. = VZ.p, where p is not a V-type. Because a,, 
a2 E R(l), we have a; = VpL. z and a; = Vflz.rc by Lemma 6, where x is not 
a V-type, together with /I1 G Bz or p’, E 6,. Consider the second case, 
p’, c pi, the first case being treated similarly. All the variables in fll - p’, are 
quantified in al and a2, and can therefore be taken disjoint from all free 
type variables in A (and A ’ too), by cc-conversion. By the induction 
hypothesis, we have in A; 

A’tM:(a,+z)‘=VZ.((Vfi,.n)+p) (1) 

A’ kN:a;=Vpz.7c. (2) 

By k applications of INST- to the assertion (l), where k = 121 3 0, and 1 
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applications of GEN to the assertion (2), where I= IF1 - fl*c’,l >, 0, we obtain 
in A; 

A’ FM: (vlpI.7c)-p 

A’ ~N:V&.7r. 

By one application of APP, followed by k applications of GEN, we finally 
obtain in A; 

A- ~MN:Vii.p=z’, 

which is the desired conclusion. 
If the nth step in $3, n 3 2, is an application of ABS, then we have in /1? 

A[x:o] kM:z 

A t-2x.M:o+r. 

Let t’ = ‘dii.p, where p is not a V-type. By the induction hypothesis, we 
have in /1; : 

A’[x:a’] tM:z’=VZ.p 

By k applications of INST-, where k = 121 > 0, followed by one application 
of ABS, followed by k applications of GEN, we obtain in A; 

A- t-nx.M:Va.(o’~p)=(o~~)‘, 

which is the desired conclusion. 
If the nth step in 9, n B 2, is an application of GEN, then we have 

in AT 

AtM:a 

A kM:Va.o, 

where a 4 FV(A). By the induction hypothesis, we have in A; 

A’ kM:a’ 

and applying GEN once, with the fact that IV(A) = FV(A ’ ), 

A’ ~A4:Va.a’=(Vcr.a)‘, 

as desired. 
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If the nth step in 9, n 2 2, is an application of INST’, then we have 
in /if 

A FM : V#‘a.a 
(3) 

A k M : o[sc := 51, 

where r is totally marked. We can assume that 1 $FV(A). Consider the 
case when the outermost quantifier is marked, in the derived type of the 
assertion (3), the other case being treated similarly. By the induction 
hypothesis, we have in AT 

Applying GEN once, we have in A; 

A’ ~M:t”cc.a’, 

and applying INST- once, with the fact that r is a totally marked type and 
Lemma 7, 

A’ t-M:~~[cr:=~‘]=(a[a:=z]) 

which is again the desired conclusion. 1 

THEOREM 9. Let M be an arbitrary term. M is A, typable ijf M is A, 
typable. 

Proof. The left-to-right implication is Lemma 1. The right-to-left 
implication follows from Lemmas 2 and 8. 1 

4. TYPABILITY IN THE POLYMORPHIC ~-CALCULUS OF RANK 2 

In this section we show that A, typability and ML typability are poly- 
nomial-time reducible to each other. Terms of ML are defined according to 
the following syntax: 

M::=x [(MN)1 (Ax.M)((letx=NinM). 

Thus pure terms form a proper subset of ML terms. Throughout this 
section we assume that terms M satisfy the following restriction: 

(I.1 no variable is bound more than once in M, 
no variable occurs both bound and free in M. 

643,‘98f?-R 
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VAR Abx:o (x : u) E A 

INST 
A k M : Va.u 

A k M : u[a := r] 

GEN 
AkM:u 

A k M : Va.o 

APP 

ABS 

LET 

Al-M:r-+r’, AkN:r 
Ak(M N):r’ 

A[x : T] t- M : 7’ 
A 1 (Xz M) : i- + T’ 

A[x : u] k M : T AkN:u 
A I- (let z = N in M) : T 

0 # FV(A) 

FIG. 4. System ML, ads, t, r’~S(0). 

(t) is satisfied by cz-conversion. The system for typing ML terms is given 
in Fig. 4 (cf. Damas and Milner, 1982). 

We also consider ML,, an extension of ML which allows polymorphic 
abstraction. We consider such an extension of ML as a response to the 
critique of the restriction3 in the original system that forces all occurrences 
of the same I-bound variable to have the same type. ML, is obtained from 
ML by exchanging the APP and ABS rules with the two rules shown in 
Fig. 5. 

We refer to ML, as ML with polymorphic abstraction. The original 
system ML contains other programming constructs, such as if-then-else or 
let-ret (monomorphic recursion). Clearly they can be reintroduced into 
our presentation via suitably typed constants. 

LEMMA 10. If A t M : CT is derivable in ML (or in A; ), then there is a 
derivation of A t- M : CT in ML (or in A;, respectively) in which the INST 
rule is applied only to variables; i.e., instead of INST the following more 
restrictive rule INST’“’ is used throughout the derivation: 

INST’“’ 
A t-u :Va.o 

Atx:o[cr:=z] (7ES(O)). 

Proof: The proof is by induction on M. A substitution that corresponds 
to an application of INST to a term that is not a variable can be easily 

3 Identified as “the main limitation of the system” in R. Milner’s original paper 
(1978, p. 356). 
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APF 
AkM:o+r, Al-N:u 

Al-(M N):T 

ABS+ 
A[z : u] t M : I- 

Ak(XzM):a-+r 

FIG. 5. New rules for ML,, u E S( 1). T E S(0). 

“pushed’ all the way towards the leaves of the derivation tree. Eeasy details 
are left for the reader. 1 

There is a number of similar push-out lemmas in the literature (see 
Clement, Despeyroux, Despeyroux, and Kahn, 1986; Mitchell, 1988). 

DEFINITION 11 (act). Let us define, by induction on ML terms M, the 
sequence act(M), of active variables in M: 

1. act(x) = E (the empty sequence) 

2. act(llx.M) = x act(M) 

3. act(MN) = 
i 

& 
if act(M) = E 

x2 . . . x, if act(M) = x1 .--X,,forsomen~l 

4. act(let x = N in M) = act(M). 

The sequence act(M) represents outstanding abstractions in M, i.e., 
those abstractions which are not “captured” by an application. It is the 
main technical tool to carry the proof of polynomial time reduction of A, 
typability to ML typability. Let us observe that due to our convention (7) 
at the beginning of this section, there are no repetitions of variables in 
act(M). 

DEFINITION 12 (( ),). Let x be a variable and let A4 be an ML term. 
We define M,, the effect of deleting Ax in M. The inductive definition 
follows: 

1. ( y), = y, (x, y are variables) 

2. (l,v.M), = 
i 

M if y=x 

AY. M.x if y#x 

4. (lety=NinM)x=(lety=N,inM,). 

LEMMA 13. Let M be an ML term such that act(M) #E and let x be the 
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leftmost variable in act(M). Then for all types T, p E S(0) and for every 
environment A, 

A[x : z] k-ML M, : p iff A kMLM:~-+p, 

Proof: We prove the statement by induction on M. Let r, PES(O) be 
arbitrary open types. The above result holds vacuously when M = x is a 
variable. 

Let M = 13x. N. Then M, = N and act(M) = x act(N). We have to show 

A[x:r] kMLN:p iff Ak,,Lx.N:t-+p (4) 

The implication from left to right in (4) follows from an application of the 
ABS rule. The opposite implication follows directly from Lemma 10. 

Let M = NP and let act(N) = yx . . . . In that case we have to show 

A[x : 21 I,, (N,)(P,) : p iff A kML NP : z +p. (5) 

We prove the implication in (5) from left to right. The proof of the other 
implication, being similar, is omitted. Assume 

ACx : 71 h,L U’LNP.J : P. 

By Lemma 10 we have 

A[x:r] kMLNx:o-‘p and A[x:z] kMLPx:d 

for some CJ E S(0). Since act(N,) ends with y, it follows, by the induction 
assumption, that 

Since N,, = N,,, applying the induction assumption to N,,,, and to NY we 
get 

A[y:o] k-MLNJ.:~+p 

A ~ML N:a+z-+p. 

Since x occurs among active variables of N it follows by our convention 
that x does not occur in P. Hence P, = P and we obtain 

A t-m NP:z+p. 

To complete the proof of Lemma 13 we consider the case when M = 
(let y = P in N) and act(M) = act(N) starts with x. What we have to show 
now is 

ACx:7lhm lety=P,inN,:p iff A~-MLlety=PinN:z+p. (6) 
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Assume the left side of (6). Again, since x occurs as an active variable in 
N it follows that x does not occur in P and P, = P. By Lemma 10 we have 

ACx : TICY : 01 ha N.x : P and A [x : T] kp.+fL P : CT (7) 

for some 0 E S( 1). Since x does not occur in P, and by the induction 
assumption we have from (7) 

A[y:a] I-MLN:T-+P and A kML P: G‘, (8) 

the last condition immediately gives the right side in (6). The proof of the 
opposite implication is very similar and we omit it. B 

DEFINITION 14 (( )L). We define a mapping that assigns to every pure 
term M an ML term (M)L: 

1. (x),=x 

2. (Ix.M), = Ax.(M), 

3’ (MN)L= let x= (N), in ((IV)~)\- { 

(WL (WL if act(M) = E 
if act(M) starts with x. 

Because act(let x = N in M) = act(M), by definition, it is easy to check 
that act(M,) = act(M) for all terms M. 

LEMMA 15. Let M be a pure term such that act(M) = x, “.x, for some 
n L 0. If A k,,; A4 : CT, for some environment A and g E S(2), then 

a=W.(a,-+ ... +an-+T), 

where ol, . . . . a, E S(l), t E S(O), and Z is a sequence of type variables 
(possibly empty). 

Proof: This is a routine induction on the length of a derivation. We 
leave the details for the reader. m 

LEMMA 16. For every pure term M such that act(M) = x1 . . . x,, for 
some n 2 0, and for every environment A and type a = a1 -+ . . . -+ a,, -+ r, 
where a,, . . . . a,, E S( 1) and z E S(O), 

At,;M:a iff A[x, : aI, . . . . x, : a,1 tML ((Wdx ,.... xn : z. 

Proof We prove the lemma by induction on pure terms M. If M is a 
variable x, then the conclusion of the lemma is 

Ak,,;x:s iff At,,.x:t (9) 
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which obviously holds since the derivation of the left side of (9) is in n 2, 
rather than in /1,. 

Next, let us consider the case A4 = 1~. N, and let act(M) = JX, . . . I,. 
Take any p, gi, . . . . a,~S(l) and z~S(0). Then 

A kn;Ly.N:p,-*a,+ ... -+(T,-+T (10) 

iff A[y:p] tn,N:o,+ ... +cT,+z (11) 

iff A[y : p, x1 : 01, . ..) x n : anI tha mvLL, . . ..x. : z (12) 

Since in derivation in /i; the INST rule can be pushed to variables (by 
Lemma 10) it follows that (10) and (11) are equivalent. The equivalence of 
(11) and (12) follows from the induction assumption. 

Now, let M = NP and let act(N) = E. Let act(P) = y, . . . ym, for some 
m 2 0. Take any T E S(0) and assume 

A k,,, NP:T. 

It follows from Lemma 10 that there exists p E S( 1) such that 

A~,,;N:~--+T and A tn,P:p 

(13) 

(14) 

Since p ES(~), it follows from (14) and Lemma 15 that there are 
POT ..., pm E S(0) such that p = Va. (pl -+ ... + pm + po), and we may 
assume without loss of generality that none of the variables C? occurs free 
in A. Thus, by the induction assumption applied to (14) we get 

AL-Y, : PI, . ..> Ym : Pm1 i--ML WL).“, --..vm : PO. (15) 

Since act(P) = act( (P)L), and since the variables of C? do not occur free in 
A, by Lemma 13 we obtain from ( 15) 

A F.ML (f’)L : P. (16) 

By (16), (14), and the induction hypothesis we conclude that 

A t-m W)L (P)L : T. 

Thus we have proven the left-to-right implication of 

A ~,,,NP:T iff A t-m (WL (P)L : T (17) 

for the case of act(N) = E. 
The proof of the right-to-left implication in (17) is very similar to the 

previous one. 
As the last case in the proof we consider M= NP, where act(N) = 
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x, ...xn+l, (~130) and act(P)=y,....~,, (~120). Let o=(T,+ ... -P 
un -+ z, where crl, . . . . 0, E S(l), and r E S(0). Since x,, . . . . x,, , are active 
variables in N, it follows from the syntactic restriction (t) we stated at the 
beginning of this section that x,, . . . . x,, , do not occur (free or bound) in 
P and therefore in (P),. Thus ((P)L).r,...r.=(P)L. Since Ex,,=E,, holds 
for every ML expression E satisfying the syntactic restriction (f), all we 
have to show is 

At,;NP:a 

iff A[x, : gl, . . . . -Y, : ~,~l kML let x,+ I = (UL in ((N)LL ,.... ,“+, : L 
(18) 

Let us assume 

A/-,,;NP:a. 

By Lemma 10 it follows that there is 6, + 1 E S( 1) such that 

A t--.@Wr+,+~ and A tn,P:o,+v (19) 

Repeating essentially the same argument as in the proof of the previous 
case we conclude from (19) with the help of Lemma 13 and the induction 
assumption, that 

ACx, : ul, . . . . x,, : a,,1 I--ML let x,+ 1 = U’JL in ((WA ,.... rn+, : T. 

The proof of the right-to-left implication in (18) is very similar. 1 

Given M, computing acr(M), (M)L, and (M), can be easily done 
in polynomial time. Hence, combining Lemma 15, Lemma 16, and 
Theorem 9, we obtain the following result: 

THEOREM 17. For every pure term M, if act(M) = x, . . . x,, for some 
n 20, then 

M is typable in A, iff ( (M)L)x,. x, is typable in ML. 

Thus, A, typability is polynomial-time reducible to ML typability. 

We next establish a polynomial-time reduction in the opposite direction. 
Let us define a mapping that assigns to every ML term M a pure term M-. 
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DEFINITION 18 (( )“). Let I= (Ax.x) be the identity combinator: 

1. x- =x 

2. (Ilx.M)” =Z(ix.M’) 

3. (MN)” = M-N- 

4. (let x= Nin M)- = (lx.M-)N-. 

THEOREM 19. For every ML term A4, environment A, and type ts E S( 1) 

A t--MLM:~ iff A/-,,$- :G. 

Thus, by Theorem 9, ML typability is polynomial-time reducible to A, 
typability. 

Prooj The proof of Theorem 19 is by induction on ML terms h4. The 
left-to-right implication is a routine induction and we skip the details. For 
the right-to-left implication we prove inductively a somewhat stronger 
statement. 

Claim. For every ML term M, environment A, and type GE S(2), if 
At/&M - :CT, then aES(1) and A kMLM:o. 

The proof of the claim is by induction on ML terms M. If M is a 
variable, then the conclusion obviously holds. 

Let M= 1-x. N and assume that 

A t-d? I(Lx.N-) : [T (20) 

holds for some 0 E S(2). By Lemma 10, without loss of generality we may 
assume that, except for a sequence of GEN rules, the last rule in the deriva- 
tion of (20) is an APP rule; i.e., for some z E S( 1 ), 

and 

A /-,,;I:wo’ (21) 

A kn; E,x.N- : z, (22) 

where c is obtained from 0’ by generalization. It is not difficult to see that 
it follows from (21) and the restricted form of the instantiation rule in A; 
that (T’ must be an instance of T via a substitution of some open types. Thus 
C’ES(1). 

By (22) we have that there exist types z,, t2 such that z is obtained from 
zI + z2 by generalization and instantiation, and that 

A[x : r,] k,,; N- : z2. (23) 
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Thus, by the induction assumption, we obtain 

A[x : z,] t-ML N : T2. (24) 

Now, starting wtih (24) and following in ML the same sequence of instan- 
tiation and generalization rules as the one in A; that produced (22) from 
(23), we get 

A I-ML 1.x.N : z. 

Since 0’ is an instance of t, we conclude that 

hence 

Let M= NP and 

A I--ML 1.x. N : a’, 

A ha 1x.N: a. 

A t,,; N-P- : a (25) 

for some a E S(2). Again, by Lemma 10, without loss of generality we may 
assume that, except for a sequence of GEN rules, the last rule used in the 
derivation of (25) is an APP rule. Thus, for some r E S( 1 ), 

A En, N- : z + a’ (26) 

and 

A tii; P- : T, (27) 

where a is obtained from a’ by generalization. By (26) and the induction 
assumption, t -+ a’ E S( 1 ), hence a’ E S( 1). By (26), (27) and the induction 
assumption we obtain 

and 

A l-m N:t-+a’ 

Thus, 

and therefore 

Aj--,,NP:a’ 

A kML NP:a. 
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The case of A4 = (let x = N in P) is handled very similarly to the previous 
case. We leave the details for the reader. This completes the proof of the 
claim. 

Since computing M- can be easily performed in polynomial time, 
Theorem 19 follows. 1 

THEOREM 20. Given a pure term A4 and an environment A that assigns 
closed types in S(l), it is decidable whether there exists an environment B 
and a type CT E R(2) such that A z B and B k,,? M : 0. 

Proof: For X being one of the systems AZ, A;, or ML, let P,,(A, M) 
be the property of an environment A and a term A4 that expresses the 
existence of an environment B and a type CJ (of an appropriate rank) such 
that AsBand Bt, M:a. 

If A is any environment that assigns only closed types in S( 1) then 
A’ = A. Let M be any pure term. Then, by Lemma 8 

P,&, W iff P,&, M) 

By Lemma 15 and Lemma 16 we have 

P,$4 Ml iff P,,(A, ((WA, . . . ..I. 

where act(M)=x, .,.x,, n > 0. The decidability of PML, and therefore the 
conclusion of Theorem 20, follows from [S]. 1 

Next we will consider an extension of the system A, by constants. A 
typing of constants is any finite function C from the set of constant symbols 
to the set of closed types. Let C be a typing of constants. Pure terms with 
constants in C are defined by the grammar 

M ::= I ICI (MN) 1 (ix.M), 

where c ranges over the constant symbols in the domain of C. 
Ak[C] is the extension of the system A, (see Fig. 1) by the following 

rule: 

CONSTC A kc:a (C(c) = a). 

Clearly for the above rule to conform to the general restrictions of types in 
derivations of Ak we must request that the typing of constants C assign 
types of rank k to all constants in the domain. 

COROLLARY 21. For every typing C of constants which assigns types in 
S( 1 ), typability in A,[ C] is decidable. 
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Proof. It follows that if C assigns types in S( 1) to constants, then for 
every term A4 with constants in the domain of C, 

A4 is typable in ,4,[ C] iff P,,( C’, M’) holds, (28 1 

where the predicate PA2 is defined in the proof of Theorem 20, and c’ and 
M’ are an environment and a pure term, respectively, obtained from C 
and M by replacing the constant symbols by new variables. Since, by 
Theorem 20, P,, is decidable, hence typability in A,[C] is decidable 
too. 1 

Combining the proof of Theorem 20 with that of Corollary 21, we obtain 
the following generalization of Theorem 9. 

COROLLARY 22. For every typing C of constants which assigns types in 
S(l), and for every pure term M with constants in the domain of C, M is 
typable in A,[C] lff M is rypabie in A; CC]. 

Let us remind the reader that ML, is an extension of ML defined in 
Fig. 5. Its main new feature is polymorphic abstraction. 

COROLLARY 23. If C is a typing of constants which assigns types in S( 1 ), 
then typability in ML, [C], ML extended by polymorphic abstraction and 
constants in the domain of C, is decidable. 

Proof Define a mapping that assigns to every ML term M with 
constants in C, the pure term M = with constants in C. (This mapping is 
even simpler than the one that precedes Theorem 19.) 

1. x= =x 

2. cr=c 

3. (Ax.M)” =Ix.M” 

4. (MN)” = M=N” 

5. let.x=NinM=(E,x.M’)N”. 

Now, clearly for every ML term M with constants in C, M is typable in 
ML, [ C] iff M” is typable in A; [Cl. Since, by Corollary 22, typability in 
A,[C] is equivalent to typability in A; CC’] and C= c’, the conclusion of 
Corollary 23 follows from Corollary 21. 1 
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5. TYPABILITY IN THE POLYMORPHIC &CALCULUS OF HIGHER RANKS 

In order to control the instantiation/generalization mechanism of the 
polymorphic type disciplines we introduce the following definition. Let X 
be a set of type variables and let c’, r be two types. r is an X-instance 
of (T, denoted o dx T, if there are a substitution S and a type t’ such 
that S(o) = r’ (here S obviously acts only on the free variables of a), 
dom(S)nX=(a, and z=V~~...VCI,.Z’, where M,,..., a,$X. 

Let us define a sequence of open types z,, r2, . . . as follows. Let 
~~=(cI--+c() and let zk+i= (zk + ~1). Let k 2 3, and let C, be the following 
typing of constants: 

In this section we show that for every k2 3, typability in n,[C,] is 
undecidable. We prove it by showing that typability in an appropriate 
extension of ML, denoted ML+, is polynomial time reducible to typability 
in n,[C,]. It follows from the results of Kfoury, Tiuryn, and Urzyczyn (to 
appear, b) (our ML+ here and in Kfoury, Tiuryn, and Urzyczyn (to 
appear, a) is denoted ML/l in Kfoury, Tiuryn, and Urzyczyn (to appear, b)) 
and from the undecidability of the semi-unification problem (see Kfoury, 
Tiuryn, and Urzyczyn (to appear, c)) that typability in ML+ is 
undecidable. 

First we recall the system ML+. It differs from ML by allowing a richer 
rule for typing recursion. The terms of ML defined in the previous section 
do not contain recursion construct since it was not necessary for the 
reducibility result of the previous section. For the purposes of this paper we 
define terms of ML+ as follows: 

M::=x I(MN)I(~x.M)I (fixx.M). 

The typing rules for ML+ are the rules VAR, INST, GEN, APP, ABS of 
ML plus the following rule for recursion: 

FIX + 
A[x:a] FM:0 
A ~fixx.M.0 (aES(l)). 

DEFINITION 24 (( )b ). To establish the reducibility result of this section 
let us define a mapping that assigns to every ML + term A4 a pure term Mb 
with constants in C,: 
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1. xb=cxy 

2. (MN)b = (cMby)(cN%) 

3. (Ax.M)b=c(Ax.Mb)y 

4. (fix x.M)b=f(kX.M’)y. 

In the above definition we assume that the new variables y, z, introduced 
in Mb do not occur in M and that they are pairwise different. It should be 
clear from this definition that computing Mb from M can be done in 
polynomial time. 

To control quantifiers introduced by INST rule of /Ik[C,] we use the 
system /if [C,] obtained from /i, in essentially the same way the system 
A,# was obtained from A, at the beginning of Section 3 (see Fig. 3 ). The 
essential feature of A: [C,] is that every quantifier introduced by the 
INST rule is marked with #. Then the mapping that assigns to a marked 
type o an unmarked type G’ erases all marked quantifiers and moves all 
other quantifiers to the front as far as possible (see the definition in 
Section 3). Clearly both systems /ik[C,] and LI,# [C,] are equivalent with 
respect to typability. 

LEMMA 25. For every set X of type variables, 

(i ) G X is transitive, and 

(ii) for all marked types (T, 5, if (T 6, z, then 0’ dX z’. 

Proof This follows immediately from the definitions. 1 

LEMMA 26. Let M be a pure term with constants in Ck. If 

Ak nkCck, cMy : CT, then there exists T E R(0) such that T Q~,,(~, 6, and 

AF nirc!q] M : T. 

Proof Let A F,+CGI cMy : 0, and let r be the type assigned to M 
during this derivation when the APP rule is invoked for typing CM. 
Then the type of c must have been instantiated by r, and therefore T must 
be a quantifer-free type since otherwise the instantiated type of c 
would have had rank greater than k. Thus we have A knkCck, M : t and 
At- nkCctl CM : zk. It follows that there exist types p,, p2 such that 

‘Sk ~PV(A) PI -+ P2 

P3 dwc.4, Pl where (y : P~)E A, 

At nk[ckl CMY : ~2 

(29) 
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and 

P2 GFCTA) fJ. (30) 

By (29) we have r <Fb,,Aj p2. Hence, by (30) and Lemma 25(i) we conclude 
that T <Fvca, a. I 

LEMMA 27. If A tnkCck, fMy : CJ, then there is T E R( 1) such that 
T G&4, o and A knkCckl M : t + 7. 

Proof Let A l--nk~cklfMy : a and let p be the type assigned to M in this 
derivation, when invoking the APP rule for typing fM. It follows from 
the definition of the type of f that for some type r, p = r + r and 
At- /lk[Cp] fM : zk ~ I t-d”l. s ince the latter type is in R(k), it follows that 
r~R(1). 1 

Now we are ready to state the main lemma in the proof of the 
reducibility result. 

LEMMA 28. Let A be an environment and let M be an ML+ term, such 
that for every variable x, if x$FV(Mb) and zf (x : p) E A, then p E R(1). 
Then, for every type a, if A /---n; Mb : a, then A’ kML+ M : a’. 

Proof The proof is by induction on M. Let M be a variable X, and 
assume that A En: cxy : a. Then, by Lemma 26, there is a type r E R(0) 
such that A t--,; x : r and 

T G-Y(A) a. (31) 

Thus, if (x : pl)~ A, then p, <FC.CA, T .  Since TE R(O), it follows that 
p1 ES(~). Therefore p; =p, and 

Ab t ML+ X : T .  

Since T  is an open type, it follows from (31) and Lemma 25(ii) that ab is 
an FV(A)-instance of T  with open types. Hence Ab kML+ x : a’. 

Next we consider the case of M being M, M,. Let 
A t-,,; (CM\ y,)(cMi yz) : a. Then there exist types T  and p such that 

(32) 

and 

At n,xrckl CM! ~2 : P. 
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By Lemma 26 there are open types p,,, p, , pz such that 

Pl GFVIA, P and P2 -+ PO <F-CIA, P --+ 5 

and 
Al- ,$rckl Mi : P2 + PO and A knfrckl M!  :PI. 

(33) 

By the induction assumption we get 

A’ FML+ M, : ~2 + PO and A’t,,+Mz:p,. 

By Lemma 25(ii) and (33) we have 

(34) 

PI dFI’(A) P’ and P2 + PO d FV<A 1 vzfilp’ -+ 5’)~ 

where T' = '~c?T'. By (34) and (35) we easily get 

(35) 

A’ tim+ (M, M2) : T'. (36) 

By (32) and Lemma 25(ii) we conclude that T' GFYIA) 6’. Thus, by (36) we 
get 

A’ FM+ (M, M2) : 0'. 

Now we consider the case of M being (Ax.N). Let 
At- ,,fCqI ~(1x.N~) y : g. By Lemma 26 there is an open type z such that 
T  <W(A) o and A k,,,xCck, h.Nb : T. Thus there are open types pr, p2 such 
that 

ACx : PII tn:cck, Nb : ~2 and 

By the induction assumption we obtain 

PI -+ P2 <W(A) T .  

A-Lx : PII FML+ N: ~2. 

Hence 

A’ t-m+ (2kx.N): p* +p2 

Since p, + p2 dPvcA, z’ 6Fv,a, G’, we conclude that 

A’ kML+ (Ix.N) : 6. 

The last case in the induction step is M= fixx.N. It is quite similar to 
the previous case. Let A k,,~r,-~, f(;l.x.Nb) v : 0. By Lemma 27 there is a 
type T E R( 1) such that 

T dFV,A) C7 and A t--,,,xcckl (h.Nb) : T -+ T. (37) 
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Hence, there is p E R( 1) such that 

(38) 

By the induction assumption we get 

A’[x : p-1 kML+ N : p’. 

Hence 

A’ FML- (fix x.N) : p’. 

By (37), (38), and Lemma 25(ii) we obtain the conclusion in the last 
inductive case of the proof. [ 

LEMMA 29. For every environment A, ML+ term M, and a type 0, 
if A FM+ A4 : 6, then there is an environment B? A such that 
Bk nk[ck] Mb : 0. 

Proof The proof is by an obvious induction on A4 and is therefore 
omitted. 1 

By Lemma 28 and Lemma 29 we can immediately establish an effective 
reduction of typability in ML+ to typability in Ak[C,]. 

THEOREM 30. Let k > 3. For every term M of ML+, A4 is typable in 
ML+ iff Mb is typable in A,[C,]. Hence, for every k Z 3, typability in 
Ak [ C,] is undecidable. 

6. CONCLUDING REMARKS 

We have considered an infinite hierarchy of type systems, each of them 
being a subsystem of the well-known Girard/Reynolds system F,. These 
subsystems are obtained by imposing a constraint on the rank of all types 
used in the derivation. Ak is the system obtained from F, by restricting all 
derivations to contain type assertions whose rank is k. The union of all 
these subsystems gives precisely all of F2. 

We prove in this paper that the type-reconstruction problem for the 
system A,, extended by an arbitrary typing of constants that assigns types 
in S(1) (these are the universally polymorphic types), is decidable and is 
polynomial-time equivalent to the type-reconstruction problem for ML 
extended with a typing of constants. ,4* strictly extends ML with respect to 
typability power since it can type arbitrary abstractions in which the 
lambda-bound variable is typed by a universally polymorphic type. Thus in 



TYPERECONSTRUCTIONIN i-CALCULUS 255 

AZ, the let-construct, which is the only source of polymorphism in ML, 
becomes syntactic sugar. 

We have also shown that the situation dramatically changes as one 
moves from rank 2 to 3 and up. We prove to this effect that for every k 2 3, 
there is a typing of constants that assigns types in S(l), such that the type- 
reconstruction problem for nk extended by this typing is undecidable. 
Unfortunately, this result does not give any clue as to whether type 
reconstruction for F,, with or without constants, is decidable. Our 
decidability/undecidability proofs use in an essential way the apriori infor- 
mation about the rank of types. 

There are two open problems which we are leaving unresolved in this 
paper. The first is whether the decidability result for /1, with con- 
stants extends to any typing that assigns arbitrary types of rank 1, rather 
than universally polymorphic types as we assume in our paper. A 
typical example of a type that is of rank 1 but not in S( 1) is 
VCC. (c( -+ V/?. (fi -+ Vy. (a -+ /I + y))). The other open problem is whether type 
reconstruction is decidable for /i,, LL,, . . . without any constants. 

ACKNOWLEDGMENTS 

We are grateful to Pawel Urzyczyn for his comments and stimulating discussions on the 
material contained in this paper. 

RECEIVED September 24, 1990; FINAL MANUSCRIPT RECEIVED January 9, 1992 

REFERENCES 

BOEHM, H.-J. (1985), Partial polymorphic type inference is undecidable, in “Proceedings, 
26th IEEE Symposium, Foundations of Computer Science,” pp. 339-345. 

CLEMENT, D., DESPEYROUX, J., DESPEYROUX, T., AND KAHN, G. A simple applicative 
language: Mini-ML, in “Proceedings, ACM Conference on Lisp and Functional 
Programming,” pp. 13-27. 

COPPO, M., AND DEZANI-CIANCAGLINI, M. (1979) A new type assignment for I-terms, 
Arch. Math. Logik Grundlagenforschung 19, 139. 

COPPO, M., DEZANI-CIANCAGLINI, M., AND VENERI, B. (1981), Functional characters of 
solvable terms, Z. Math. Logik Grundlag. Math. 21, 45. 

DAMAS, L., AND MILNER, R. (1982), Principle type schemes for functional programs, 
in “Proceedings, 9th ACM Symposium, Principles of Programming Languages,” 
pp. 207-212. 

FORTUNE, S., LEIVANT, D., AND O’DONNELL, M. (1983). The expressiveness of simple and 
second-order type structures, Assoc. Comput. Mach. 30, 151. 

GIANNINI, P. (1985), “Type-Checking and Type Deduction Techniques for Polymorphic 
Programming Languages,” Technical Report, Department of Computer Science, CMU. 

643198/2-9 



256 KFOURY AND TIURYN 

GIANNINI, P., AND RONCHI DELLA ROCCA, S. (1988). Characterization of typings in 
polymorphic type discipline, in “Proceedings of IEEE 3rd LICS,” pp. 61-71. 

GIANNINI, P., AND RONCHI DELLA ROCCA, S. (1991), Type inference in polymorphic 
type discipline, in “Proceedings of the International Conference on Theoretical Aspects 
of Computer Software, Tohoku University, Sendai. Japan” (T. Ito and A. R. Meyer, 
Eds.), pp. 18-37, Lecture Notes in Computer Science, Vol. 526, Springer-Verlag, 
Berlin/New York. 

GIRARD, J.-Y. (1972), “Interprktation fonctionelle et tlimination des coupures de 
l’arithmttique d’ordre suptrieur,” Doctoral thesis, Universitt Paris VII. 

HENGLEIN, F. (1988), Type inference and semi-unification, in “Proceedings, ACM Symposium, 
LISP and Functional Programming,” pp. 184197. 

HENGLEIN. F.. AND MAIRSON, H. G. (1991). The complexity of type inference for higher-order 
typed lambda calculi, in “Proceedings, 18th ACM Symposium on Principles of 
Programming Languages,” pp. 119-130. 

HINDLEY. J. R. (1969), The principal type-scheme of an object in combinatory logic, Trans. 
Amer. Math. Sot. 146, 29. 

KANELLAKIS, P. C., MAIRSON, H. G., AND MITCHELL. J. C. (to appear). Unilication and ML 
type reconstruction, in “Computational Logic. Essays in Honor of Alan Robinson,” MIT 
Press. Preliminary versions appeared under the respective titles Polymorphic unification 
and ML typing (by Kanellakis and Mitchell) in “Proceedings of POPL 1989,” 
pp. 105-115, and Deciding ML typability is complete for deterministic exponential time 
(by Mairson), in “Proceedings of POPL 1990,” pp. 382401. 

KFOURY. A. J., TIURYN, J., AND URZYCZYN, P. (1988), A proper extension of ML with an 
effective type-assignment, in “Proceedings, 15th ACM Symposium, Principles of 
Programming Languages,” pp. 58-69. 

KFOURY, A. J., TIURYN, J., AND URZYCZYN. P. (to appear, a), Type-reconstruction in the 
presence of polymorphic recursion, in “ACM Transactions on Programming Languages 
and Systems.” Part of the results of this paper were presented in Computational 
consequence and partial solutions of a generalized unification problem, in “Proceedings of 
4th IEEE LICS, 1989,” pp. 98-105. 

KFOURY, A. J, TIURYN, 1.. AND URZYCZYN. P. (to appear, b), The undecidability of the semi- 
unification problem, Inform. Comput. A preliminary version appeared in “Proceedings of 
22th ACM STOC,” pp. 468477, May 1990. 

KFOURY, A. J., TIURYN, J.. AND URZYCZYN, P. (to appear, c), An analysis of ML typability, 
J. Assoc. Compur. Mach. A preliminary version appeared in “Proceedings, 15th Colloquim 
on Trees in Algebra and Programming, CAAP ‘90” (Arnold, Ed.), Lecture Notes in 
Computer Science, Vol. 431. Springer-Verlag, Berlin/New York, 1990. 

LEISS, H. (1987), On type inference for object-oriented programming languages, in 
“Proceedings, 1st Workshop on Computer Science Logic” (BGrger, Biining, and Richter, 
Eds.), Lecture Notes in Computer Science, Vol. 329, Springer-Verlag, Berlin/New York. 

LEIVANT, D. (1983), Polymorphic type inference, in “Proceedings of 10th ACM Symposium, 
Principles of Programming Languages,” pp. 88-98. 

LEIVANT. D. (1989), Stratified polymorphism (extended summary), in “Proceedings, 4th IEEE 
Symposium Logic in Computer Science,” pp. 3947. 

MCCRACKEN, N. (1984), The typechecking of programs with implicit type structure, in 
“Semantics of Data Types” (Kahn, McQueen, and Plotkin, Eds.), pp. 301-315, Lecture 
Notes in Computer Science, Vol. 173, Springer-Verlag, Berlin/New York. 

MILNER, R. (1978), A theory of type polymorphism in programming, J. Comput. System Sci. 
17, 348. 

MITCHELL, J. C. (1988), Polymorphic type inference and containment, Inform. Cornput 76, 
211. 



TYPE RECONSTRUCTION IN A-CALCULUS 257 

MYCROFT, A. (1984), Polymorphic type schemes and recursive detinition, in “International 
Symposium on Programming” (Paul and Robinet, Eds.), Lecture Notes in Computer 
Science, Vol. 167, Springer-Verlag, Berlin/New York. 

PFENNING, F. (1988), Partial polymorphic type inference and higher-order unification, in 

“Proceedings of Lisp and Functional Programing Conference.” pp. 153-163. 
REYNOLDS, J. (1974), Towards a theory of type structure, in “Proceedings, Colloque 

sur la Programmation,” pp. 408425, Lecture Notes in Computer Science, Vol. 19, 
Springer-Verlag, Berlin/New York. 

TIURYN, J. (1988), Representability of arithmetic functions in fragments of second-order 
I-calculus, manuscript. 

TIURYN, J. (1990), Type inference problems: A survey, in “Proceedings, International 
Symposium on Mathematical Foundations of Computer Science, Banska Bystrica, 
Czechoslovakia” (B. Rovan, Ed.), pp. 1055120, Lecture Notes in Computer Science, 
Vol. 452, Springer-Verlag, Berlin/New York. 

WAND, M. (1987), Complete type inference for simple objects, in “Proceedings, 2nd IEEE 
Symposium on Logic in Computer Science,” pp. 374. See alo Corrigendum: Complete 
type inference for simple types, in “Proceedings, 3rd IEEE Symposium on Logic in 
Computer Science,” p. 132. 


