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a b s t r a c t

Let {X, Xk,i; i ≥ 1, k ≥ 1} be a double array of nondegenerate i.i.d. random variables
and let {pn; n ≥ 1} be a sequence of positive integers such that n/pn is bounded away
from 0 and ∞. This paper is devoted to the solution to an open problem posed in Li et al.
(2010) [9] on the asymptotic distribution of the largest entry Ln = max1≤i<j≤pn

ρ̂(n)
i,j

 of the
sample correlation matrix 0n =


ρ̂

(n)
i,j


1≤i,j≤pn

where ρ̂
(n)
i,j denotes the Pearson correlation

coefficient between (X1,i, . . . , Xn,i)
′ and (X1,j, . . . , Xn,j)

′. We show under the assumption
EX2 < ∞ that the following three statements are equivalent:

(1) lim
n→∞

n2


∞

(n log n)1/4


F n−1(x) − F n−1

√
n log n
x


dF(x) = 0,

(2)


n
log n

1/2

Ln
P

→ 2,

(3) lim
n→∞

P

nL2n − an ≤ t


= exp


−

1
√
8π

e−t/2


, −∞ < t < ∞

where F(x) = P(|X | ≤ x), x ≥ 0 and an = 4 log pn − log log pn, n ≥ 2. To establish this
result, we present six interesting new lemmas which may be of independent interest.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction and the main result

This paper is devoted to the solution of an open problem posed by Li et al. [9] concerning the asymptotic distribution of
the largest entry of a sample correlationmatrix. Let n ≥ 2. Consider a p-variate population (p ≥ 2) represented by a random
vector X = (X1, . . . , Xp) with unknown mean µ = (µ1, . . . , µp), unknown covariance matrix 6, and unknown correlation
coefficient matrix R. Let Mn,p =


Xk,i

1≤k≤n,1≤i≤p be an n × p matrix whose rows are an observed random sample of size n

from the X population; that is, the rows ofMn,p are independent copies of X. Set X (n)
i =

n
k=1 Xk,i/n, 1 ≤ i ≤ p. Write

ρ̂
(n)
i,j =

n
k=1


Xk,i − X

(n)
i

 
Xk,j − X

(n)
j




n
k=1


Xk,i − X

(n)
i

2 n
k=1


Xk,j − X

(n)
j

2
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which is the Pearson correlation coefficient between the ith and jth columns ofMn,p. Set

0n =


ρ̂

(n)
i,j


1≤i,j≤p

which is the p × p sample correlation matrix obtained from the p columns ofMn,p.
At the origin of the current investigation is the statistical hypothesis testing problem studied by Jiang [6] based on the

asymptotic distribution of the test statistic

Ln = max
1≤i<j≤p

ρ̂(n)
i,j


which is the largest entry of the sample correlationmatrix0n.When both n and p are large, Jiang [6] considered the statistical
test with null hypothesis H0 : R = I, where I is the p × p identity matrix and obtained the asymptotic distribution of Ln as
n and p both approach infinity. If we assume that the columns of Mn,p are independent, all the ρ̂

(n)
i,j , 1 ≤ i < j ≤ p should

be close to 0. In other words, Ln should be small. Thus this null hypothesis asserts that the components of X = (X1, . . . , Xp)
are uncorrelated whereas when X has a p-variate normal distribution, this null hypothesis asserts that these components
of X are independent. Jiang [6] established two limit theorems concerning the test statistic Ln when p = pn ∼ γ −1n as
n → ∞ (0 < γ < ∞) and {X, Xk,i; i ≥ 1, k ≥ 1} is an array of independent and identically distributed (i.i.d.) nondegenerate
random variables. Write Xi = X1,i, i ≥ 1. In the first limit theorem, assuming that

E|X |
r < ∞ for some r > 30, (1.1)

Jiang [6] obtained the asymptotic distribution for Ln. Specifically, Jiang [6] proved that

lim
n→∞

P

nL2n − an ≤ t


= exp


−

1
√
8π

e−t/2


, −∞ < t < ∞ (1.2)

where the centering constants an are given by an = 4 log pn − log log pn, n ≥ 2. The limiting distribution in (1.2) is a type I
extreme value distribution.

As was stated in the abstract of Cai and Jiang [2], ‘‘Testing covariance structure is of significant interest in many areas of
statistical analysis and the construction of compressed sensingmatrices is an important problem in signal processing’’. Thus,
limit laws such as (1.2) have immediate statistical applications. In fact, Cai and Jiang [2] recently applied such asymptotic
results to the construction of compressed sensing matrices.

As was mentioned by Liu et al. [11] with reference to Hall [4], a widely held view is that the convergence rate to a
type I extreme value distribution is typically slow. In fact, Liu et al. [11, Theorem 1.2 and (1.11)] proved that the rate of
convergence in (1.2) is of order O ((log log n)/ log n) if E|X |

7 < ∞. However, under the assumption that E|X |
7 < ∞, Liu

et al. [11, Theorem 1.2] also showed that

sup
−∞<t<∞

P nL2n − an ≤ t

− Hn(t)

 = O

(log n)5/2/

√
n

,

where

Hn(t) = exp


−
p2n − pn

2
P

Z2

≥ an + t


and Z is a standard normal random variable.

Therefore, using Hn(t) to approach the distribution of Ln is preferable in practice since it achieves a much faster rate of
convergence than in (1.2). Moreover, Liu, et al. [11, Theorem 1.1] introduced amodified test statistic and showed that, under
the assumption that E|X |

7 < ∞, the new one also has a type I extreme value distribution, but with the rate of convergence
of O


(log n)5/2/

√
n

.

Applications of extreme limiting distributions are discussed briefly by Liu et al. [11] with reference to Galambos et al. [3]
and Leadbetter et al. [7].

In the second limit theorem, under the assumption that

E|X |
r < ∞ for all 0 < r < 30,

Jiang [6] proved the following strong limit theorem which is referred to as the strong law of the logarithm for Ln, n ≥ 2:

lim
n→∞


n

log n

1/2

Ln = 2 almost surely (a.s.). (1.3)

Throughout this paper, we let {pn; n ≥ 1} be a sequence of integers in [2, ∞) such that n/pn is bounded away from 0
and ∞; this condition is of course less restrictive than Jiang’s [6] condition limn→∞

n
pn

= γ ∈ (0, ∞).
Since the appearance of Jiang’s [6] paper, in subsequent papers by several authors, the moment condition (1.1) has been

gradually relaxed. Zhou [13, Theorem 1.1] showed that (1.2) holds if

x6P (|X1X2| ≥ x) → 0 as x → ∞. (1.4)
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Anothermoment condition for (1.2) to hold has been obtained recently by Liu et al. [11, Theorem 3.1] who showed that (1.2)
holds under the condition

n3P

|X1X2| ≥


n log n


→ 0 as n → ∞

which is equivalent to

x6

log3 x
P (|X1X2| ≥ x) → 0 as x → ∞. (1.5)

Recently, under the assumption that X is nondegenerate with

E|X |
2+δ < ∞ for some δ > 0.

Li et al. [9, Theorem 2.6] showed that the following three statements are equivalent:

lim
n→∞

n2


∞

(n log n)1/4


F n−1(x) − F n−1

√
n log n
x


dF(x) = 0, (1.6)


n

log n

1/2

Ln
P
−→ 2, (1.7)

lim
n→∞

P

nL2n − an ≤ t


= exp


−

1
√
8π

e−t/2


, −∞ < t < ∞ (1.8)

where F(x) = P(|X | ≤ x), x ≥ 0, and an = 4 log pn − log log pn, n ≥ 2. The statement (1.7) is referred to as the weak law
of the logarithm for Ln and (1.8) is the Jiang’s [6] asymptotic distribution (1.2) for Ln. Li et al. [9, Remark 2.3] showed that a
necessary condition for (1.6) to hold is

x6

log3/2 x
P(|X | ≥ x) → 0 as x → ∞ (1.9)

and a sufficient condition for (1.6) to hold is

x6

log x
P(|X | ≥ x) → 0 as x → ∞. (1.10)

From Example 2.2 of Li et al. [9], one can see that, for (1.6) to hold, (1.10) cannot be weakened to

lim sup
x→∞

x6

log x
P(|X | ≥ x) = c ∈ (0, ∞).

Li et al. [9, Remark 2.6] then raised the open problem as to whether or not the three statements above are still equivalent
under the weaker assumption that X is nondegenerate with

EX2 < ∞, (1.11)

and conjectured specifically that the implications (1.7) ⇒ (1.6) and (1.7) ⇒ (1.8) can both fail if it is only assumed that X
is nondegenerate with (1.11). This is what we call the second moment problem on the asymptotic distribution of the largest
entry of a sample correlation matrix.

The main result of this paper is the following theoremwhich provides a positive answer to this open problem and hence
gives a negative answer to each of the above conjectures.

Theorem 1.1. Let {X, Xk,i; i ≥ 1, k ≥ 1} be a double array of i.i.d. random variables. Suppose that n/pn is bounded away
from 0 and ∞. If X is nondegenerate with (1.11), then the three statements (1.6)–(1.8) above are equivalent.

Remark 1.1. (i) Clearly (1.4) holds if EX6 < ∞ which is substantially weaker than (1.1), and (1.5) is weaker than (1.4). By
Remarks 2.3 and 2.4 of Li et al. [9], (1.6) implies that (1.9) holds which of course ensures that

E|X |
r < ∞ for all 0 < r < 6. (1.12)

(ii) Note that we proved in Theorem 1.1 that assuming (1.11), the statements (1.6)–(1.8) are equivalent. We did not prove
that (1.11) implies (1.6)–(1.8). Now from the above discussion, (1.6) implies (1.11) and hence by Theorem 1.1, (1.6)
implies (1.7) and (1.8) (without assuming (1.11)).

(iii) Also from the above discussion, a necessary condition for (1.6)–(1.8) to all hold is (1.12), and a sufficient condition for
(1.6)–(1.8) to all hold is (1.10) (a fortiori, EX6 < ∞).
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(iv) The condition (1.12) is not sufficient for (1.6)–(1.8). For example, if

F(x) = 1 −
c(log x)α

x6
for all large xwhere 0 < c < ∞ and − ∞ < α < ∞,

then (1.12) holds and by using the same argument as in Example 2.2 of Li et al. [9], one can show that (1.6) fails if and
only if α ≥ 1. Thus by Theorem 1.1, (1.7) and (1.8) also fail whenever α ≥ 1.

We will prove Theorem 1.1 in Section 3. In Section 2, we present seven preliminary lemmas where six of them are
interesting new lemmas.

Li and Rosalsky [10, Theorem 2.4] proved that (1.3) holds under the assumption that X is nondegenerate with
∞
n=1

P


max
1≤i<j≤n

|XiXj| ≥

n log n


< ∞. (1.13)

For c ∈ (−∞, ∞) write

Wc,n = max
1≤i<j≤pn

 n
k=1


Xk,i − c

 
Xk,j − c

 and Wn = W0,n, n ≥ 1.

Under the assumption that EX4 < ∞, as in the proof of Theorem 2.4 of Li and Rosalsky [10], we see that (1.3) is equivalent
to

lim
n→∞

Wµ,n

σ 2
√
n log n

= 2 a.s.

(where µ = EX and σ 2
= E(X −µ)2) which by Theorem 2.3 of Li and Rosalsky [10] and Lemma 4.1 of Li et al. [9] is, in turn,

equivalent to (1.13). Then, by Remark 2.4 of Li et al. [9], we see that (1.13) is equivalent to
∞
n=1

n


∞

(n log n)1/4


F n−1(x) − F n−1

√
n log n
x


dF(x) < ∞. (1.14)

Since (1.3) implies (1.7) and, by the discussion above, (1.6) ensures that EX4 < ∞, we obtain the following strong limit
theorem for Ln by applying Theorem 1.1.

Theorem 1.2. Let {X, Xk,i; i ≥ 1, k ≥ 1} be a double array of i.i.d. random variables. Suppose that n/pn is bounded away
from 0 and ∞. If X is nondegenerate with (1.11), then the two statements (1.3) and (1.14) are equivalent.

2. Preliminary lemmas

To prove Theorem 1.1, we use the following seven preliminary lemmas. Lemma 2.5 is one of the remarkable Lévy
inequalities. The other six lemmas are new and may be of independent interest.

Lemma 2.1. Let {Y , Yn; n ≥ 1} be a sequence of i.i.d. nonnegative random variables such that EY = ν < ∞. Then, for any
given ϵ > 0, we have for n ≥ 1 that

P


n

k=1
Yk

n
> ν − ϵ

 ≥ 1 − e−δ(ϵ)n, (2.1)

where

δ(ϵ) =
ϵ2

2b2
∈ (0, ∞] and b = b(ϵ) = inf


y; ν −

ϵ

2
≤ EYI{Y ≤ y}


.

It follows that, for any given ϵ > 0 and q ≥ 1, we have

P


n

k=1
Yk

n
> ν − ϵ

 = 1 − o

n−q as n → ∞.

Proof. Since Y is a nonnegative random variable such that EY = ν < ∞, we see that

0 ≤ b < ∞ and ν −
ϵ

2
≤ EYI{Y ≤ b} ≤ ν.
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Note that for n ≥ 1,

P


n

k=1
Yk

n
> ν − ϵ

 ≥ P


n

k=1
YkI{Yk ≤ b}

n
> ν − ϵ



= P


n

k=1
(YkI{Yk ≤ b} − EYI{Y ≤ b})

n
> ν − EYI{Y ≤ b} − ϵ



≥ P


n

k=1
(YkI{Yk ≤ b} − EYI{Y ≤ b})

n
> −

ϵ

2



= 1 − P


n

k=1
(YkI{Yk ≤ b} − EYI{Y ≤ b})

n
≤ −

ϵ

2


= 1 − P


n

k=1

((−Yk)I{Yk ≤ b} − E(−Y )I{Y ≤ b}) ≥ n ·
ϵ

2


,

and −b ≤ (−Yk)I{Yk ≤ b} ≤ 0, k = 1, 2, . . . , n. Thus, by Hoeffding’s [5] inequality (see, e.g., Addendum 2.6.1 of
Petrov [12]), we have for n ≥ 1 that

P


n

k=1

((−Yk)I{Yk ≤ b} − E(−Y )I{Y ≤ b}) ≥ n ·
ϵ

2


≤ exp


−

2n2


ϵ
2

2
nb2


= e−δ(ϵ)n

which ensures that (2.1) holds. �

Lemma 2.2. Let {X, Xk,i; i ≥ 1, k ≥ 1} be a double array of i.i.d. random variables such that EX = 0 and EX2
= 1. Then, for

any given ϵ > 0

lim
n→∞

nP

n


n
log n

1/2
X (n)

1 X
(n)
2


n

k=1
X2
k,1


n

k=1
X2
k,2

> ϵ

 = 0. (2.2)

Proof. Since EX2
= 1, by Lemma 2.1 we have that

P


n

k=1
X2
k,1

n
>

1
2

 = P


n

k=1
X2
k,2

n
>

1
2


= 1 − o


n−3 as n → ∞.

For n ≥ 1, write

An =


n

k=1
X2
k,1

n
>

1
2




n
k=1

X2
k,2

n
>

1
2

 .

Then

P (An) =

1 − o


n−32

= 1 − o

n−3 and P


Ac
n


= o


n−3 as n → ∞.
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Note that X
(n)
1 and X

(n)
2 are independent and

E

X

(n)
1

2
= E


X

(n)
2

2
= 1/n.

For any given ϵ > 0, we thus have that

nP

n


n
log n

1/2
X (n)

1 X
(n)
2


n

k=1
X2
k,1


n

k=1
X2
k,2

> ϵ



≤ nP


n


n

log n

1/2
X (n)

1 X
(n)
2


n

k=1
X2
k,1


n

k=1
X2
k,2

> ϵ




An

+ nP

Ac
n



≤ nP

n


n
log n

1/2
X (n)

1 X
(n)
2


√

(1/2)n
√

(1/2)n
> ϵ

 An

+ o

n−2

≤ nP


2


n
log n

1/2 X (n)
1 X

(n)
2

 > ϵ


+ o


n−2

≤ n ×

E

2


n
log n

1/2 X (n)
1 X

(n)
2

2

ϵ2
+ o


n−2

= n ×

4


n
log n


×

1
n ×

1
n

ϵ2
+ o


n−2

= O


1
log n


,

which yields (2.2). �

Lemma 2.3. Let {X, Xn; n ≥ 1} be a sequence of i.i.d. random variables such that EX = 0 and EX2
= 1. Let {X ′, X ′

n; n ≥ 1} be
an independent copy of {X, Xn; n ≥ 1}. Then, for any given ϵ > 0

P


n

k=1
(Xk − X ′

k)
2

n
k=1

X2
k

> 1 − ϵ

 = 1 − o

n−1 as n → ∞. (2.3)

Proof. Note that
n

k=1
(Xk − X ′

k)
2

n
k=1

X2
k

= 1 −

2
n

k=1
XkX ′

k

n
k=1

X2
k

+

n
k=1

(X ′

k)
2

n
k=1

X2
k

≥ 1 −

2
n

k=1
XkX ′

k

n
k=1

X2
k

.
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We thus have that
 n
k=1

XkX ′

k


n

k=1
X2
k

< ϵ/2

 ⊆


n

k=1
(Xk − X ′

k)
2

n
k=1

X2
k

> 1 − ϵ

 . (2.4)

Since EX2
= 1, by Lemma 2.1 we have that

P


n

k=1
X2
k

n
>

1
2

 = 1 − o

n−2 as n → ∞.

Since EX = 0, EX2
= 1, and X ′ is an independent copy of X , we have that E(XX ′) = (EX)2 = 0 and E(XX ′)2 =


EX2

2
= 1.

It follows from Theorem 4 of Baum and Katz [1] that

P


 n
k=1

XkX ′

k


n

≥ ϵ/4

 = o

n−1 as n → ∞

and hence that

P


 n
k=1

XkX ′

k


n

k=1
X2
k

≥ ϵ/2

 = P


 n
k=1

XkX ′

k


n

k=1
X2
k

≥ ϵ/2,
n

k=1

X2
k > n/2

+ P


 n
k=1

XkX ′

k


n

k=1
X2
k

≥ ϵ/2,
n

k=1

X2
k ≤ n/2



≤ P


 n
k=1

XkX ′

k


n

≥ ϵ/4

+ P


n

k=1

X2
k ≤ n/2



= o

n−1 as n → ∞.

So, in view of (2.4), the conclusion (2.3) is established. �

Lemma 2.4. Let {X, Xk,i; i ≥ 1, k ≥ 1} be a double array of i.i.d. random variables such that EX = 0 and EX2
= 1. Let

{X ′, X ′

k,i; i ≥ 1, k ≥ 1} be an independent copy of {X, Xk,i; i ≥ 1, k ≥ 1}. Write X̂ = X − X ′, X̂k,i = Xk,i − X ′

k,i, i ≥ 1, k ≥ 1.
If, for some constant 0 < a < ∞,

lim
n→∞

nP




n
log n

1/2

 n
k=1

Xk,1Xk,2


n

k=1
X2
k,1


n

k=1
X2
k,2

> a

 = 0, (2.5)

then

lim
n→∞

nP




n
log n

1/2

 n
k=1

X̂k,1X̂k,2


n

k=1
X̂2
k,1


n

k=1
X̂2
k,2

> 8a

 = 0. (2.6)
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Proof. Since EX2
= 1, by Lemma 2.3 we have that

P


n

k=1
X̂2
k,1

n
k=1

X2
k,1

>
1
2

 = P


n

k=1
X̂2
k,2

n
k=1

X2
k,2

>
1
2


= 1 − o


n−1 as n → ∞.

For n ≥ 2, write

Bn =


n

k=1
X̂2
k,1

n
k=1

X2
k,1

>
1
2




n
k=1

X̂2
k,2

n
k=1

X2
k,2

>
1
2

 .

Then

P (Bn) =

1 − o


n−12

= 1 − o

n−1 and P


Bc
n


= o


n−1 as n → ∞.

We thus see that (2.5) implies that

nP




n
log n

1/2

 n
k=1

Xk,1Xk,2


n

k=1
X̂2
k,1


n

k=1
X̂2
k,2

> 2a



≤ nP





n
log n

1/2

 n
k=1

Xk,1Xk,2


n

k=1
X̂2
k,1


n

k=1
X̂2
k,2

> 2a




Bn

+ nP

Bc
n



≤ nP





n
log n

1/2

 n
k=1

Xk,1Xk,2


(1/2)

n
k=1

X2
k,1


(1/2)

n
k=1

X2
k,2

> 2a




Bn

+ o(1)

≤ nP




n
log n

1/2

 n
k=1

Xk,1Xk,2


n

k=1
X2
k,1


n

k=1
X2
k,2

> a

+ o(1)

→ 0 as n → ∞.

Note that {X ′, X ′

k,i; i ≥ 1, k ≥ 1} is an independent copy of {X, Xk,i; i ≥ 1, k ≥ 1} and

n
k=1

X̂k,1X̂k,2 =

n
k=1

Xk,1Xk,2 −

n
k=1

X ′

k,1Xk,2 −

n
k=1

Xk,1X ′

k,2 +

n
k=1

X ′

k,1X
′

k,2, n ≥ 1.
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It thus follows that

nP




n
log n

1/2

 n
k=1

X̂k,1X̂k,2


n

k=1
X̂2
k,1


n

k=1
X̂2
k,2

> 8a

 ≤ nP




n
log n

1/2

 n
k=1

Xk,1Xk,2


n

k=1
X̂2
k,1


n

k=1
X̂2
k,2

> 2a



+ nP




n
log n

1/2

 n
k=1

X ′

k,1Xk,2


n

k=1
X̂2
k,1


n

k=1
X̂2
k,2

> 2a



+ nP




n
log n

1/2

 n
k=1

Xk,1X ′

k,2


n

k=1
X̂2
k,1


n

k=1
X̂2
k,2

> 2a



+ nP




n
log n

1/2

 n
k=1

X ′

k,1X
′

k,2


n

k=1
X̂2
k,1


n

k=1
X̂2
k,2

> 2a



= 4nP




n
log n

1/2

 n
k=1

Xk,1Xk,2


n

k=1
X̂2
k,1


n

k=1
X̂2
k,2

> 2a


→ 0 as n → ∞,

i.e., (2.6) holds. �

A sequence {V1, . . . , Vn} of random variables with values in R is called a symmetric sequence if, for every choice of signs
±, (±V1, . . . ,±Vn) has the same distribution as (V1, . . . , Vn) in Rn. Equivalently, (V1, . . . , Vn) has the same distribution as
(ε1V1, . . . , εnVn) in Rn where {ε1, . . . , εn} is a Rademacher sequence which is independent of (V1, . . . , Vn). Recalling the
notation and assumptions in Lemma 2.4, we see that {V (n)

1 , . . . , V (n)
n } is clearly a symmetric sequence of random variables

where

V (n)
j =

X̂j,1X̂j,2
n

k=1
X̂2
k,1


n

k=1
X̂2
k,2

, j = 1, . . . , n.

The following result is one of the remarkable Lévy inequalities; see Ledoux and Talagrand [8, Proposition 2.3].

Lemma 2.5. Let {V1, . . . , Vn} be a symmetric sequence of random variables with values in R. Then, for every t > 0,

P

max
1≤j≤n

|Vj| > t


≤ 2P

 n
k=1

Vk

 > t


.

Lemma 2.6. Let {X, Xk,i; i ≥ 1, k ≥ 1} be a double array of i.i.d. random variables with EX2
= 1. Then, for any given constant

0 < a < ∞,

nP

n1/4
max
1≤j≤n

Xj,1Xj,2


n
k=1

X2
k,1


n

k=1
X2
k,2

> a

 = O(1) as n → ∞ (2.7)
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if and only if

n2P

n1/4

X1,1X1,2


n
k=1

X2
k,1


n

k=1
X2
k,2

> a

 = O(1) as n → ∞. (2.8)

Proof. For n ≥ 1, write

Cn,j =

n1/4

Xj,1Xj,2


n
k=1

X2
k,1


n

k=1
X2
k,2

> a

 , j = 1, 2, . . . , n.

Since, for n ≥ 1,

nP

n1/4
max
1≤j≤n

Xj,1Xj,2


n
k=1

X2
k,1


n

k=1
X2
k,2

> a

 = nP


n

j=1

Cn,j



≤ n
n

j=1

P

Cn,j


= n2P

Cn,1



= n2P

n1/4

X1,1X1,2


n
k=1

X2
k,1


n

k=1
X2
k,2

> a

 ,

we see that (2.8) implies (2.7). On the other hand, we have that for n ≥ 1,

nP

n1/4
max
1≤j≤n

Xj,1Xj,2


n
k=1

X2
k,1


n

k=1
X2
k,2

> a

 = nP


n

j=1

Cn,j



≥ n


n

j=1

P

Cn,j

−


1≤i<j≤n

P

Cn,i ∩ Cn,j



= n2P

Cn,1


−

n2(n − 1)
2

P

Cn,1 ∩ Cn,2


≥ n2P


Cn,1


− n3P


Cn,1 ∩ Cn,2


. (2.9)

We now deal with n3P

Cn,1 ∩ Cn,2


. Let An, n ≥ 1 be exactly as in the proof of Lemma 2.2, i.e.,

An =


n

k=1
X2
k,1

n
>

1
2




n
k=1

X2
k,2

n
>

1
2

 , n ≥ 1.

Since EX2
= 1, it follows from Lemma 2.1 that

P (An) =

1 − o


n−32

= 1 − o

n−3 and P


Ac
n


= o


n−3 as n → ∞.
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Note that X1,1X1,2 and X2,1X2,2 are independent. We thus have that

P

Cn,1 ∩ Cn,2


= P


n1/4

X1,1X1,2


n
k=1

X2
k,1


n

k=1
X2
k,2

> a




n1/4

X2,1X2,2


n
k=1

X2
k,1


n

k=1
X2
k,2

> a





= P


n1/4

X1,1X1,2


n
k=1

X2
k,1


n

k=1
X2
k,2

> a




n1/4

X2,1X2,2


n
k=1

X2
k,1


n

k=1
X2
k,2

> a




An



+ P


n1/4

X1,1X1,2


n
k=1

X2
k,1


n

k=1
X2
k,2

> a




n1/4

X2,1X2,2


n
k=1

X2
k,1


n

k=1
X2
k,2

> a




Ac
n


≤ P


n1/4

X1,1X1,2


√
(1/2)n

√
(1/2)n

> a


n1/4

X2,1X2,2


√
(1/2)n

√
(1/2)n

> a


An


+ o


n−3

≤ P


2|X1,1X1,2|

n3/4
> a


2
X2,1X2,2


n3/4

> a


+ o


n−3

= P


2
X1,1X1,2


n3/4

> a


P


2
X2,1X2,2


n3/4

> a


+ o


n−3

≤


4E

X1,1X1,2

2
a2n6/4


4E

X2,1X2,2

2
a2n6/4


+ o


n−3

= O

n−3

and so we have by (2.9) that

n2P

n1/4

X1,1X1,2


n
k=1

X2
k,1


n

k=1
X2
k,2

> a

 ≤ nP

n1/4
max
1≤j≤n

Xj,1Xj,2


n
k=1

X2
k,1


n

k=1
X2
k,2

> a

+ O(1).

The conclusion (2.8) then follows from (2.7). �

Lemma 2.7. Let {X, Xk,i; i ≥ 1, k ≥ 1} be a double array of i.i.d. random variables with EX2
= 1. If (2.8) holds for some

constant 0 < a < ∞, then

E|X |
r < ∞ for all 0 < r <

8
3
. (2.10)

Proof. Since EX2
= 1, by the weak law of large numbers we see that

P


n

k=2
X2
k,1

n
< 1.8

 = P


n

k=2
X2
k,2

n
< 1.8

 → 1 as n → ∞.

For n ≥ 1, write

Dn =


n

k=2
X2
k,1

n
< 1.8




n
k=2

X2
k,2

n
< 1.8

 .
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Then there exists a positive integer n0 such that, for all n ≥ n0,

P (Dn) ≥ 0.5,
a2

n1/2
≤ 0.19,

and 
(1.8a)2n3/2 + 4a4n + 2a2n1/2

≤ 2an3/4.

Let βn =


(1.8a)2n3/2 + 4a4n, n ≥ 1. Note that Dn, X1,1, and X1,2 are independent. We thus have that for all n ≥ n0

P

n1/4 |X1,1X1,2|
n

k=1
X2
k,1


n

k=1
X2
k,2

> a


≥ P


X2
1,1X

2
1,2 >

a2

n1/2

n
k=1

X2
k,1

n
k=1

X2
k,2


Dn



≥ P


X2
1,1X

2
1,2 >

a2

n1/2
(X2

1,1 + 1.8n)(X2
1,2 + 1.8n)


Dn


≥ 0.5P


X2
1,1X

2
1,2 >

a2

n1/2


X2
1,1X

2
1,2 + 1.8n(X2

1,1 + X2
1,2) + (1.8n)2


≥ 0.5P


X2
1,1X

2
1,2 > 0.19X2

1,1X
2
1,2 + 1.8a2n1/2(X2

1,1 + X2
1,2) + (1.8a)2n3/2

= 0.5P

(0.9X2

1,1 − 2a2n1/2)(0.9X2
1,2 − 2a2n1/2) > (1.8a)2n3/2

+ 4a4n


= 0.5P

(0.9X2

1,1 − 2a2n1/2)(0.9X2
1,2 − 2a2n1/2) > β2

n


≥ 0.5P


0.9X2

1,1 − 2a2n1/2 > βn, 0.9X2
1,2 − 2a2n1/2 > βn


= 0.5


P

0.9X2 > βn + 2a2n1/22

≥ 0.5

P

0.9X2 > 2an3/42 .

Thus it follows from (2.8) that

lim sup
n→∞


nP

0.9X2 > 2an3/42

= lim sup
n→∞

n2 P 0.9X2 > 2an3/42 < ∞

and hence that

lim sup
n→∞

nP

0.9X2 > 2an3/4 < ∞,

which is equivalent to

lim sup
x→∞

x4/3P


0.9
2a


X2 > x


< ∞.

It now is easy to verify that

E

X2(4/3)−δ

< ∞ for all 0 < δ < 4/3,

thereby proving (2.10). �

3. Proof of Theorem 1.1

With the preliminaries accounted for, Theorem 1.1 may be proved.

Proof of Theorem 1.1. Since X is nondegenerate with (1.11), we see that

0 < σ 2
= E(X − µ)2 < ∞ where µ = EX .

Note that, for all i and j, the Pearson correlation coefficient between


X1,i−µ

σ
, . . . ,

Xn,i−µ

σ

′

and


X1,j−µ

σ
, . . . ,

Xn,j−µ

σ

′

is the

exactly same as the Pearson correlation coefficient between

X1,i, . . . , Xn,i

′ and X1,j, . . . , Xn,j
′. We thus can assume that,

without loss of generality, EX = 0 and EX2
= 1.
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Since n/pn is bounded away from 0 and ∞, we see that

lim
n→∞

an
4 log n

= 1.

Thus (1.8) implies that
n

log n


L2n

P
−→ 4

whence the implication (1.8) ⇒ (1.7) follows.
By Remarks 2.3 and 2.4 of Li et al. [9], (1.6) implies that

x6

log3/2 x
P(|X | ≥ x) → 0 as x → ∞

which ensures in particular that EX4 < ∞. By Theorem 2.6 of Li et al. [9], the implication (1.6) ⇒ (1.8) follows.
We thus only need to show that (1.7) implies (1.6). Clearly, it follows from (1.7) that

lim
n→∞

P


n

log n

1/2

Ln > 3


= 0

which implies that

lim
n→∞

P


n

log n

1/2

max
1≤i≤pn/2

ρ̂(n)
2i−1,2i

 > 3


= 0. (3.1)

Since ρ̂
(n)
2i−1,2i, 1 ≤ i ≤ pn/2, are i.i.d. random variables, (3.1) ensures that

lim
n→∞

(pn/2) P


n

log n

1/2 ρ̂(n)
1,2

 > 3


= 0.

Since n/pn is bounded away from 0 and ∞, we have that

lim
n→∞

nP


n

log n

1/2 ρ̂(n)
1,2

 > 3


= 0. (3.2)

Note that for n ≥ 1,
n

k=1


Xk,j − X

(n)
j

2
=


n

k=1

X2
k,j


− n


X

(n)
j

2
≤

n
k=1

X2
k,1, j = 1, 2

and
n

k=1


Xk,1 − X

(n)
1

 
Xk,2 − X

(n)
2


=


n

k=1

Xk,1Xk,2


− nX

(n)
1 X

(n)
2 .

It thus follows that for n ≥ 1,

ρ̂(n)
1,2

 =

 n
k=1


Xk,1 − X

(n)
1

 
Xk,2 − X

(n)
2


n

k=1


Xk,1 − X

(n)
1

2 n
k=1


Xk,2 − X

(n)
2

2

≥

 n
k=1


Xk,1 − X

(n)
1

 
Xk,2 − X

(n)
2


n

k=1
X2
k,1


n

k=1
X2
k,2

≥

 n
k=1

Xk,1Xk,2


n

k=1
X2
k,1


n

k=1
X2
k,2

−

n
X (n)

1 X
(n)
2


n

k=1
X2
k,1


n

k=1
X2
k,2

.
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Then by (3.2) and Lemma 2.2, we have that

nP




n
log n

1/2

 n
k=1

Xk,1Xk,2


n

k=1
X2
k,1


n

k=1
X2
k,2

> 4



≤ nP


n

log n

1/2 ρ̂(n)
1,2

 > 3


+ nP

n


n
log n

1/2
X (n)

1 X
(n)
2


n

k=1
X2
k,1


n

k=1
X2
k,2

> 1


→ 0 as n → ∞,

which, by applying Lemma 2.4, implies that (2.6) holds with a = 4. It now follows from Lemma 2.5 and (2.6) that

lim
n→∞

nP




n
log n

1/2 max
1≤j≤n

 X̂j,1√
2

X̂j,2
√
2


n

k=1


X̂k,1
√
2

2 n
k=1


X̂k,2
√
2

2 > 32



= lim
n→∞

nP




n
log n

1/2 max
1≤j≤n

X̂j,1X̂j,2


n

k=1
X̂2
k,1


n

k=1
X̂2
k,2

> 32



≤ 2 lim
n→∞

nP




n
log n

1/2

 n
j=1

X̂j,1X̂j,2


n

k=1
X̂2
k,1


n

k=1
X̂2
k,2

> 32


= 0. (3.3)

Note that limn→∞ n1/4/(n/ log n)1/2 = 0. It thus follows from (3.3) that

lim
n→∞

nP

n1/4
max
1≤j≤n

 X̂j,1√
2

X̂j,2
√
2


n

k=1


X̂k,1
√
2

2 n
k=1


X̂k,2
√
2

2 > 32

 = 0. (3.4)

Clearly,

X̂/

√
2, X̂k,i/

√
2; i ≥ 1, k ≥ 1


is a double array of i.i.d. random variables with E


X̂/

√
2
2

= 1. By applying
Lemma 2.6, (3.4) yields

lim sup
n→∞

n2P

n1/4

 X̂1,1√
2

X̂1,2
√
2


n

k=1


X̂k,1
√
2

2 n
k=1


X̂k,2
√
2

2 > 32

 < ∞,

which, by applying Lemma 2.7, ensures, in particular, that

E


|X − X ′
|

√
2

r

= E


|X̂ |
√
2

r

< ∞ for all 0 < r < 8/3. (3.5)

It follows from (3.5) and the weak symmetrization inequality

P(|X − median(X)| > t) ≤ 2P(|X − X ′
| > t) for all t ≥ 0
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that

E|X |
r < ∞ for all 0 < r < 8/3.

Since 2 < 2 + (1/3) < 8/3, by applying Theorem 2.6 of Li et al. [9], (1.6) follows from (1.7). This completes the proof of
Theorem 1.1. �
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