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Abstract

In modelling application, different model structures may be equally reliable in terms of calibration ability but they may produce
different uncertainty levels; moreover, available data during model calibration may influence the uncertainty linked to the
predictions of the same modelling structure. In the present paper, Bayesian model-averaging was applied to several flood damage
estimation models in order to identify the best model combination for urban flooding distribution analysis in Palermo city center
(Italy). During the analysis, was taken into account the effect of the available data growth on the model uncertainty with respect to
the different combination of models outputs.
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1. Introduction

As result of the ongoing climate change and imperviousness of urban environment, frequency and impacts of urban
flooding have increased in the last decades rising the interest of researchers and practitioners on this topic. A
sustainable management of flooding in urban areas plays an important role in protecting people safety and their socio-
economic activities. According to a proactive management of natural disasters, the hydraulic analysis of urban
flooding phenomena and the evaluation of the expected damages offer essential information both for stakeholders and
for involved population. A quick estimation of flood damage may support the first ones in allocating resources for
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recovery and reconstruction after a flooding event or in planning adequate flood control measures in long term and in
carrying out reliable cost-benefit analysis of these measures [1]. At the same time the knowledge about the expected
consequences of a flooding may facilitate the birth of a flood resilient society, that is the preparedness of involved
people about flood risks and damages and how to act in the event of a flood [2]. The international literature includes
several procedures for flood damage estimation in urban areas which often differ about methods adopted, aims pursued
and availability of source data required. A rough classification can be done between ex-post or ex-ante analysis. In
ex-post analysis, a damage appraisal at local scale is obtained by accounting in detail the object-specific damages after
a flooding event. Ex-ante analysis provides the expected damage for a potential flooding event in the investigated
area. The expected damage results from an a-priori appraisal obtained by interpolating real damage data related to
historical flooding events [3,], or by accounting the effects of flood in terms of the depreciation of assets (based on
historical values or replacement values) or a percentage of the market value of the flooded properties [4].

In this kind of analysis, the expected flood damage is usually evaluated by means of damage functions [5]. Damage
functions describe the relationship between the level of damage and the hydraulic characteristics of flood (e.g. the
flooding depth, the combination of water depth and velocity, the duration [1], or the load of sediments) with respect
to different land uses, characteristics and types of harmed goods (buildings, household furnishings, vehicles, etc.), and
socio-economic conditions of the affected area [4]. The analysis is usually focused only on direct tangible damages of
public and private properties (e.g., buildings, cars, roads) as a function of inundation depth. Direct tangible damage is
easily turned into monetary costs and related to flooding hydraulic features [3, 7]. Depth-damage functions are
normally defined by interpolating flooding depth and damage data usually obtained by systematic survey procedures
that analyze historical flood events, insurance claims data, or synthetic damage data. Several regression laws with
different level of simplification can be used as depth-damage functions thus influencing the damage appraisal.
Moreover, flooding data are often piecemeal, affected by measuring errors and spatially aggregated [7, 8]. In
consequence, the flood damage assessment is usually affected by a degree of intrinsic uncertainty that cannot be
realistically eliminated [9]. Despite the tremendous amount of resources invested in developing a model, no one can
convincingly claim that any particular model in existence today is superior to other models for all type of applications
and under all conditions. Different models have strengths in capturing different aspects of physical processes. Relying
on a single model often leads to overestimates the confidence and increases the statistical bias of the forecast. This has
motivated a number of researchers to advocate multi-model methods. Bayesian model averaging (BMA) is a statistical
procedure that looks to overcome the limitations of a single model by combining a number of competing models into
a single new model forecast [10]. BMA predictions are weighted averages of the individual predictions from the
competing models. The BMA weights, all positive and summing up to 1, reflect relative model performance because
they are the probabilistic likelihood measures of a model being correct given the observations. This method showed
that a pooled forecast of competing models could outperform any single model forecast. BMA also provides a more
realistic description of the predictive uncertainty that accounts for both between-model variances and in-model
variances [10, 11]. Recently, BMA has been used in weather forecasting [12], in groundwater simulation, and to
estimate the uncertainty of hydrological model structures [10, 13].

This paper explores the use of BMA for flood damage predictions from different flood damage estimation models
(depth damage curves). We are interested in how BMA scheme can be used to improve both the accuracy and
reliability of the damage analysis predictions in urban area. To this aim the uncertainty linked to the choice of the
depth-damage function adopted in the damage analysis was investigated by analyzing and comparing the predictions
of four different depth damage functions (individual models) and of a BMA multi-model ensemble with the real
damage data observed in a case study watershed. Particularly, BMA was applied to identify more reliable damage
predictions for urban flooding occurring in Palermo city center (Italy).

2. The Bayesian Model Averaging (BMA)

The Bayesian Model Averaging (BMA) is a statistical methodology that aims to combine inferences and predictions
of several different models and to jointly assess their predictive uncertainty [14]. To describe Bayesian Model
Averaging methodology, consider a quantity, y, to be forecasted, such as the magnitude of the flooding damage for a
given flooding depth. Assume we have a set of K models denoted by My with k=1, 2,..., K, giving us independent
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model forecasts and let D the observed values of y. According to the given observed data D, the model ensemble
posterior density function (PDF) of y is given by the BMA method as:

K
P(Ysma |D) = D _p(y My, D)- p(M; | D) e
k=1

where p(y | Mk,D) is the posterior distribution of y on the condition of the given sample D and model My and
p(Mk | D) is the posterior model probability (PMP)i of My or the probability that the model M is the optimal model
on the condition of the given data D. (PMP)i represents the likelihood of model My being the correct model or the
weights w, = p(Mk | D) of model My. According to the Bayes’ law the weight, w, related to My can be expressed as
follow:

w, =p(M, | D)= KP(D |M, )-p(M,) ?)

> 0 IM,) p(M,)

where p(Mk) is the prior probability of the model My and p(D | Mk) is the marginal likelihood of the model M. In
the present study we worked with the log-likelihood function of Eq. 2 because more easily to compute than the
likelihood function itself. According to Eq. 1, the posterior mean and the variance of the BMA prediction ygy, can
be expressed as:

K
YBMA |D zp My |D I (Y|Mks dY Zwkﬂk 3)
k=1 k=1
K K 2 K ,
Var[ygya |D]= ) w, '(Uk - kZIWkUk] + ZWkO'k “4)
k=1 = k=1

where 7, and 0'1% are the expectation and the variance of y, respectively, on the condition of the given sample D and
model Mk. The posterior mean of the BMA prediction, is usually used as quantitative forecasting, and is obtained by
weighting the individual model predictions 7, by the likelihood wi that the individual model My is the optimal model
on the condition of the given data D [12, 13]. The variance of the BMA prediction,(Eq. 4) is essentially obtained as
sum of two terms: the first one, denotes the variance between models, while the second one, expresses the weighted
average of the within model variance. It represents an important uncertainty measure that better describes the
predictive uncertainty than in a non-BMA scheme where uncertainty is estimated based only on the variance between
models and consequently results in under-dispersive predictions [10]. In summary, the application of BMA scheme
requires to evaluate the posterior distribution of'y, p(y (M, D), and the weight, wy, for each model being considered
in the ensemble.

3. Methodology application

In the present study the Bayesian Model Averaging methodology was applied for account for the uncertainty linked
to the structure of the damage curve adopted in the flood damage appraisal. To this aim, for each historical flooding
event analyzed, the simulated damage obtained by 4 different formulations of damage curve functions such as linear
(POLY1), polynomial-2ord (POLY?2), exponential (EXP) and power with upper limit (POWER) and by the prediction
of BMA methodology were compared to measured damage data and their inherent uncertainty was analyzed. The
analysis was applied to a real case study, the Centro Storico catchment of Palermo (Italy), the oldest part of the city,
strongly urbanized and with a very old drainage system, where local surface flooding due to the system insufficiency
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often occurs even for high-frequency rainfalls. During 1993-2008, several parts of the watershed were affected by
about 30 flooding events due to the system’s surcharge [8, 9]. A detailed database on flooded area, water depth and
volume, duration and damaged properties have been collected for these events by querying fire brigades and insurance
companies [8]. Fig. 1 shows together with the damage curve obtained by the application of BMA methodology the
four formulations of damage curves for vehicles adopted in the present study. Those functions are the median damage
curves of a set of 464 families of curves obtained by adopting the least squares minimization approach to interpolate
insurance claims dataset related to the historical flooding events affecting the investigated watershed by excluding
information drawn from one flooding location or one flooding event. For more details see [7].
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Fig. 1. Depth-damage curves and measured damages for vehicles related to the case study

In literature several hypothesis are usually make on the posterior distribution, p(y | Mk,D), and on the prior
probability P(Mk) of the model M for an easily BMA implementation [10, 14]. In the present study, some of those
assumptions were made to carry out the analysis. According to the original BMA method [12], for each individual
model (damage curve) My and for each historical flooding event analyzed, the posterior distribution of y, p(y (M, D)
, was assumed Gaussian with mean 44 and variance of equal to mean and variance of the individual model prediction
yk. In the present study the Gaussian assumption was made for computational convenience. BMA scheme in fact
could be applied by assuming other probability distributions thanks to the adoption of statistical techniques such as
Markov Chain Monte Carlo (MCMC) method capable of simulating any complex probability distribution [10].
However using different statistical distribution to describe p(y | Mk,D) resulted in very similar conclusions as the
normal conditional distribution presented in the study [10]. Moreover, to compute model weights was made the
hypothesis regarding the Gaussian distribution of the residuals between the model and the observations assuming the
null average and variance O'ik [21]. According to such hypothesis, the term p(D | Mk) presents in the Eq. 2 can be
written in the multiplicative form as follow:

[
p(DIM, )= ﬁ;exp[ 2, ]

2
i=l 4270

®)

where, for the considered historical event, y%( are the modeling responses corresponding to the m available
measurements Dj of flooding damage in the analyzed watershed, and 0'2 . is the variance of the k™ model residual.
The application of Eq. 5 is based on the hypothesis that residuals are homoscedastic, independent and identically
distributed in time. That hypothesis should be verified considering that the probability distribution of damage and of
damage residuals is usually non-Gaussian. Therefore, for each historical flood event, both modeled and observed
damage data were pre-processed using the Box—Cox transformation prior to the BMA procedure, so that the
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transformed variables were close to the Gaussian distribution [10, 16]. According to the previous hypothesis, the
individual model weights wi were obtained solving Eq. 2 by a Bayesian updating approach based on a recursive
definition of Bayes law.

According to this approach the model weights, wi, resulted as a weighted average of its current forecast
performance weighted by the conditional probabilities of the previous step. Namely, at first step, the weights wi were
obtained considering as observed data D the damages related to the first historical flooding event occurring in the
analyzed watershed, and assuming equal to 1/K the prior probability p(Mk)of all individual model My. At second
step, individual model weights wix were obtained by Eq. 2 considering the damages related to the second historical
flooding event as observed data D, and assuming as prior probability p(Mk)of the model My, the related weight
obtained in the previous step and so on. At the end of the updating approach were obtained the weights of the individual
models taking into account the information linked to all flooding event monitored in the watershed. Fig. 2 illustrates
an example of how the BMA methodology produces a multi-model forecast PDF. Fig. 2b shows the individual model
weights obtained at the end of the Bayesian updating approach: the exponential damage curve (EXP) obtained the
higher likelihood to be the best model with weight equal to 0.5661 while the polynomial -2ord (POLY2) presented
the lower likelihood equal to 0.0623.

To evaluate the performance of model predictions two measures associated with accuracy and forecast skill were
computed (Eq. 6) on flooding damage values in original space (not the Box-C ox transformed space): the percentage
bias (PBIAS) and the percentage root mean square error (PRMSE) computed as the percentage improvements of
RMSE over the reference values RMSE* related to the best individual model prediction.

m

Z(D ¥ Z(D vt

PBIAS=100%*| =L —— | PRMSE =100%*| 1—

m
S
i=1

6
RMSE * ©

PBIAS is an accuracy measure taking into account the error between a prediction and the corresponding
observation. It measures the average tendency of simulated values to be larger or smaller than their observed ones.
The optimal value of PBIAS is zero, with low magnitude values indicating accurate model simulations. Positive values
indicate overestimation bias, whereas negative values indicate model underestimation bias. PRMSE is a forecast skill
, being closely related to the variance, represents for BMA an important uncertainty measure that better describes the
predictive uncertainty than in a non-BMA scheme.

For all 28 historical flooding events analyzed, Fig. 3 shows the PRMSE (Fig. 3a) and PBIAS statistics of the
expected BMA predictions, together with that related to the simple model average predictions (SMA) (Fig. 3b). Fig.
3a show that the PBRMSE statistics of the expected BMA predictions are better than that of the best individual
predictions for 15 events, and are clearly better than that the SMA predictions for all 28 events. Similar consideration
can be done with regard to the PBIAS statistics showed in Fig 3b where for each event are also showed the PBIAS
statistics of the best individual model. Even if BMA predictions overestimate damage bias, the related accuracy are
better than SMA predictions and for some events better than the individual model. This indicates that simply averaging
the original ensemble predictions would not necessarily lead to improved accuracy of the predictions.
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Fig. 2. Implementation of Bayesian model averaging on four models (depth-damage curves): a) posterior distribution of damage forecast for each
model, b) individual model weights obtained at the end of the Bayesian updating, ¢) model forecasts weighted by normalized likelihood, and
weighted forecast summed to form BMA density (continuous line)
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Fig. 3. PBIAS and PRMSE statistics of BMA and SMA predictions

Fig. 4 shows how the BMA approach is more powerful than the selection of any single model. Available events
were equally divided in 5 update sets representing the analysis of a model user collecting data and willing to improve
the reliability of the damage estimation function.
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Fig. 4. Bias progression with Bayesian update

After the first data set is available, the operator has three underestimating models (Poly1, Exp and Power) and one
largely overestimating (Poly2: the bars are cut over 0.80). The SMA approach produce higher bias than any single
model apart Poly2. The BMA provides the same bias of the best single model (Exp). During following update steps,
the SMA approach provides growing bias because the worse model influences it. In the meantime, all the other single
models provide decreasing bias with the Exp model being always the best. The BMA shows to outperform with respect



V. Notaro et al. / Procedia Engineering 89 (2014) 788 — 795 795

to the single models because it weights the underestimating models and the overestimating ones in order to have a
better estimation of the damage.

4. Conclusion

An unfortunate truth in model development is that no matter how many resources are invested in developing a
particular model, there remain conditions and situations in which the model is unsuitable to give an accurate forecast.
Reliance on a single model typically overestimates the confidence and increases the statistical bias of the forecast.
Bayesian model-averaging (BMA) techniques look to overcome the limitations of a single model by linearly
combining a number of competing models into a single new model forecast. In the present study, the application of
BMA scheme to flooding damage analysis has shown to be an useful statistical scheme that generates probabilistic
predictions from different competing predictions. The expected BMA predictions has shown performances better or
comparable to the best individual model predictions in terms of PBRMSE and PBIAS statistics. Moreover, for all
analyzed events the BMA prediction performance was clearly better than that the SMA predictions thus confirming
that simply averaging the original ensemble predictions would not necessarily lead to improved accuracy of the
predictions.
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