Assessment of diastolic reserve in hypertensive patients by dobutamine stress Doppler tissue imaging

Rehab Ibrahim Yassen *, Ashraf Reda, Mohamed Abulnaga

Cardiology Department, Faculty of medicine, Menoufia University Hospital, Egypt

Received 2 February 2014; accepted 17 March 2014
Available online 18 April 2014

Abstract Background: Many hypertensive patients are symptomatic mainly with exercise, because of the rise in filling pressures. Therefore, it is useful to evaluate left ventricular filling pressure with exercise. The study aims to determine the role of dobutamine stress echocardiography in assessment of diastolic reserve in hypertensive patients with normal ejection fraction.

Methods and results: 30 Hypertensive patients (53.8 ± 4.1 years) and 20 sex and age-matched healthy controls (51.9 ± 9.7 years) were recruited. Patients with coronary artery disease, significant valvular disease, hypertrophic cardiomyopathy, left ventricular systolic dysfunction (EF < 50%), atrial fibrillation and bad echogenic view were excluded. All groups underwent complete conventional echo and dobutamine stress echocardiography using pulsed wave Doppler tissue imaging at rest and during peak stress to measure early mitral inflow diastolic wave velocity (E), late mitral inflow diastolic wave velocity (A), E/A ratio, early diastolic myocardial wave velocity (E') and late diastolic myocardial wave velocity (A'). At rest, E' was significantly lower in patients than controls (9.3 ± 1.8 vs 14.9 ± 2.4 P value < 0.001) and E/E' (early mitral inflow diastolic wave velocity/early myocardial diastolic wave velocity) was significantly higher in patients (7.7 ± 1.3 vs 5.1 ± 1.0 P

Abbreviations: AF, atrial fibrillation; BP, blood pressure; CAD, coronary artery disease; DTI, Doppler tissue imaging; DSE, dobutamine stress echocardiography; LV, left ventricular; EF, ejection fraction; E, early mitral inflow diastolic wave velocity; A, late mitral inflow diastolic wave velocity; S', systolic wave velocity; E', early diastolic wave velocity; A', late diastolic wave velocity; ICT, isometric contraction time; IRT, isometric relaxation time; E/E' ratio, early mitral inflow diastolic wave velocity/early myocardial diastolic wave velocity; LVDP, left ventricular diastolic pressure.

* Corresponding author. Tel.: +20 1006235708.
E-mail address: dr_r.yaseen@hotmail.com (R.I. Yassen).

Peer review under responsibility of Egyptian Society of Cardiology.

http://dx.doi.org/10.1016/j.ehj.2014.03.003
value < 0.001). At peak stress, E/A ratio was significantly lower in patients ($P < 0.001$) while E/E' was significantly higher in patients than controls (8.4 ± 2.2 vs 4.8 ± 0.8 P value < 0.001).

Conclusions: Dobutamine stress echocardiography using Doppler tissue imaging is useful in hypertensive patients with exertional dyspnea with normal resting filling pressure.

© 2014 Production and hosting by Elsevier B.V. on behalf of Egyptian Society of Cardiology.

1. Introduction

Hypertension is the most common, readily, identifiable, and reversible risk factor for myocardial infarction, stroke, heart failure, atrial fibrillation, aortic dissection, and peripheral arterial disease. Impaired left ventricular diastolic filling is also a common finding in hypertensive patients, especially in those with ventricular hypertrophy, even in the absence of evidence of decreased systolic performance.

In many patients with essential hypertension in the absence of coronary artery disease, left ventricular systolic and diastolic function is normal at rest but may respond abnormally during exercise and develop exertional dyspnea even with good systolic function during exercise. This phenomenon may reflect impaired left ventricular diastolic filling at stress and this is called lack of diastolic reserve.

Impaired diastolic reserve is defined as: (A) under baseline condition: no or mild degree of diastolic dysfunction and normal filling pressures. (B) Under stress or during exercise: overt diastolic dysfunction with elevated filling pressure and complaints of dyspnea.

The E/E' ratio has been applied for that objective. In subjects with normal myocardial relaxation, E and E' velocities increase proportionally, and the E/E' ratio remains unchanged or is reduced. However, in patients with impaired myocardial relaxation, the increase in E' with exercise is much less than that of mitral E velocity, such that the E/E' ratio increases.

In that regard, E/E' was shown to relate significantly to LV filling pressures during exercise, when Doppler echocardiography was acquired simultaneously with cardiac catheterization.

Dobutamine stress echocardiography (DSE) is an accurate and noninvasive technique that is used widely for the detection of underlying coronary artery disease (CAD). Using Doppler tissue imaging (DTI), a dobutamine-induced reduction in the peak annular velocities in systole and diastole has been demonstrated to identify CAD.

It is most useful in hypertensive patients with unexplained exertional dyspnea who have mild diastolic dysfunction and normal filling pressures at rest. In those patients the E/E' ratio increases with exercise.

2. Patients and methods

2.1. Patient selection

Thirty hypertensive patients (11) males and (19) females with mean age (53.8 ± 4.1) years were enrolled who were referred to the cardiology clinic in the Menoufiya University and (20) age and sex matched, apparent healthy, individuals as the control group. All participants provided informed consent and the study protocol was approved by the institutional ethics committee.

Hypertension was defined as a previous blood pressure recording on 2 separate occasions of > 140 mmHg systolic or > 90 mmHg diastolic or the ongoing prescription of antihypertensive medication.

Patients with CAD, significant valvular disease, hypertrophic cardiomyopathy, left ventricular systolic dysfunction (EF < 50%), AF and bad echogenic view were excluded.

Patients underwent detailed history, thorough clinical examination, 12 lead ECG, and complete echocardiogram.

2.2. Conventional echocardiography

Echocardiographic examination was done by using the commercially available (Vivid 9, General Electronic Healthcare, GE Vingmed, Norway) equipped with a 1.7-4 MHz phased-array transducer. Echocardiographic imaging was obtained in the parasternal long- and short-axis, and apical two, three and four-chamber views using standard transducer positions (LV end-diastolic and end-systolic diameters, septal and posterior wall thickness and ejection fraction) were measured in accordance with the recommendations of the American Society of Echocardiography.

From the apical window, a 1- to 2-mm pulsed Doppler sample volume was placed at the mitral valve tip, and mitral flow velocities from 5 to 10 cardiac cycles were recorded. The mitral inflow velocities were traced and the following variables were obtained: peak velocity of early diastolic wave velocity (E), late diastolic wave velocity (A) and E/A ratio.

Doppler tissue imaging of the mitral annulus was obtained from the apical 4-chamber view. A 1.5-mm sample volume was placed at the lateral annulus. Analysis was performed for the measurement of systolic wave velocity (S), early diastolic wave velocity (E), late diastolic wave velocity (A), E/A ratio, isometric relaxation time (IRT) and isometric contraction time (ICT) at rest. E/E' ratio at rest was calculated.

2.3. Dobutamine stress protocol

Beta-adrenergic blocking agents were withdrawn for the preceding 48 h prior to the study. Dobutamine was infused at doses of 5, 10, 20, 30 and 40 µg/kg/min for 3 min each. A 12-lead electrocardiogram, blood pressure, and two-dimensional (2D) echocardiograms were taken at baseline, at low dose dobutamine, peak dobutamine, and at recovery (Fig. 2).

Transmitral flow was used to measure (early diastolic wave velocity (E), late diastolic wave velocity (A) and E/A ratio) at peak dose using DTI lateral mitral annular velocities; systolic wave velocity (S), early diastolic wave velocity (E), late diastolic wave velocity (A), E/A ratio, isometric relaxation time (IRT) and isometric contraction time (ICT) were measured at peak dose (Fig. 3). E/E' ratio at peak stress was calculated.

The stress test was terminated when 85% of the maximal predicted heart rate was reached, or earlier if the patient had
progressive or severe chest discomfort, serious ventricular arrhythmia, systolic blood pressure > 240 mmHg, symptomatic hypotension or systolic blood pressure < 80 mmHg or intolerable side effects.13

2.3.1. Statistical analysis

Using statistical package for the social science software (SPSS) version 16, data from the patients and controls were collected and subjected to statistical analysis.

The level of significance is 95%. So, \(P \) value > 0.05 was considered a non significant result, that < 0.05 was considered a significant result, and that < 0.001 was considered a highly significant result.

3. Results

Hypertensive patients have significantly lower \(E \) and \(E/A \) than controls while \(E/E' \) ratio was significantly higher in hypertensive patients than controls. Similarly isometric relaxation time (IRT) was significantly prolonged in hypertensive patients than controls (Tables 1–3).

Hypertensive patients have significantly higher \(A \) (late mitral inflow diastolic wave velocity) and significantly lower \(E/A \) ratio at peak stress than control.

By DTI hypertensive patients have significantly lower \(E \) and \(A' \) at peak stress than control. On the other hand both \(E'/A' \) ratio and \(E/E' \) ratio were significantly higher in patients than control. Isometric relaxation time (IRT) was significantly prolonged in patients than controls (Table 4).

All conventional echo measurements were significantly higher at peak stress than at rest in hypertensive patients (\(P \) value < 0.001).

By DTI there was a highly significant increase in systolic wave velocity (\(S' \)) [\(P \) value < 0.001] and a significant increase in late diastolic wave velocity (\(A' \)) [\(P \) value < 0.05] at peak stress than at rest in hypertensive patients. Both isometric contraction time (ICT) and isometric relaxation time (IRT) were significantly shorted at peak stress than at rest in hypertensive patients (\(P \) value < 0.001).

4. Discussion

Chronic hypertension is the most common cause of diastolic dysfunction and failure. It leads to left ventricular hypertrophy and increased connective tissue content, both of which decrease cardiac compliance.14 The hypertrophied ventricle has a steeper diastolic pressure–volume relationship; therefore, a small increase in left ventricular end-diastolic volume (which can occur with exercise) causes a marked increase in left ventricular end diastolic pressure.14

An increase in left ventricular diastolic pressure (LVDP) is an important cardiac cause of exertional dyspnea.15 These symptoms often occur in patients with early myocardial abnormalities such as those seen in hypertensive and diabetic heart disease14,15 and are independent of the influence of exercise-induced ischemia. Ejection fraction is characteristically preserved in these patients, but although such patients may be labeled as having diastolic heart failure,16–21 resting diastolic filling patterns may be normal, even in the presence of demonstrable myocardial structural abnormalities.22

Previous work has shown that, under resting conditions, LVDP can be estimated noninvasively by Doppler techniques.23
The ratio of early diastolic transmitral velocity to tissue velocity \((E/E')\) correlates with LVDP, and an \(E/E'\) of >15 has been found to be a reliable means of predicting an elevated LVDP.\(^{24}\) Measurement of \(E/E'\) during physical exercise may give a more clinically relevant assessment of the effects of changes in LVDP on exercise capacity.\(^{1}\)

In this study we assessed the diastolic function of the heart in two groups that have preserved EF (30 hypertensive patients and 20 control group) using conventional Echocardiography and DTI during rest and during peak stress using dobutamine stress echocardiography and we studied the abnormalities in diastolic function and diastolic reserve in hypertensive patients.

We used DTI to measure mitral annulus velocities at lateral wall because a number of recent studies have noted that in patients with normal EF, lateral tissue Doppler signals \((E/E'\) and \(E/A')\) have the best correlations with LV filling pressures and invasive indices of LV stiffness. These studies favored the use of lateral tissue Doppler signals in this population.\(^{25}\) At rest; the present study showed no significant difference at early diastolic wave velocity \((E)\), late diastolic wave velocity \((A)\) and \(E/A\) ratio between hypertensive patients and the control group, this agreed with Verdecchia et al. who found no significant difference in \(E, A\) and \(E/A\) ratio between hypertensive patients and control.\(^{26}\)

Resting DTI revealed no significant difference between hypertensive patients and controls in systolic wave velocity \((S')\), and isometric contraction time (ICT); this finding was similar to Bruch et al.\(^{27}\) who found no significant difference in \(S'\) between two groups. While isometric relaxation time (IRT) was significantly prolonged in patients than controls \((P\text{ value } < 0.001)\) this agreed with Sevleta et al. who found that isometric relaxation time (IRT) is longer in patients with diastolic dysfunction.\(^{28}\)

In agreement with our result; Steen et al. found that there was no significant difference in late diastolic velocity of the mitral annulus \((A')\) between hypertensive and control.\(^{29}\)
On the contrary our study found that E_0 was significantly lower in hypertensive patients than controls; this went in harmony with Ommen et al. who concluded that the early diastolic velocity (E) is reduced in patients with conditions leading to an impaired relaxation such as LVH or restrictive cardiomyopathy, where E decreases as LV filling pressure increases.

Resting E/E_0 ratio was significantly higher in hypertensive patients than controls. Nagueh et al. concluded that E/E_0 is helpful as a tool for assessing LV filling pressures that combines the influence of transmitral driving pressure and myocardial relaxation and it is identified as the best parameter for diagnosis when compared to other Doppler measures.23–30

Ommen et al. found that E/E_0 ratio had a better correlation with invasively measured LVDP than did other Doppler variables for all levels of diastolic function and concluded that the E/E_0 ratio be used as the initial measurement for estimation of LV filling pressures, particularly in those patients with preserved systolic function.24

Analysis of systolic function at peak stress revealed a significant increase in EF% and S_0 compared to rest in both

Figure 3 Pulsed wave Doppler tissue imaging at lateral mitral annulus at peak stress showing systolic velocity (S), early diastolic velocity (E_0) and late diastolic velocity (A_0).

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Demographic data of both groups.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Patients No. = 30</td>
</tr>
<tr>
<td>Age</td>
<td>53.8 ± 4.1</td>
</tr>
<tr>
<td>Sex</td>
<td>No</td>
</tr>
<tr>
<td>Male</td>
<td>11 (36.7%)</td>
</tr>
<tr>
<td>Female</td>
<td>19 (63.3%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 2</th>
<th>Echocardiographic measurements in studied groups at rest.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Patients No. = 30</td>
</tr>
<tr>
<td>EF%</td>
<td>61.5 ± 3.6</td>
</tr>
<tr>
<td>E</td>
<td>70.5 ± 10.5</td>
</tr>
<tr>
<td>A</td>
<td>75.2 ± 11.5</td>
</tr>
<tr>
<td>E/A</td>
<td>0.95 ± 0.16</td>
</tr>
<tr>
<td>S'</td>
<td>8.4 ± 0.9</td>
</tr>
<tr>
<td>E'</td>
<td>9.3 ± 1.8</td>
</tr>
<tr>
<td>A'</td>
<td>9.9 ± 2.2</td>
</tr>
<tr>
<td>E'/A'</td>
<td>0.98 ± 0.27</td>
</tr>
<tr>
<td>ICT</td>
<td>70.5 ± 13.5</td>
</tr>
<tr>
<td>IRT</td>
<td>79.6 ± 15.8</td>
</tr>
<tr>
<td>E/E_0</td>
<td>7.7 ± 1.3</td>
</tr>
</tbody>
</table>

hypertensive and control groups while there was no significant difference in ejection fraction between patients and controls at peak stress, this agreed with Ha et al.6

Regarding diastolic function; there was a significant decrease in E/A ratio at peak stress in patients than controls; this was similar to Hildo et al. who revealed that E/A ratio decreased at peak stress in hypertensive than controls.31

In our study E/E' ratio showed a significant increase in the hypertensive group at peak stress than at rest this can be explained as subjects with normal myocardial relaxation, E and E' velocities increase proportionally, and the E/E' ratio remains unchanged or is reduced.5 However, in patients with impaired myocardial relaxation, the increase in E' with exercise is much less than that of mitral E velocity so that the E/E' ratio increases.6 In that regard, E/E' was shown to relate significantly to LV filling pressures during exercise, when Doppler echocardiography was acquired simultaneously with cardiac catheterization.11

\begin{table}
\centering
\caption{Comparison between echocardiographic measurements in studied groups at peak stress.}
\begin{tabular}{|c|c|c|c|c|}
\hline
 & Patients No. = 30 & Controls No. = 20 & Test of significance & P value \\
\hline
EF\% & 70.4 ± 2.8 & 71.1 ± 2.4 & 0.96 & 0.34 \\
E & 77.9 ± 16.5 & 81.4 ± 9.9 & 0.84 & 0.41 \\
A & 98.4 ± 13.4 & 87.4 ± 12.6 & 2.93 & 0.005 \\
E/A & 0.79 ± 0.10 & 0.95 ± 0.18 & 3.61 & 0.001 \\
S & 13.0 ± 2.1 & 13.9 ± 1.7 & 1.60 & 0.12 \\
E' & 9.7 ± 2.4 & 17.5 ± 3.5 & 8.64 & <0.001 \\
A' & 11.2 ± 1.7 & 14.3 ± 3.5 & 3.76 & 0.001 \\
E'/A' & 0.89 ± 0.27 & 1.29 ± 0.37 & 4.48 & <0.001 \\
ICT & 52.1 ± 8.5 & 48.2 ± 7.4 & 1.70 & 0.09 \\
IRT & 61.3 ± 17.4 & 46.6 ± 5.0 & 4.38 & <0.001 \\
E/E' & 8.4 ± 2.2 & 4.5 ± 0.8 & 8.22 & <0.001 \\
\hline
\end{tabular}
\begin{flushleft}
\end{flushleft}
\end{table}

\begin{table}
\centering
\caption{Comparison between resting and stress echo measurements in the studied patients.}
\begin{tabular}{|c|c|c|c|c|}
\hline
 & Resting & Peak stress & Test of significance & P value \\
\hline
EF\% & 61.5 ± 3.6 & 70.4 ± 2.8 & 26.77 & <0.001 \\
E & 70.5 ± 10.5 & 77.9 ± 16.5 & 2.37 & 0.02 \\
A & 75.2 ± 11.5 & 98.4 ± 13.4 & 9.91 & <0.001 \\
E/A & 0.95 ± 0.16 & 0.79 ± 0.10 & 4.29 & <0.001 \\
S & 8.4 ± 0.9 & 13.0 ± 2.1 & 12.43 & <0.001 \\
E' & 9.3 ± 1.8 & 9.7 ± 2.4 & 0.83 & 0.41 \\
A' & 9.9 ± 2.2 & 11.2 ± 1.7 & 3.36 & 0.002 \\
E'/A' & 0.98 ± 0.27 & 0.89 ± 0.27 & 1.56 & 0.13 \\
ICT & 70.5 ± 13.5 & 52.1 ± 8.5 & 8.05 & <0.001 \\
IRT & 79.6 ± 15.8 & 61.3 ± 17.4 & 8.25 & <0.001 \\
E/E' & 7.7 ± 1.3 & 8.4 ± 2.2 & 1.47 & 0.15 \\
\hline
\end{tabular}
\begin{flushleft}
\end{flushleft}
\end{table}

\begin{table}
\centering
\caption{Comparison between resting and stress echo measurements in the studied control.}
\begin{tabular}{|c|c|c|c|c|}
\hline
 & Resting & Peak stress & Test of significance & P value \\
\hline
EF\% & 62.6 ± 3.2 & 71.1 ± 2.4 & 24.95 & <0.001 \\
E & 73.5 ± 3.4 & 81.4 ± 9.9 & 3.32 & 0.004 \\
A & 73.4 ± 7.3 & 87.4 ± 12.6 & 5.52 & <0.001 \\
E/A & 1.02 ± 0.15 & 0.95 ± 0.18 & 1.41 & 0.17 \\
S & 8.9 ± 1.2 & 13.9 ± 1.7 & 24.37 & <0.001 \\
E' & 14.9 ± 2.4 & 17.5 ± 3.5 & 2.87 & 0.01 \\
A' & 11.0 ± 3.3 & 14.3 ± 3.5 & 4.08 & <0.001 \\
E'/A' & 1.47 ± 0.51 & 1.29 ± 0.37 & 1.75 & 0.09 \\
ICT & 66.2 ± 4.3 & 48.2 ± 7.4 & 13.01 & <0.001 \\
IRT & 48.7 ± 9.6 & 46.6 ± 5.0 & 0.73 & 0.48 \\
E/E' & 5.1 ± 1.0 & 4.8 ± 0.8 & 0.99 & 0.33 \\
\hline
\end{tabular}
\begin{flushleft}
\end{flushleft}
\end{table}
Malcolm et al. concluded that the E/E' correlates with invasively measured LVDP during exercise. It can be used to reliably identify patients with elevated LVDP during exercise and reduced exercise capacity. This increase in filling pressure is a recognized phenomenon in a significant proportion of patients complaining of dyspnea and supports a cardiac cause of dyspnea.

5. Conclusion

Dobutamine stress Doppler tissue imaging is most useful in hypertensive patients with preserved left ventricular systolic function presented by unexplained exertional dyspnea and diastolic dysfunction. It can detect the diminished diastolic reserve in these hypertensive patients by increased E/E’ ratio at stress which is a parameter of LV filling pressure.

Source of funding

No funds for this study.

Conflict of interest

No conflict of interests for all the authors for any financial support related to this study.

References

4. Thierry Gillebert (Gent, BE) the concept of diastolic reserve. 2010
10. Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, et al. Members of the chamber quantification writing group: recommendations for chamber quantification: a report from the American society of echocardiography’s guidelines and standards committee and the chamber quantification writing group, developed in conjunction with the European association of echocardiography, a branch of the European society of cardiology, J Am Soc Echocardiogr 2005;18:1440–63.

