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1. INTRODUCTION 

Consider the evolutionary bilinear control system 

i(t) = Ax(t) + u(t)(Bu(t) + b), w = 20, (1) 

where the state z(.) takes the value in the separable real Hilbert space H and the control func- 
tion u(.) is R-valued and b E H. Here A : D(A) + H is a linear closed densely defined operator 
on a Hilbert space H, B is a bounded linear operator from H into itself. (., .) and [I.)/ are, re- 
spectively, the usual inner product and the norm of H. The norm of the linear operator on H 
will be denoted also by lI.II f or convenience and if there is no ambiguity. 

We make the following assumptions regarding the unbounded operator A. 

(Al) A generates a Co-semigroup of contractions (etA) on H; 
(AZ) R,,(A) = (XI - A)- ’ is compact for some X > 0. 

In this work, we continue the study the problem of global feedback stabilization of systems (1). 
We give a necessary and sufficient condition for system (1) to be strongly stabilizable by an 
a priori bounded control. 

DEFINITION 1. System (1) is said to be globally asymptotically strongly stabilizable (in short 
GASS) if there exists a continuous feedback control IL(.) : H + W such that the following hold. 

(1) System (1) with u(t) = u(s(t)) h as a unique weak solution z(t) defined on W+. 
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(2) The origin is a Liapunov stable equilibrium point. 
(3) The origin attracts every point in N (i.e., ]]z(t)]] t”f” 0, whenever 20 E H). 

Then, for the system (1) with the feedback u(t) = u(x(t)), there exists a mild solution of the 
following form: 

x(t) = etAxO + 
J 

t e(t-s)A u(x(s))(Bx(s) + b) ds. 
0 

In the sequel of the paper, we use the following sets: 

l M = {x E H; (BeTAs + b, eTAx) = 0 for every r E W+}, 
l N = {x E D(A); (AerAx,eTAz) = 0 for every T E W+}. 

Our main results in this paper’ are’ essentially based on the following canonical decomposition 
of a contraction semigroup due to Foguel [l] and Foias-Nagy [2] and the asymptotic behavior of 
nonlinear contraction semigroups due to Dafermos and Slemrod [3]. 

THEOREM 1. (See [I].) Let (etA) t2a be a CO contraction semigroup on H. Then H can be 
decomposed into an orthogonal sum H = H, @ H,,, where the subspaces H, and H,,, are 
etA-invariant. Moreover: 

(1) the restriction of etA to H, is a unitary semigroup, 
(2) the restriction of etA to H,,,,, is a completely nonunitary semigroup and weakly stable, 
(3) the decomposition is unique and H,, can be characterized by 

I& = {x E H; IletAzl[ = IletA’xII = 11x11, t 2 0} = I&, KU = H, n D(A). 

THEOREM 2. (See [3].) Let A be a maximal monotone operator on H. Assume that d(0) = 0 
and (XI + A)-’ is compact for any X > 0. Then, for every x0 E H, the weak solution denoted by 
x(t, xc) of the Cauchy problem 

k(t) = 4x(t) + d(t), 

x(O) = x0, 

d(.) E L1 (W’, H) , 

approaches as t + +oo a compact subset G(Q) of a sphere {y E H/l/y - a]] = a}, with 

0 5 11x0 - all + lId( Ll(R+,Hl, and a is any element of H s.t. d(a) = 0. Furthermore, Q(xu) is 
invariant under the semigroup T(t) generated by --A. Ifin addition xc E D(d), then the set 0(x0) 
is contained in D(d). 

In the finite-dimensional case (H = IP), when A is antisymmetric, this bilinear control problem 
has been studied by Slemrod [4], and he showed that the so-called ad-condition M = (0) is 
sufficient for the stabilization of system (1). 

For a real Hilbert space, the authors in [5] have already studied the strong stabilization problem 
of systems (1) using the theory of nonlinear contraction semigroup (31 and LaSalle’s invariance 
principle. It has been shown that condition (Cl): M n N = (0) is sufficient for the GASS by the 
feedback law u,(x) = -r(Bz + b,x) if either the semigroup (etA)t2s or the resolvent Rx(A) is 
compact on H. 

For the complex Hilbert space and if (etA)t,s is compact, baaed on Theorem 1 listed above the 
authors in [S] prove that condition (Cz): M n H, = (0) which is weaker than condition (Cl) is 
sufficient for GASS of system (1) by means of the feedback u,.(x). We remark that the compact- 
ness of (etA)&c on a complex Hilbert space H is needed to guarantee that the strong R-limit 
set Q(Q) of the closed-loop system is nonempty. Note that the compactness of (etA),,s gives 
a very simple and nice description of H, and H,, [7]. Moreover, the authors in [6] use this 
description and prove that n(xc) C H,, = IV C D(A). 

The compactness of (etA),,s used in [6] can be considered a strong one. However, it is satisfied 
by finite-dimensional systems and a few class of operators (ex. parabolic). Note that if thii 
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condition is dropped, then for a general Hilbert space, it is well known that existence of the 
set a(~:,) associated to the closed-loop system is not guaranteed. Moreover, the set H,, is not 
necessarily contained in D(A) ( even if (etA)t,e is compact on a real Hilbert space) and only 
H, n D(A) 2 N. 

Of course, the canonical decomposition given in Theorem 1 is still true even for a real Hilbert 
space. In this work, we are interested in particular in the bounded feedback stabilization (1) 

(i.e., ]u(x)] < r, ‘da: E H) of a certain system of kind (1) and only the assumptions (Ai), are 
assumed to give a weaker condition than (Cz) to resolve the GASS of system (1) by a judicious 
state feedback law. 

2. MAIN RESULTS 
We are now ready to present the main results of this paper. 

2.1. Homogeneous Case: b = 0 

PROPOSITION 1. Assume that B is a self-adjoint dissipative (or positive) operator. Then M n K,, 
is reduced to the origin if and only if system (1) is GASS by the bounded state feedback law 

t+(x) = - +x, 4 
1 + E(Bz, x) ’ 

E = sign((Bz, z)). 

PROOF OF PROPOSITION 1. The “if’ part. It is obvious to see that the feedback (2) is such 
that sup,eH [u,(z)] < r. It is well known that (81 system (l),(2) has a unique weak solution x(t) 
defined on W+. Moreover, the nonlinear operator A = -A + (r(B., .)/(l + E(B., .)))B defined 
on H is a maximal monotone on D(d) = D(A), so D(d) = H and (XI + d)-l is compact for 
every X > 0 [5]. According to the result of Dafermos and Slemrod (31, (-A) generates a nonlinear 
semigroup T(t) of contraction defined for t 1 0 and the unique mild solution of system (1) ,(2) 
given by x(t, xe) = T(t)(q), which satisfies the integral equation 

T(t)(xoj = etAxo + 
I 

t e(“-“)Au,.(T(s)(xo))BT(S)(xo) ds 
0 

(3) 

approaches as t -----) 03 a compact, subset I C {y E H/]/y]] = a}, (T L ]]zo]], which is 
T(t)-invariant. To end, we must prove that O(Q) is reduced to the origin. Let 5s E D(A). Then 
fi(zc) C D(A), the solution T(t)(q) is a strong one, and T(t)se lies in D(A), Vt 10 [5]. 

Let 1 E a(~). Since Q(xc) is T(t)-invariant V(t) = (1/2)llT(t)Zl12 = (1/2)&~]]~, Vt E IF. 
Differentiating V(t) along the trajectories of (l),(2) we obtain 

Hence, 
W”(t)@), T(tP)j = 0; (T(W), AT(W)) = 0, vt E lR+. (4) 

Using integral equation (3), we deduce that T(t)(Z) = etAZ (i.e., R(xc) is etA-invariant). Finally, 
equation (4) implies that Z E M and (etAZ,AetAZ) = 0, Vt E W+. From the fact that z E D(A), 
we obtain 

dl~e;zl~2 = (etAZ, AetAZ) = 0, yt E lw+, 
(5) 

According to Theorem 1, there exist 31 E H,, and 22 E Hcnu such that P = fi + Is. Since H, 
and H,, are etA -invariant orthogonal subspaces, a direct computation gives 

IElI = 11~1112 + 1152112, 

lletA3[12 = IletAZ11J2 + lletA32112. 
(6) 
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Combining (5) with (6), we deduce 

(7) 
Let n > 0 be a sufficiently large integer. The fact that R,(A) is compact and jiz E H,,,, using (2) 
in Theorem 1, we have 

&(A)etA& t”f” 0. (8) 
On the other hand, 

n&(A)etAz2 nzw etA12. (9) 
Since (etA&, is a contraction semigroup and R,(A) = se” emnsetA ds is such that l&(A)etA = 
etA&(A), then nR,(A)etA22 converges to etA- 52 as n -+ +oo uniformly in t. It follows that 

According to (8)-(lo), we obtain 
t liymetAZz = 0. 

This combined with (7) implies that 22 = 0. Finally, Z = 21 E K,, n M, which is reduced to the 
origin. Hence, R(Q) = (0) f or all 50 E D(A). Since D(A) = H and T(t) is a contraction, the 
triangle inequality and an argument of density show that fi(ze) = (0) for all 20 E H. 

The “only if’ part. Let 2 E A4 n Ku and z(t) be the solution of system (1) ,(2) emanating 
from 1 at t = 0. It is given by 

3(t) = etAZ - 
I 

t e(t-s)A r(BZ(s), ‘(‘)) Bz(~) & 

0 1 + &(BS(S), z(s)) . (11) 
But z is such that (etAI, BetA?) = 0 for all t 2 0. It follows that etAZ is also a solution of 
integral equation (11). Uniqueness of solution implies that Z(t) = etAf. Due to the fact that 
5 E Ku and system (l),(2) is strongly stable, we have ]@]I = ]]etAf]] = Il3(t)II tp 0. This ends 
the proof of the proposition. I 

2.2. Linear Case: B = 0 

PROPOSITION 2. M n Ku is reduced to the origin if and only if system (1) is GASS by the 
bounded state feedback law 

r(b, x) 
ur(z) = -1 + j(b,s)I’ (12) 

PROOF OF PROPOSITION 2. The “if” part. The authors [9] showed that the nonlinear operator 
d = -A + r(@, .)/Cl -t IV, .)l))b is maximal monotone and (XI -t- d)-l is compact on H. As 
the reader can see, the rest of the proof can be obtained by applying the same reasoning as in 
Proposition 1; it is omitted. 

The “only if’ part. Let Z E M n Ku and f(t) be the solution of system (l)-(12) emanating 
from Z at t = 0. It is given by 

t 
5(t) = etA3 - r e(t-s)A (4 +I) 

1+ I(b,z(s))lbds’ (13) 

But z is such that (b, etAZ) = 0 for all t 2 0. It follows that etAl is also a solution of integral 
equation (13). Uniqueness of solution implies that Z(t) = etA%. Since 5 E Ku, then ]]etA?)] is 
constant. The strong stability of system (l)-(12) gives ]]z]] = ]]etAZ]] = IlZ(t)ll t- 0. This 
ends the proof of Proposition 2. I 
REMARK. We note that [9] for a general linear control system when b is replaced by a bounded 
linear operator mapping another real Hilbert space U of control into H, the affirmation analogous 
to Proposition 2 takes place. The problem of feedback stabilization with an a priori bounded 
control of linear control system has been initially studied by Slemrod [lo] by using the energy 
stability method, while an earlier paper [ll] treated a related of suboptimal control. 
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2.3. Nonhomogeneous Case 

PROPOSITION 3. Assume that (etA)t>O is compact. Then M n H, is reduced to the origin if and 
only if system (1) is GASS by the bounded state feedback law 

u,(z) = - 
r(Bz + b, LE) 

1+(Bz+b,z)2’ 

PROOF OF PROPOSITION 3. The “if” part. Let 2s E H and z(t) be the solution of sys- 
tem (1)-(14) emanating from 2s at t = 0. According to Lemma 5.5 [12], it is easy to verify 
that the solution is bounded on H. Moreover, for all tr > ts]]t(tr)]] 5 ]]z(tz)]]. Because (etA),,a 
is compact on H, applying Theorem 4.1 [13] the authors in [5] have shown that the a-limit set 
0(q) associated to system (l)-(14) is nonempty, etA -invariant, and N,zs) G M. Now let us 
prove that R c I$,. Prom the fact that q(t) = &r(t)]] is a decreasing nonnegative function, it 
follows that 

3C>O, pn’, $9(t) = c. 

Let z E 0(zs). On the contrary to the complex case, we remark that even if ze E D(A) and 
(etA)t,a is compact, do not assure that Q(Q) E D(A). By definition of 52(zs), we obtain 

3tn nzm +cq nlFm z&J = I. (16) 

Combining (15) and (16) and the fact that I is etA -invariant, we deduce ]]etAZ]] = ]]z]] = c 
for all t 2 0. To finish the proof, it is sufficient to refer to Proposition 1. It is proved. 

The “only if’ part. It is obtained in a similar way as above. This ends the proof of Proposi- 
tion 3. I 
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