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Abstract 

An embedding of Kn into a hypercube is a mapping, qS, of the n vertices of Kn to distinct 
vertices of the hypercube. The associated cost is the sum over all pairs of vertices, vi, VJ, i ~ j ,  
of the (Hamming) distance between c)(vi) and ~(vj). Let f (n )  denote the minimum cost over all 
embeddings of K, into a hypercube (of any dimension). In this note we prove that f ( n ) =  (n -1 )  2 
unless n = 4 or 8, in which case f ( n ) =  (n - 1 )2 _ 1. As an application, we use this theorem to 
derive an alternate proof of the fact that the Isolation Heuristic (and its accompanying variants) 
for the multiway cut problem of Dahlhaus et al. (1994) are tight for all n. This result also 
gives a combinatorial justification for the seemingly anomalous improvements that these variants 
achieve in the cases n --4 and 8. @ 1998 Published by Elsevier Science B.V. All rights reserved 

I. Preliminaries 

Kn denotes the complete graph on n vertices with unit weight on all edges. The 

hypercube of  dimension n has 2 n vertices, each vertex being labeled with a string of  

O's and l ' s  of  length n. The Hamming distance, I(vi, vj) between two vertices vi, vj, of  

the hypercube is the number of  positions in which the labels of  the two vertices are 

different. The hypercube has edges between every pair of  vertices which are at Ham- 

ming distance 1. The Hamming distance between a pair of  vertices is easily seen to be 

the length of  the shortest path between them. The Hamming weight o f  a vertex is the 

number of  l ' s  in its label. A cut of  a graph is a subset of  vertices o f  the graph. The 

edges o f  a cut are the set o f  edges which go from vertices within the subset to vertices 

outside. The weight of  a cut is the sum of  the weights of  the edges of  the cut. The 

weight o f  a cut collection is simply the sum of  the weights of  the cuts in the collection. 
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2. Result 

Theorem 1. F o r  a se t  V o f  n distinct ver t i ces  vl . . . .  , vn in a h y p e r c u b e  ( o f  a n y  di- 

m e n s i o n )  le t  f ( V ) =  ~ i < j I ( v i ,  v j ) .  T h e n  

f ( n )  = 
min f ( V ) = f ( n - 1 )  2 - 1  t f n = 4 , 8 ,  

{V: IVl=n} [ (n -- 1) 2 o therw i se .  

Proof.  It is clear that the (claimed) minimum in the case of  n = 4  and 8 can be 

achieved by letting V be the set of  all vertices in a two-dimensional and three- 

dimensional hypercube, respectively. For all other n the (claimed) minimum can be 

achieved by taking a vertex and its ( n -  1) neighbours in an n -  1-dimensional hyper- 

cube. 
It remains to show that we cannot do better. Consider any set with e nodes of  even 

Hamming weight and o nodes o f  odd Hamming weight, e + o = n. It is clear that we 
have a lower bound of  (n - 1)2 if either e or o is 0 or 1. Assume, then, without loss of  

generality, that o >'e >-2. To prove our bound, we consider the (Hamming) distances 

between even weight nodes, between odd weight nodes, and then between even and 

odd weight nodes. Any pair of  even weight nodes has distance at least 2. Hence, we 

have a lower bound of  2 (2) on the contribution to the sum from pairs o f  even weight 

nodes. Similarly, for the odd weight nodes we get a lower bound of  2 (2)- Consider 

the distances between even and odd weight nodes. For each pair of  even weight nodes 

el and e2, there are at most two nodes ol and 02 which are each at distance 1 from 

el and e2. The remaining o - 2 odd weight nodes are each an average distance of  at 

least 2 from both el and e2. Based on these averages we arrive at a lower bound for 

the minimum total Hamming distance o f  

2 + 2 + - eo - n - 2e. 
o 

Note that n 2 - n - 2 e > - n  2 - 2n.  Hence, if e ¢ o ,  we arrive at a lower bound of  

( n -  1) 2. Now, consider the remaining case when e = o > 1. When e = 2,4 we have 

explicit constructions which match the lower bound of  n 2 - 2n. It remains to consider 

the cases e = o = 3 and e = o >- 5. 
In order for the above (lower-bound) argument concerning inter-node distances to 

be tight, the set must have special structure. Specifically, any pair o f  nodes having 

the same parity must have distance 2. This implies that all the nodes with the same 
parity lie in a Hamming ball of  radius 1 (in fact, this holds for all e = 0 ¢ 4). Hence, 

without loss o f  generality, one may assume that all odd nodes have weight exactly 1. 
Since e>-3 there are at least two even nodes with weight 2 or more. Clearly, there 

can be at most one odd node that is at distance 1 from both of  them, instead of  two 

nodes as counted in the above lower bound argument. Hence, the lower bound is not 
tight. [] 
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3. Related results 

Our main result has been investigated previously under the subject "average dis- 
tance". We refer the interested reader to [1] and the references therein for an extensive 

literature on this subject. Althofer and Sillke [1] prove a related result, but one that is 

not as sharp as the one obtained in this paper. 

4. Application 

Our original motivation for solving the problem of embedding complete graphs in 

hypercubes arose from the multiway or n-way cut problem. In the n-way cut problem 
we are given an edge-weighted graph and n distinguished vertices called terminals; we 

are required to find a minimum weight n-way cut, i.e. a set of edges whose removal 
separates every terminal pair. This problem is simply the min-cut max-flow problem 
when n- -2 .  In [2] it was shown that the problem becomes NP-hard for n - -3 .  They 

gave a simple approximation algorithm, the isolation heuristic, for arbitrary graphs that 
comes within a factor of 2(1 - ( l / n ) )  of the optimal. They also gave variants of the 
isolation heuristic which do better for n = 4 and 8. They state in the paper, without 
proof, that similar approaches are bound to fail for all other values of n. 

For the sake of completeness we present the isolation heuristic and a proof of its 
performance guarantee. We also present its variants which achieve an improved factor 
for n = 4  and 8. 

Isolation heuristic: 1. For 1 ~< i ~< n construct a minimum weight isolating cut E i for 

terminal &, i.e. a min-cut that separates s~ from the other terminals. 
2. Let E be the union of the cheapest n - 1 of  the cuts Ei. Return E. 

Lemma 1 (Dahlhaus et al. [2]). The isolation heuristic constructs an n-way cut whose 

weight is guaranteed to be no more than 2 - (2/n) times the optimal. 

Proof. Let/~ be an optimal n-way cut. Let w(E) denote the sum of the weights of  the 

edges in the cut. For 1 ~< i ~< n, let ~ be the set of  vertices left connected to si by /~ 
and let Ei be the set of edges in/~ with one endpoint in ~. Observe that for each i 

the set Ei is an isolating cut for si. Thus, w(Ei)~w(Ei) .  Since, ~7=1 w(Ei )=2w(~)  
we have that 

n ( 
w(E)<<, w(Ei)<~ w(IEi)<~ 2 -  w(IE). 

n i = 1  n i = 1  

[] 

Variant .['or the case n = 4: For n = 4 the isolation heuristic given above provides a 
4 2 3 An improved guarantee of 3 can be performance guarantee of  2 - (2/n) = 2 4 - -  2" 

obtained by the following: for each partition of the terminals into sets $1, $2 of size 
two, use max-flow techniques to compute the minimum cut that separates the terminals 
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in $1 from those in $2; output the union of (the best) two such cuts. It is an easy 
4 matter to prove that this scheme achieves a performance guarantee of  5" 

Variant for the case n--8 :  For n = 8 the isolation heuristic given above provides 
a performance guarantee of 2 - ( 2 / n ) = 2  28 - 4"7 An improved guarantee of  ~ can 

be obtained by the following: for each partition of the terminals into sets $1, $2 of 
size four, use max flow techniques to compute the minimum cut that separates the 

terminals in SI from those in $2; there exists a set of three of these cuts whose union 

is an 8-way cut and whose total weight is no more than the average; output the union 

of (the best) three such cuts. It is an easy matter to prove that this scheme achieves a 
performance guarantee of  ~ .  

The isolation heuristic (and its variants for the cases n = 4  and 8) can be thought 
of  as essentially finding a minimum weight collection of cuts that separates all pairs 

of terminals. In what follows, we show that the isolation heuristic is tight. There is a 
combinatorial basis for the seemingly anomalous improvements in the cases n = 4 and 8 
and these cannot be extended to any other n. 

Lemma 2. I f  Kn has a cut collection of  weight C separating all pairs of  vertices then 
there exists a cut collection for any instance of the n-way cut problem separatino all 
pairs of terminals with weight at most 2C/n(n-  1) times the weight of  the optimal 
n-way cut. 

Proof. The proof is a straightforward averaging argument. 
Let E be an optimal n-way cut. Let w(/~) denote the sum of the weights of  the edges 

in the cut. For 1 ~< i ~< n, let ~ be the set of vertices left connected to si by E and let 

Eij be the set of edges in E with one endpoint in ~ and one in ~. Observe that for 
any set S of  terminals in the n-way cut problem graph the weight of  the minimum cut 

separating S from the complement set of  terminals is at m o s t  ~iEs, j~s W(JEiJ )" 
We associate each vertex of K, one-to-one to a terminal of the graph in the n-way 

cut problem. Any cut of  Kn separates a subset of  the vertices from its complement. 

A particular cut of  Kn we map to the min-weight cut of the n-way cut problem graph 
that separates the corresponding set of  terminals from the complement set of  terminals. 
In this way we have a mapping from cuts, (and hence cut collections) of  Kn to cuts, 
(and cut collections) of the n-way cut problem graph. Consider all possible mappings 

of  the vertices of  Kn one to one to terminals of  the graph. There are n! such mappings. 
For each mapping consider the weight of the collection of min-weight cuts of the n- 
way cut problem corresponding to the cut collection of weight C in Kn. The sum over 
all n! mappings of the weight of  these cut collections is at most n!C ~ij  w(l~ij )/ (2)" 

Since the average weight is within a factor of  2C/n(n-  1) of  the optimal for the 
n-way cut problem there exists a mapping, and hence a cut collection, which achieves 
this bound. [] 

By the above lemma we see that the best performance guarantee achievable by 
heuristics (like the isolation heuristic) for the n-way cut problem that output cut 
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collections is dependent directly on the minimum weight of a cut collection in Kn 
that separates all pairs of  vertices. 

Lemma 3. The minimum weight o f  any cut collection that separates all pairs of  
vertices of  K, is equal to f (n) .  

Proof. Given any cut collection c£={cl,c2 . . . . .  ck} we can create an embedding of 
equivalent weight in a hypercube of dimension k. We have one dimension per cut and 

a vertex of Kn gets mapped to that vertex of the hypercube with a 1 in the ith position 

of the label iff the original vertex of Kn is in the ith cut. It is easy to see that if V is 

the set of  mapped vertices then f ( V )  is equal to the weight of ¢g. 
Similarly, given any embedding V in a hypercube of dimension k one can create a 

cut collection of equivalent weight by having one cut for each dimension and putting 
all those mapped vertices in the cut which have a 1 in the label at the dimension 
corresponding to the cut. [] 

Corollary 1. The isolation heuristic and its variants are tight. Consider heuristics 

which output cut collections as solutions to the n-way cut problem. I f  in the analysis 
of  the performance 9uarantee the weight of  the cut collection is measured against 
that of  the optimal, then the best that such heuristics can achieve is a factor of  

2(1 - ( l /n)) ,  except when n = 4  or 8 in which case they can achieve a solution that 
is at most 2(1 - (1/n - 1)) times the optimal (to the n-way cut problem). 

Proof. Follows from Theorem 1 and Lemmas 2 and 3. [] 
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