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We show that applying the Bailey lemma to elliptic hypergeometric integrals on the An root system leads 
to a large web of dualities for N = 1 supersymmetric linear quiver theories. The superconformal index 
of Seiberg’s SQCD with SU (Nc) gauge group and SU (N f ) × SU (N f ) × U (1) flavour symmetry is equal 
to that of N f − Nc − 1 distinct linear quivers. Seiberg duality further enlarges this web by adding new 
quivers. In particular, both interacting electric and magnetic theories with arbitrary Nc and N f can be 
constructed by quivering an s-confining theory with N f = Nc + 1.

© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
Supersymmetric gauge theories are a highly active subject of 
study and many discoveries were made in this field in the past 
decades. One particularly interesting phenomenon is duality: for 
certain strongly coupled supersymmetric quantum field theories, 
there exist weakly coupled dual theories that describe the same 
physical system in terms of different degrees of freedom. A famous 
example is Seiberg duality [1] for N = 1 supersymmetric quantum 
chromodynamics (SQCD), where two dual theories, referred to as 
electric and magnetic, flow to the same infrared (IR) theory. While 
such dualities are hard to prove, supersymmetric theories allow 
for the definition of observables that are independent of the de-
scription, i.e. they should yield the same result on both sides of 
the duality. One such quantity is the superconformal index (SCI) 
[2,3], which counts the number of BPS states of a given theory. It 
turns out that SCIs are related to elliptic hypergeometric functions, 
which have also found many other applications in physics.

A long hunt for the most general possible exactly solvable 
model of quantum mechanics has led to the discovery of ellip-
tic hypergeometric integrals forming a new class of transcendental 
special functions [4]. In the first physical setting these integrals 
served either as a normalization condition of particular eigenfunc-
tions or as eigenfunctions of the Hamiltonian of an integrable 
Calogero–Sutherland type model [5]. The Bailey lemma for such 
integrals [6] appeared to define the star-triangle relation associ-
ated with quantum spin chains [7]. However, a major physical 
application was found by Dolan and Osborn [8] who showed that 
certain elliptic hypergeometric integrals are identical to SCIs of 4d

* Corresponding author.
E-mail addresses: bruenner@hep.itp.tuwien.ac.at (F. Brünner), 

spiridon@theor.jinr.ru (V.P. Spiridonov).
http://dx.doi.org/10.1016/j.physletb.2016.08.039
0370-2693/© 2016 The Author(s). Published by Elsevier B.V. This is an open access artic
SCOAP3.
supersymmetric field theories and that Seiberg duality can be un-
derstood in terms of symmetries of such integrals. In [9], many 
explicit examples were studied. In the present work, we describe a 
web of dualities that can be constructed using the Bailey lemma 
of [6] and [10]. Starting from a known elliptic beta integral on 
the An root system [11] that is identified with the star-triangle 
relation, one gets an algorithm for constructing an infinite chain 
of symmetry transformations for elliptic hypergeometric integrals. 
The emerging integrals can be interpreted as the SCIs of linear 
quiver gauge theories, a possibility that was already mentioned 
in [9].

Quiver gauge theories are theories with product gauge groups 
that arise as world volume theories of branes placed on singular 
spaces or from brane intersections [12–14]. Their field content can 
be depictured by so-called quiver diagrams; all new theories dis-
cussed in this article are of this type. Note that while the quivers 
we discuss are also linear like those described in [15], field content 
and flavour symmetries are different.

This letter is dedicated to applying an integral extension of the 
standard Bailey chains techniques [16] to SCIs. We identify the 
star-triangle relation (a variant of the Yang–Baxter equation) with 
an elliptic hypergeometric integral on the An root system that cor-
responds to the superconformal index of an s-confining N = 1
SU (Nc) gauge theory. The main result of our calculation is that the 
SCI of SQCD with SU (Nc) gauge group and SU (N f ) × SU (N f ) ×
U (1) flavour symmetry is equal to that of N f − Nc − 1 distinct lin-
ear quivers. Seiberg duality leads to magnetic partners for these 
quivers, some of which are again dual to yet other quivers. In to-
tal, this leads to a very large duality web, composed of Seiberg 
and Bailey lemma dualities. An example of such a web correspond-
ing to the electric SQCD with Nc = 3 and N f = 6 is illustrated in 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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Fig. 1. The duality web corresponding to the electric part of SQCD for Nc = 3 and N f = 6. Q denotes a duality obtained from Eq. (11) and S denotes Seiberg duality of Eq. (6). 
In total, there are ten distinct quiver gauge theories dual to the original theory.
Fig. 1. Another nontrivial consequence is that indices of both elec-
tric and magnetic interacting theories can be constructed from a 
simple s-confining theory.

The SCI of N = 1 theories is defined as

I = Tr(−1)Fe−βH p
R
2 + J R+ J L q

R
2 + J R− J L

∏
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zGi
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∏
j

y
F j

j , (1)

where F is the fermion number, R is the R-charge, J L and J R
are the Cartan generators of the rotation group SU (2)L × SU (2)R , 
and Gi and F j are maximal torus generators of the gauge and 
flavour groups. The theory is assumed to be compactified on a 
spatial three-sphere, hence the name “sphere index”. As shown 
in [17] (see also [18] and [19]), in this case the SCI is propor-
tional to the partition function of the theory, where p and q are 
variables of the three-sphere metric and the parameters y j are in-
terpreted as mean values of the background gauge fields of the 
flavour group. The index only receives contributions from states 
with H = E −2 J L − 3

2 R = 0, E being the energy, and is independent 
of the chemical potential β . In order to obtain a gauge invariant 
expression, an integral over the gauge group is performed, which 
gives the explicit expression

I(p,q, y) =
∫
G

dμ(g) exp

( ∞∑
n=1

1

n
i(pn,qn, yn, zn)

)
, (2)

where dμ(g) is the group measure and the function i(p, q, y, z)
denotes the single-particle state index. The latter is determined by 
representation theory through

i(p,q, y, z) = 2pq − p − q

(1 − p)(1 − q)
χadj(z) (3)

+
∑

j

(pq)
r j
2 χ j(y)χ j(z) − (pq)

1−r j
2 χ j(y)χ j(z)

(1 − p)(1 − q)
,

where r j are R-charges, χadj(z) is the character of the adjoint rep-
resentation under which the gauge fields transform, while the sec-
ond term is a sum over the chiral matter superfields that contains 
the characters of the corresponding representations of the gauge 
and flavour groups. In the following, we make use of the fact that 
SCIs are identical to particular elliptic hypergeometric integrals.

Define the generalized An-elliptic hypergeometric integral as

I(m)
n (s, t) = (4)

κn

∫
Tn
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with 
∏n+1

j=1 z j = 1, κn = (p; p)n(q; q)n/(n + 1)!, s = (s1, . . . , sn+m+2), 
t = (t1, . . . , tn+m+2), |si |, |ti | < 1 and the balancing condition ∏n+m+2

i=1 siti = (pq)m+1. The q-Pochhammer symbol is defined as 
(z; q)∞ = ∏∞

k=0(1 − zqk), and the elliptic gamma function as

�(z) := �(z; p,q) =
∞∏

j,k=0

1 − z−1 p j+1qk+1

1 − zp jqk
, (5)

�(a,b) := �(a; p,q)�(b; p,q),

for z ∈ C
∗ and |p|, |q| < 1. Eq. (4) can be interpreted as the SCI 

of an N = 1 theory with gauge group SU (Nc) for Nc = n + 1 and 
a vector multiplet in its adjoint representation. There is a chiral 
multiplet in the fundamental and one in the antifundamental of 
the gauge group, each transforming in the fundamental represen-
tation of one of the factors of the flavour group SU (N f ) × SU (N f ), 
for N f = n + m + 2. Furthermore, there is a global U (1)V symme-
try and the R-symmetry U (1)R . Note that for the sake of brevity, 
we will not list any R-charges in this paper, as they can be easily 
recovered from the integral expressions. As shown in [8], Seiberg 
duality is realized by the general integral identity [20]

I(m)
n (s, t) =

n+m+2∏
j,k=1

�(t j sk)I(n)
m (s′, t′) (6)

with the arguments s′ = (S
1

m+1 /s1, . . . , S
1

m+1 /sn+m+2) and t′ =
(T

1
m+1 /t1, . . . , T

1
m+1 /tn+m+2), where S=∏n+m+2

j=1 s j , T =∏n+m+2
j=1 t j , 

ST = (pq)m+1 and |tk|, |sk|, |S 1
m+1 /sk|, |T 1

m+1 /tk| < 1. The opera-
tion n ↔ m gives the correct dual symmetry groups since N f =
n + m + 2 → N f and Nc = n + 1 → m + 1 = N f − Nc .

For m = 0, Eq. (6) reduces to the exact evaluation formula 
[4,11]

I(0)
n (s, t) =

n+2∏
k=1

�
( S

sk
,

T

tk

) n+2∏
k,l=1

�(sktl). (7)

This is an example of s-confinement [21]: the infrared is described 
only by gauge-invariant operators, and the origin of the classical 
moduli space remains a vacuum even after quantizing the theory 
(chiral symmetry is intact). Furthermore, a confining superpotential 
is generated dynamically.

We define [6,10] as a Bailey pair with respect to the parame-
ter t a pair of functions α(z, t) and β(w, t) satisfying the relation 
β(w, t) = M(t)wzα(z, t), where M(t)wz is an elliptic hypergeo-
metric integral operator. The (integral) Bailey lemma states that 
given such a pair of functions, one automatically obtains another 



F. Brünner, V.P. Spiridonov / Physics Letters B 761 (2016) 261–264 263
Bailey pair with respect to a new parameter st , i.e. β ′(w, st) =
M(st)wzα

′(z, st). This pair is related to the original one by the 
transformations α′(w, st) = D(s, t− n−1

2 u)wα(w, t) and β ′(w, st) =
D(t−1, s

n−1
2 u)w M(s)wz D(ts, u)zβ(z, t), where D(t, u)z is a function 

with the property D(t, u)z D(t−1, u)z = 1 and u is a new arbitrary 
parameter. From these expressions, it is easy to derive the star-
triangle relation

M(s)wz D(st, u)z M(t)zx = (8)

D(t, s
n−1

2 u)w M(st)wx D(s, t− n−1
2 u)x.

Repeated application of the Bailey lemma leads to infinite recur-
sion relations referred to as Bailey chains. The An version of the 
Bailey lemma is obtained by identifying Eq. (8) with Eq. (7), which 
leads to

M(t)wz f (z) := (9)

κn

∫
Tn

∏n+1
j,k=1 �(t w j z

−1
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and
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n+1∏
j=1
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√
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2
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z j
,
√

pqt− n+1
2

z j

u
). (10)

The operator M(t)wz was first defined for n = 1 in [6] and for arbi-
trary n in [10]. For certain constraints on t and w j it satisfies the 
Fourier type inversion relation, M(t)−1

wz = M(t−1)wz .
This identification of operators leads to many interesting non-

trivial relations, e.g. to the recursion formula [4]

I(m+1)
n (s, t) = Qm

n I(m)
n (s̃, t), (11)

where Qm
n is the integral operator

Qm
n f (w) := ζ(v)× (12)∫
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with s̃ = (v w1, . . . , v wn+1, sn+3, . . . , sn+m+3) and

ζ(v) = κn

�(vn+1)

n+2∏
l=1

�(tn+m+3sl)

�(v−n−1tn+m+3sl)
. (13)

The parameter v is related to tn+m+3 by vn+1 = tn+m+3(pq)−1 ×∏n+2
i=1 si .
Eq. (11) can be understood as an algorithm for constructing the 

SCI of a linear N = 1 quiver gauge theory. To see this, consider 
Eq. (4) with m = 0, which is the SCI of an N = 1 theory with gauge 
group SU (n + 1), as can be read off from the denominator of the 
integrand and the fact that there is just an integral over one set 
of variables z j satisfying 

∏n+1
j=1 z j = 1. Applying the operator Q0

n to 
this expression adds another SU (n + 1) gauge group to the theory. 
There is now a chiral multiplet transforming in the fundamental 
representation of the new, and in the antifundamental of the orig-
inal gauge group, as expected from a quiver. This procedure can be 
iterated indefinitely, yielding a linear quiver of arbitrary length. In 
addition to the fields mentioned above, we also get an additional 
chiral multiplet transforming in the fundamental representation of 
the new gauge factor. It is important to note that while the flavour 
symmetry on the left hand side is SU (N f + 1) × SU (N f + 1), 
the full flavour symmetries of the quiver on the right hand side 
of Eq. (11) are given by SU (N f − Nc) × SU (Nc + 1) × U (1) and 
SU (N f ) × U (1), subgroups of the flavour symmetry group of SQCD 
on the left hand side. As can be read off from its definition, fields 
charged under the SU (Nc + 1) factor are part of the Qm

n opera-

tor, while SU (N f − Nc) and SU (N f ) arise directly from I(m)
n . The 

flavour symmetry of the latter is broken by the replacement of 
the parameters s by s̃. This mismatch in symmetries points to-
wards symmetry enhancement in the IR. Furthermore, the duality 
expressed by Eq. (11) is a realization of s-confinement: as one can 
see from counting the number of flavours attached to each node, 
one of the nodes s-confines. We will elaborate on this in [22], 
where we will also study the field content in more detail.

A surprising observation is that no matter how long the quiver 
one has generated with the help of Eq. (11) is, it can be rewritten 
in terms of a single integral through Eq. (4). Given that all of the 
integrals generated by the Bailey lemma can be interpreted as SCIs, 
this leads us to the conjecture that the electric part of SQCD, with 
its SCI given by Eq. (4), has a large number of dual linear quiv-
ers, related to the original theory by s-confinement and symmetry 
enhancement. To see how many, simply count the number of pos-
sible starting points of the iteration, the result is m, which can be 
rewritten as N f − Nc − 1. Applying Seiberg duality to the result-
ing quivers adds even more dual theories. One possible equation 
arising from this would be

I(m)
n (s, t) = Qm−1

n · · · Qi
n I(i)

n (s̃, t) (14)

= Qm−1
n · · · Qi

ncn
i (s̃, t)Qn−1

i · · · Q j
i I( j)

i (s̃′, t′),
where i = 0, . . . , m − 1 and j = 0, . . . , n − 1 denote starting points 
of the iteration and enumerate possible quivers. Seiberg duality is 
realized through I(i)

n (s̃, t) = cn
i (s̃, t)I(n)

i (s̃′, t′), where the coefficient 
cn

i (s̃, t) corresponds to that in Eq. (6). Evidently, more than one 
coefficient of this type can show up in expressions like those of 
Eq. (14). In principle, each application of Eq. (6) and Eq. (11) adds 
an additional tilde or prime to the parameters, but we try to keep 
the notation simple by not writing them explicitly.

As an example, consider Eq. (4) with n = m = 2, which corre-
sponds to Nc = 3 and N f = 6. One can either start with m = 0, and 
iterate Eq. (11) twice, or start with m = 1 and apply it once, to end 
up at I(2)

2 . The result is that we have two different indices of quiver 
gauge theories that are equivalent to the electric indices of SQCD 
for our choice of colours and flavours. This is shown in Fig. 1, the 
Q -operation relates the theory on top with a single gauge group 
to two quivers. We can now apply Seiberg duality of Eq. (6) to the 
original integral in both expressions, this is denoted as S in Fig. 1. 
One of the resulting theories can now again be rewritten through 
Eq. (11) in an analogous manner. The whole logic can be applied 
once again, until no more possibilities arise. The complete web of 
dualities that arises from this is shown in Fig. 1. We get a total of 
ten distinct theories whose SCIs match, indicating a duality rela-
tion. The same procedure can be applied to the magnetic theory 
as well, leading to, in this example, another set of ten dual theo-
ries. For a general number of colours and flavours, the result will 
not be symmetric. Another noteworthy aspect of this new duality 
web is the fact that the SCI of SQCD with arbitrary flavours can 
be generated from the s-confining theory with m = 0 (Nc = n + 1
and N f = Nc + 1) by quivering it, i.e. by repeated application of 
Eq. (11).

The quivers generated by Eq. (11) are free of gauge anoma-
lies. Consider a node corresponding to a vector multiplet. Oriented 
edges connecting it to adjacent nodes correspond to bifundamen-
tal fields transforming both under the gauge symmetry and an-
other gauge or flavour symmetry. The original gauge symmetry is 
anomaly free if the weighted sum over the ranks of the adjacent 
symmetry groups (1 the fundamental, −1 for the antifundamen-
tal representation) vanishes. This is the case for the quiver on the 
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right hand side of Eq. (11) and subsequently for all quivers in the 
duality web.

We have also checked the matching of global anomalies by 
computing the triangle diagrams of the global symmetries of the 
quiver, including the U (1)R symmetry. All anomaly coefficients, 
which will be presented explicitly in [22], match with those of 
the corresponding subgroups of the index on the left hand side 
of Eq. (11). In [23] it was shown that S L(3; Z) modular transfor-
mation properties of the elliptic hypergeometric integrals describe 
’t Hooft anomaly matching conditions. In [24], modular transfor-
mations where studied in the Schur limit of the index, where 
the modularity group reduces to S L(2; Z). In the present context 
anomaly matching means that in relation (11) the sum of Bernoulli 
polynomials B33(u; ω) (with appropriate arguments) associated 
with a modular transformation of the kernel of integral operator 
Q m

n and of that for the integral (SCI) I(m)
n is equal to the corre-

sponding Bernoulli polynomial for the integral (SCI) I(m+1)
n . This 

picture should agree also with the computation of partition func-
tions for our quiver theories along the lines of [17–19], which are 
proportional to SCIs up to an exponential of the Casimir energies.

At this point, we would like to make a few comments on the 
physical interpretation of the Bailey lemma, especially the integral 
operator M(t)wz of Eq. (9). In [7], it was considered for n = 1, 
where its connection to the Sklyanin algebra, a particular realiza-
tion of a quantum algebra related to the Yang–Baxter equation was 
discussed. An interesting aspect of this work is the emergence of 
a recurrence relation for the intertwining operator M(t)wz that 
involves a specific finite difference operator composed of Jacobi 
theta functions. Similar structures arise in the study of generalized 
N = 2 quiver gauge theories of class S [25]. It was shown [26]
that the SCI associated with an IR theory defined on a Riemann 
surface, notably in the presence of surface defects, is determined 
by the pole structure of the index of the corresponding UV theory. 
To be more precise, one has to calculate the residues correspond-
ing to poles of elliptic gamma functions appearing in the integrand 
of the UV index. This is done with the help of a difference operator 
similar to the one derived in [7] from residue calculus. Note that 
M(t) is converted into a finite-difference operator corresponding 
to defect insertions by restricting to tn+1 = q−r p−s with r, s ∈ Z≥0. 
For generic t , the integral operator M(t) is a very general object 
describing an insertion of a whole nontrivial interacting field the-
ory with gauge and matter fields.

It would be interesting to study the new duality web from the 
point of view of a six-dimensional construction and see whether 
the intertwining operator and the related elements of the Sklyanin 
algebra can be connected to N = 1 analogues of known N = 2
surface defects. It is also important to clarify the relation to the 
N = 1 linear quivers of [15] and to the constructions of [27]
and [28]. In [27], the author considered brane box models giving 
rise to N = 1 quiver gauge theories and related the SCI to the cor-
relation function of line operators in a two-dimensional topological 
QFT on a torus, which in turn can be related to two-dimensional 
lattice models as it was observed first in [29].

Finally, let us mention that the described duality web is not the 
only interesting structure that arises from the An-Bailey lemma. 
We have limited ourselves to linear quivers in this article, whereas 
relation (11) shows that the full web of dualities also contains a 
large set of nonlinear quiver gauge theories. To see this, note that 
the “quivering” operator Qm

n only acts on a subset of parameters, 
i.e. si for i = 1, . . . , n + 1. However, action on the remaining flavour 
parameters is legitimate, and combining operators that act on dif-
ferent sets of parameters leads to a substantially more complicated 
duality web including nonlinear quivers. In terms of Fig. 1, this 
means that to each bubble corresponding to a linear quiver, we 
actually have to attach a larger number of dual theories consist-
ing of two-dimensional quivers. Also, the set of dualities described 
in Sect. 11.2 of the first paper in [9] is a part of this web. We 
will present a detailed exposition of the An-Bailey lemma conse-
quences for constructing dual field theories in an upcoming pa-
per [22].

After completion of this paper, we were informed about the 
work of [30], where the relation of the Sklyanin algebra to the 
insertion of surface defects in the context of six-dimensional theo-
ries is discussed.
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