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SUMMARY

A familial form of Creutzfeldt-Jakob disease (CJD) is
linked to the D178N/V129 prion protein (PrP) mutation.
Tg(CJD) mice expressing the mouse homolog of this
mutant PrP synthesize a misfolded form of the mutant
protein, which is aggregated and protease resistant.
These mice develop clinical and pathological features
reminiscent of CJD, including motor dysfunction,
memory impairment, cerebral PrP deposition, and
gliosis. Tg(CJD) mice also display electroencephalo-
graphic abnormalities and severe alterations of
sleep-wake patterns strikingly similar to those seen
in a human patient carrying the D178N/V129 mutation.
Neurons in these mice show swelling of the endoplas-
mic reticulum (ER) with intracellular retention of
mutant PrP, suggesting that ER dysfunction could
contribute to the pathology. These results establish
a transgenic animal model of a genetic prion disease
recapitulating cognitive, motor, and neurophysiologi-
cal abnormalities of the human disorder. Tg(CJD)
mice have the potential for giving greater insight
into the spectrum of neuronal dysfunction in prion
diseases.

INTRODUCTION

Clinical signs in the diagnosis of prion diseases in animal models

are essentially confined to late motor deficits. In humans, prion

diseases have a more complex presentation, with dementia

and nonmotor as well as motor disturbances, often following
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a long prodromal phase. A broader spectrum of clinical signs

is needed in experimental models for insight into the mecha-

nisms of neuronal dysfunction and its evolution, and to identify

earlier markers of clinical disease when therapeutic intervention

may be effective. Here we report the emergence of behavioral,

electrophysiological, and motor deficits in a mouse model of

inherited prion disease that closely mirror those seen in a newly

diagnosed human patient with the same mutation.

Approximately 15% of human prion diseases display autoso-

mal dominant inheritance and are linked to point or insertional

mutations in the gene encoding PrPC (PRNP) (Young et al.,

1999). The mechanism of neurotoxicity of mutant PrP molecules

is not clear (Chiesa and Harris, 2001), but structural changes in-

volving increased b sheet structure, aggregation, and resistance

to protease digestion may contribute to the pathogenicity of the

mutant protein (Prusiner, 1998). PRNP mutations have been

associated with defined clinical and neuropathological pheno-

types—Creutzfeldt-Jakob disease (CJD), Gerstmann-Sträuss-

ler-Scheinker syndrome (GSS), and fatal familial insomnia

(FFI)—but there is extensive variability in disease presentation

for individual mutations and even within the same family (Young

et al., 1999).

An important source of phenotypic variation is the polymor-

phism at codon 129 of PRNP, where either methionine (M) or va-

line (V) can be encoded. The prion disease linked to the substitu-

tion of aspartic acid (D) to asparagine (N) at codon 178 is a typical

example. The D178N/V129 haplotype segregates with a subtype

of Creutzfeldt-Jakob disease (CJD178) recognized clinically by

global cortical dementia, motor abnormalities, and myoclonus,

whereas the D178N/M129 allele is associated with FFI, primarily

characterized by severe sleep alterations, with total disorganiza-

tion of normal sleep structure and endocrine dysfunction (Gold-

farb et al., 1992). Electroencephalographic (EEG) changes
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characterize CJD (Wieser et al., 2006). However, sleep alter-

ations are also increasingly recognized in sporadic and inherited

CJD (Calleja et al., 1985; Chapman et al., 1996; Kazukawa et al.,

1987; Landolt et al., 2006; Taratuto et al., 2002; Terzano et al.,

1995).

Investigation of inherited prion disease biology requires animal

models with the essential features of the human disorders. To

date, the existing mouse models of inherited human prion dis-

ease, Tg(P101L) (Hsiao et al., 1990; Nazor et al., 2005; Telling

et al., 1996) and Tg(PG14) (Chiesa et al., 1998), develop motor

deficits, but models showing the cognitive and neurophysiolog-

ical abnormalities typical of CJD have not been reported.

Here we describe a transgenic mouse model of inherited CJD

expressing the mouse homolog of the D178N/V129 mutation, in

which we found EEG and sleep abnormalities as well as memory

impairment and motor dysfunction. Striking morphological alter-

ations of the neuronal endoplasmic reticulum (ER) associated

with ER retention of mutant PrP were found in these animals,

suggesting that perturbation of ER homeostasis may be involved

in the pathogenesis. These mice increase the spectrum of clini-

cal signs and other functional abnormalities in experimental

models of prion disease. They provide a platform for greater in-

sight into mechanisms of disease pathogenesis and for potential

approaches to intervention.

RESULTS

Generation of Transgenic Mice and Characterization
of Mutant PrP
We produced transgenic mice that express a mouse PrP

(moPrP) homolog of the D178N/V129 mutation associated with

CJD178 (moPrP D177N/V128). We identified five founders (A21,

G1, G5, H, and I). Transgene copy number and mutant PrP ex-

pression are shown in Table S1 and Figure S1 in the Supplemen-

tal Data available online. To generate transgenic lines, referred to

as Tg(CJD), founders were bred with Prnp0/0 mice (Bueler et al.,

1992), so that the progeny expressed only mutant PrP. The pat-

tern of transgenic PrP expression in the brain was similar to that

of endogenous PrP in nontransgenic mice (Figure S2), although

subtle differences in cellular distribution cannot be excluded.

Unglycosylated PrP was underrepresented (Figures S1 and

S2A), consistent with observations in humans carrying the

D178N mutation (Petersen et al., 1996).

Approximately 50% of mutant PrP in the mouse brains was in-

soluble (seen in pellet fractions in Figures 1A and 1B and

Figure S3) and was immunoprecipitated by the PrPSc-specific

antibody 15B3, which also recognizes a variety of misfolded

and aggregated forms of PrP (Biasini et al., 2008; Nazor et al.,

2005) (Figure 1B). No detergent-insoluble PrP was detected in

nontransgenic mice (Figure 1A, lanes 1 and 2).

Mutant PrP was weakly protease resistant (Figure 1C, lanes 5–

12), in contrast to the complete protease sensitivity of wild-type

PrP (Figure 1C, lanes 1–4). This was clearly seen under standard

assay conditions in the Tg(CJD-G5) founder expressing high

levels of mutant PrP. To enhance detection of the proteinase K

(PK)-resistant fraction in Tg(CJD-A21) mice, brain homogenates

were digested at 4�C (Figure 1D). After deglycosylation with

PNGase F, the PK-resistant fragment found in Tg(CJD) mice
had an apparent molecular mass of 19 kDa (Figure 1E). There

were no regional differences in insolubility and protease resis-

tance of mutant PrP throughout the brain (Figure S3 and data

not shown).

Figure 1. D177N/V128 PrP is Insoluble, Immunoprecipitated by 15B3

Antibody, and Mildly Protease Resistant

(A) Brain lysates prepared from mice of the following genotypes and ages were

ultracentrifuged at 186,000 3 g for 40 min, and PrP in the supernatants (S) and

pellets (P) was analyzed by western blotting using P45–66 (lanes 1 and 2) or

3F4 antibody (lanes 3–10): non-Tg/Prnp+/+, 304 days (lanes 1 and 2); Tg(WT-

E1+/+), 581 days (lanes 3 and 4); Tg(CJD-A21+/�), 570 days (lanes 5 and 6);

Tg(CJD-G1+/+), 309 days (lanes 7 and 8); Tg(CJD-G5+/�)/Prnp+/+, 72 days

(lanes 9 and 10).

(B) Brain lysates from Tg(CJD-A21+/�), 720 days (lanes 1 and 2) and Tg(WT-

E1+/+), 581 days (lanes 3 and 4) were ultracentrifuged, and the supernatant

and pellet fractions were split into two parts and either analyzed by western

blotting using antibody 3F4 (top panel) or immunoprecipitated using monoclo-

nal antibody 15B3 (lower panel). Immunoprecipitated PrP was analyzed by

western blotting using antibody 3F4 (lower panel).

(C) Brain lysates from mice of the following genotypes and ages were incu-

bated with 0–2 mg of proteinase K (PK) for 30 min at 37�C, and PrP was

visualized by western blotting using antibody 3F4: Tg(WT-E1+/+), 42 days

(lanes 1–4); Tg(CJD-A21+/�), 153 days (lanes 5–8); Tg(CJD-G5+/�)/Prnp+/+,

72 days (lanes 9–12). The undigested samples (0 mg/ml PK) represent 50 mg

of protein; the other samples represent 200 mg.

(D) Brain lysates from a 71-day-old Tg(WT-E1+/�) mouse and a 191-day-old

Tg(CJD-A21+/�) mouse were incubated with 0–100 mg of PK for 60 min on

ice, and PrP was visualized by western blotting with antibody 3F4. The undi-

gested samples (0 mg/ml PK) represent 5 mg of protein; the other samples

represent 20 mg.

(E) Brain lysate from a 422-day-old Tg(CJD-A21+/�) mouse was incubated with

0 or 75 mg/ml of PK as in (D), followed by incubation with PNGase F and west-

ern blot analysis with antibody 3F4. Deglycosylation of the undigested sample

in lane 1 was incomplete; arrowhead indicates the completely deglycosylated

PrP band.
Neuron 60, 598–609, November 26, 2008 ª2008 Elsevier Inc. 599
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Tg(CJD) Mice Develop Motor Dysfunction and Alteration
of Spatial Working Memory
All Tg(CJD) mice expressing mutant PrP at a level similar to that

of endogenous PrP in wild-type mice, or higher, exhibited

progressive neurological disease. They developed ataxia, with

abnormal posture, leaning to one side, unusual flexed posture

of hind legs, kyphosis, and foot clasping on suspension (Fig-

ure 2A). On a rotarod, Tg(CJD) mice showed a significantly

shorter latency to fall than Prnp+/+ or Prnp0/0 nontransgenic litter-

mates and Tg(WT) mice (Figure S4).

The phenotype was evident from �450 days in hemizygous

Tg(CJD-A21) mice and�145 days in homozygous mice. Duration

of illness was 293 ± 28 and 130 ± 13 days (Figure 2B), respec-

tively, suggesting a transgene dose-related neurological dys-

function. Furthermore, the Tg(CJD-G5) founder, which ex-

pressed mutant PrP at eight times wild-type levels, died with

neurological symptoms at 72 days of age, whereas mice express-

ing mutant PrP below the endogenous level did not develop neu-

rological disease during their lifetimes. Nontransgenic littermates

and Tg(WT) mice observed over the same period remained free of

neurological disease and survived more than 1000 days.

Coexpression of wild-type PrP had no effect on onset, sever-

ity, or duration of illness in Tg(CJD) mice, in contrast to the effect

of endogenous PrP expression in other transgenic mutant PrP

models (Telling et al., 1996). For example, in a group of litter-

Figure 2. Neurological Symptoms in Tg(CJD) Mice

(Aa) A Tg(CJD-A21+/+) mouse at 201 days of age is incapable of deambulating

on a metal grill.

(Ab) Two Tg(CJD-A21+/+) mice at 201 and 223 days of age. Note the ataxic

posture with extension of the hindlimb and the unbalanced posture.

(Ac) A Tg(CJD-A21+/�) mouse at 671 days of age shows kyphosis (hunchback

position) and abnormal gait with extension of the hindlimbs.

(Ad) When suspended by its tail, a Tg(CJD-A21+/+) mouse at 188 days of

age (left) assumes a flexed posture and tightly clasps its hindlimbs, whereas

a nontransgenic littermate (right) splays its limbs.

(B) Time course of clinical illness in Tg(CJD-A21) mice.
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mates consisting of 10 Tg(CJD-A21+/�)/Prnp+/+, 13 Tg(CJD-

A21+/�)/Prnp+/0, and 7 Tg(CJD-A21+/�)/Prnp0/0 mice, symptom

onset was at 405 ± 44, 409 ± 35, and 410 ± 39 days, respectively

(mean ± SEM).

We also found alterations in spatial working memory in

Tg(CJD) mice. Mice were tested with a battery of behavioral

tasks for different aspects of memory, including passive avoid-

ance, novel object recognition, Morris water maze, and eight-

arm radial maze. To avoid confounding effects due to the motor

deficit that develops in older mice, we tested Tg(CJD) hemizy-

gous animals younger than 320 days. Mice performed poorly in

the eight-arm radial maze, which tests spatial working memory,

making significantly more errors over 10 training days than non-

transgenic controls (Figure 3A). Latency to complete the test was

similar in Tg(CJD) and control mice, confirming that the deficit

was not due to motor abnormalities (Figure 3B). We found no

significant differences between Tg(CJD) and control mice in

the other behavioral tasks at this stage.

Tg(CJD) Mice Show Abnormal EEG Patterns and Sleep
Disturbance Reminiscent of Those Observed
in a Human CJD Patient with the Same Mutation
As EEG abnormalities are common in CJD (Wieser et al., 2006),

we analyzed EEG patterns in Tg(CJD) mice. The EEG activity of

Tg(CJD) mice was characterized by bursts of polyphasic com-

plexes (Figure 4A, left panels), which were not seen in the other

groups of mice. The polyphasic complexes lasted from 0.3 to

4.6 s, and their amplitude varied but in most cases was larger

than the EEG amplitude during non-REM (NREM) sleep. The

frequency power spectrum of polyphasic complexes peaked

Figure 3. Tg(CJD) Mice Show Working Memory Impairment in the

Eight-Arm Radial Maze

(A) Histograms show the mean ± SEM of total errors in the eight-arm radial

maze during 10 days of training by 10 non-Tg/Prnp+/+, 10 non-Tg/Prnp0/0,

and 11 Tg(CJD-A21+/�) mice aged between 200 and 316 days. F2,28 = 9.0;

p = 0.001 by one-way analysis of variance (ANOVA). *p < 0.05, **p < 0.01 by

Tukey’s post hoc test.

(B) Values show the mean latency (±SEM) to complete the test. One-way

ANOVA did not find any difference between groups (F2,28 = 2.8; p = 0.08).
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Figure 4. Electroencephalographic Activity

Is Altered in Tg(CJD) Mice

(A) Three examples of bursts of polyphasic com-

plexes (left panels) and corresponding frequency

power spectra obtained by fast Fourier transform

(right panels). These alterations were observed in

all 6 Tg(CJD-A21+/�) mice.

(B) An example of sawtooth waves (left panel) and

the corresponding frequency power spectrum

(right panel), which were observed in 5 out of 6

Tg(CJD-A21+/�) mice.

(C) Examples of normal electroencephalographic

recordings (left panels) and corresponding fre-

quency power spectra (right panel) during epochs

of wakefulness (top panel), non-rapid eye move-

ment (NREM) (middle panel), and rapid eye move-

ment (REM) (bottom panel) sleep in a representa-

tive Tg(WT) mouse.
around 7–8 Hz (Figure 4A, right panels). Scoring epochs (12 s)

containing one or more bursts of polyphasic complexes were

almost equally distributed during the light and dark phases

(33.0% ± 5.5% and 27.8% ± 5.6% of the total number of epochs,

respectively). During the light phase, polyphasic complexes

were present in 36.1% ± 4.8%, 18.7% ± 4.0%, and 13.8% ±

7.4% of epochs scored as wakefulness, NREM sleep, and

REM sleep, respectively. These percentages were 29.7% ±

4.4%, 29.3% ± 2.9%, and 13.6% ± 11.3% during the dark

phase. As shown in the lower panel of Figure 5B, the polyphasic

complexes were distributed in clusters.

In 5 out of 6 Tg(CJD) mice, we also observed abnormal ‘‘saw-

tooth’’ waves with a frequency power spectrum that peaked

around 4 Hz (Figure 4B). The number of epochs with these waves

ranged from 5 to 33 during the light phase and from 4 to 56 during

the dark phase, except in one Tg(CJD) mouse in which hundreds

of sawtooth waves were recorded during the light-dark cycle.

Mice expressing mutant PrP showed marked sleep abnormal-

ities; 24 hr polygraphic analysis indicated significant alterations

of sleep-wake patterns. Tg(CJD) mice spent strikingly less time

in REM sleep than all other mouse lines during both phases of

the light-dark cycle (Figure 5A; top panel of Figure 5B; Figure 5E;

Figure S5). The amount of time spent in NREM sleep during the

dark phase was also significantly reduced. In Tg(CJD) mice,

3.9% ± 2.1% of time during the light phase and 4.7% ± 1.9%

during the dark phase was characterized by repeated bursts of

polyphasic complexes and could not be assigned to any conven-

tional behavioral state; these periods were classified as ‘‘un-

scored’’ (Figure 5B, top panel). There were no significant differ-

ences in the number of transitions between behavioral states

(an indicator of continuous or broken sleep) or state-specific

EEG power spectra in the different groups of mice.

Analysis of circadian distribution of sleep and gross body

movements did not bring to light any differences between

Tg(CJD) and control mice. As expected in nocturnal animals,

mice of all experimental groups spent more time awake (Fig-

ure 5E, top panel) and moved more during the dark phase than

the light phase of the light-dark cycle, with no differences be-
tween strains (F3 = 0.64, p = 0.6 by two-way ANOVA). Animals

of all strains also slept more (as evaluated by total sleep time)

during the light phase than the dark phase. Thus, the extreme

reduction of REM sleep in Tg(CJD) mice could not be attributed

to alterations of circadian rhythms.

Our findings of marked EEG and sleep disruption in Tg(CJD)

mice expressing the mouse homolog of the D178N/V129mutation

confirm that sleep dysfunction is more widespread in prion dis-

eases than previously thought, consistent with recent reports of

such disturbances not only in FFI (Landolt et al., 2006). We there-

fore examined the sleep profile and EEG of a case of CJD178 in

a 47-year-old woman newly diagnosed during the course of our

experiments (see case report in the Supplemental Data).

We found EEG alterations (periodic sharp wave complex

[PSWC] activity) and marked abnormalities in the patient’s sleep

profile. NREM sleep EEG pattern was characterized by mono-

morphic low-amplitude theta and unstable delta activities, with

total absence of vertex waves, spindles, and K complex. Tripha-

sic waves were clearly attenuated during NREM sleep. REM

sleep, limited to brief phases during the night, appeared charac-

terized by very low-amplitude theta and beta rhythms, reduction

of submental electromyographic tone, and only rare rapid eye

movements (Figure S6). These severe EEG alterations meant

that the sleep-wake profile could not be scored according to

Rechtschaffen and Kales (1968). However, we identified three

patterns on the basis of the above characteristics: wake,

NREM sleep, and REM sleep (Figure 5D). Sleep appeared very

unstable, with frequent transitions between wakefulness and

NREM sleep. NREM sleep was also broken by frequent arousals

associated with limb movements (limb movement index = 64).

The respiratory profile was unremarkable.

In summary, some of the neurophysiological features of

Tg(CJD) mice are similar to those observed in the CJD178 patient.

Tg(CJD) Mice Show PrP Deposits, Gliosis,
and Loss of GABAergic Cells
Tg(CJD) mice exhibited several neuropathological abnormali-

ties. Immunohistochemistry indicated protease-resistant PrP
Neuron 60, 598–609, November 26, 2008 ª2008 Elsevier Inc. 601
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Figure 5. Abnormal Sleep Patterns in Tg(CJD) Mice and a Human CJD178 Patient

(A) Representative hypnogram of a 578-day-old Tg(WT-E1+/+) mouse. ‘‘Unscored’’ indicates epochs not assigned to any behavioral state. (See Results and

Experimental Procedures for further details.)

(B) Representative hypnogram (upper panel) and distribution across time of polyphasic complexes (lower panel) in a 631-day-old Tg(CJD-A21+/�) mouse. Note

the reduction in REM sleep epochs (highlighted in red) in comparison to the Tg(WT-E1+/+) mouse and the presence of unscored epochs. Hypnograms in (A) and (B)

cover the first 6 hr of the light phase of the light-dark cycle and are intended to provide a qualitative picture of the amount of sleep and sleep distribution in time

(sleep architecture) during this interval.

(C) The 24 hr hypnogram of a healthy human shows a normal pattern of waking during the daytime and regular NREM-REM cycles during the night.

(D) Only a rudimentary wake-sleep rhythm is detectable in a human patient carrying the D178N/V129 PrP mutation, with a prevalence of waking during the day and

sleep epochs during the night. Note the absence of ultradian cycles, the severe reduction of REM sleep, and the impossibility to distinguish NREM sleep stages.

(E) Percentage of time (mean ± SEM) spent in wakefulness, NREM sleep, and REM sleep across 24 hr by 6 non-Tg/Prnp+/+, 6 non-Tg/Prnp0/0, 6 Tg(CJD-A21+/�),

and 5 Tg(WT-E1+/+) mice. At the time of recording, the animals’ mean (±SEM) ages were: non-Tg/Prnp+/+, 629 ± 20 days; non-Tg/Prnp0/0, 632 ± 59 days; Tg(WT-

E1+/+), 427 ± 70 days; Tg(CJD-A21+/�), 560 ± 34 days. The gray background identifies the dark portion of the light-dark cycle. Two-way ANOVA indicated

a significant reduction in the percentage of time spent in REM sleep during both the light and dark phases for the Tg(CJD) animals (F3,42 = 4.8, p = 0.01).

*p < 0.05, ***p < 0.001 versus other groups by Fisher’s test.
deposits in many brain regions of Tg(CJD) mice that were absent

in nontransgenic and Tg(WT) mice (Figures 6A–6D). Diffuse ‘‘syn-

aptic-type’’ PrP deposition was prominent in the hippocampal

formation, particularly in the stratum moleculare (Figure 6E),

and in the amygdala and olfactory bulb. Definite PrP immunos-

taining was also detected in the neocortex and striatum and,

less intensely, in the thalamus, hypothalamus, brainstem, and

molecular layer of the cerebellum. In addition, small PrP ‘‘pla-

que-like’’ deposits were found in several brain regions, including

the fimbria of the hippocampus, the reticular thalamic nucleus,

the corpus callosum, the external and internal capsule, the cin-

gulate cortex, and the anterior commissure nuclei (Figure 6F).
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These deposits were not fluorescent after thioflavine S staining,

indicating that they did not contain amyloid fibrils.

PrP deposition was associated with hypertrophy and prolifer-

ation of astrocytes, prominent in the hippocampus, amygdala,

and olfactory bulb as revealed by immunostaining with anti-glial

fibrillary acidic protein (GFAP) antibody (Figure S7). No spongi-

form-like changes were observed.

There is evidence that parvalbumin-, calbindin-, and calreti-

nin-positive subpopulations of GABAergic neurons are primarily

affected in CJD (Belichenko et al., 1999; Guentchev et al., 1997).

Immunohistochemistry for calretinin showed striking differences

in the hippocampus and cerebral cortex of Tg(CJD) mice
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compared to controls (Figure 7; Figure S8). In non-Tg mice, the

anti-calretinin antibody strongly labeled bipolar neurons in layers

II and III of the cerebral cortex, mossy cells in the dentate gyrus of

the hippocampus, and their synaptic terminals projecting to the

supragranular zone. Tg(CJD) mice consistently showed mark-

edly less calretinin immunoreactivity of interneurons and neuropil

of the cerebral cortex and mossy cell terminals in the hippocam-

pus. The loss of calretinin immunoreactivity progressed with age

and correlated with the local deposition of PrP, although the two

proteins did not colocalize precisely (Figure S8). Synaptophysin

immunoreactivity was low in the supragranular layer of the hip-

pocampus where calretinin reduction was most pronounced

(data not shown).

These observations indicate a profound abnormality of calre-

tinin-positive fibers at the synaptic terminals up to their complete

disappearance.

Tg(CJD) Cerebellar Granule Neurons Show Swelling
of the ER and Abnormal Intracellular Localization of PrP
Histological analysis of Tg(CJD) brains did not find any obvious

signs of cerebellar degeneration, in contrast to other transgenic

mutant PrP models with similar motor dysfunctions (Chiesa et al.,

Figure 6. Tg(CJD) Mice Show Cerebral Accumulation of Protease-
Resistant PrP

(A and B) Immunohistochemical detection of PrP using monoclonal antibody

12B2 after PK digestion of a section in a 290-day-old Tg(CJD-A21+/+) mouse

(A) and a 396-day-old non-Tg/Prnp+/+ mouse (B).

(C and D) Immunohistochemical detection of PrP using monoclonal antibody

3F4 after PK digestion of a section in a 267-day-old Tg(CJD-A21+/+) mouse

(C) and a 293-day-old Tg(WT-E1+/�) mouse (D).

(E and F) The pattern of PrP deposition in Tg(CJD) mice was either diffuse, as in

the hippocampal formation (E), or plaque-like, as in the anterior commissure

nucleus (F). Sections in (E) and (F) are from a 744-day-old Tg(CJD-A21+/�)

mouse.

Scale bars = 1 mm in (A) (also applicable to [B]), 250 mm in (C) (also applicable to

[D]), and 25 mm in (E) and (F). Lmol, lacunosus molecular stratum; Mol, molec-

ular stratum; GrDG, granular zone of dentate gyrus.
1998, 2000). Tg(CJD) cerebella were not atrophic judging from

morphometric measurements, nor did they show loss of granule

neurons or alterations of Purkinje cell density and dendritic ar-

borization in the molecular layer (Figure S9; data not shown).

Electron microscopy of Tg(CJD) cerebella, however, detected

striking ultrastructural abnormalities in granule neurons. The

ER of these cells was consistently enlarged and fragmented

(Figure 8A). These abnormalities were not seen in non-Tg/

Prnp0/0 or Tg(WT) mice, suggesting that they were related to

mutant PrP expression.

To test whether the ultrastructural alterations were associated

with accumulation of mutant PrP in the secretory pathway, we

used immunogold electron microscopy. Because immunostain-

ing of mutant PrP in brain sections requires antigen retrieval with

guanidine thiocyanate, which alters the tissue ultrastructure, we

made this analysis in primary cerebellar cultures established

from newborn mice. Preliminary tests showed that mutant PrP

could in fact be detected in paraformaldehyde/glutaraldehyde-

fixed neurons without the need for antigen retrieval. The majority

of wild-type PrP in granule neurons from non-Tg/Prnp+/+

and Tg(WT) mice localized on the plasma membrane and in

endosomes, with only a small fraction in the ER and the Golgi

Figure 7. Tg(CJD) Mice Show Low Calretinin Immunoreactivity in

Several Nerve Cell Populations

Sections from non-Tg/Prnp0/0 mice aged 245 (A and C), 334 (E), or 808 (G)

days; Tg(CJD-A21+/+) mice aged 284 (B and D) or 208 (F) days; and a 709-

day-old Tg(CJD-A21+/�) mouse (H) were stained with anti-calretinin antibody.

In non-Tg mice, calretinin immunostaining labels bipolar and multipolar neu-

rons in layers II and III of the cerebral cortex (A and C) and the synaptic termi-

nals of the mossy cells in the supragranular zone of the dentate gyrus in the

hippocampus (E and G). Tg(CJD) mice show marked loss of calretinin immu-

noreactivity in cortical neurons (B and D) and hippocampal mossy cell termi-

nals (F and H). Scale bars = 250 mm in (A) and (E) (also applicable to [B] and

[F]), 15 mm in (C) (also applicable to [D]), and 50 mm in (G) (also applicable to [H]).
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complex (Figures 8Ba and 8C). In contrast, mutant PrP localized

mostly in the ER of Tg(CJD) neurons (�75% versus �2.5% in

control cells), with a much smaller fraction of molecules on the

plasma membrane (�15% versus �85% in controls) (Figures

8Bb, 8Bc, and 8C). Cultured cerebellar neurons from the mutant

mice showed striking alterations of the ER cisternae, which

appeared enlarged, swollen, and electron-dense (Figures 8Bb,

8Bc, and 8D).

These results indicate altered trafficking of mutant PrP to the

plasma membrane, protein retention in the ER, and morpholog-

ical abnormalities in intracellular organelles.

DISCUSSION

The D178N/V129 haplotype is linked to a CJD subtype that has

been described in families from Germany, France, Finland,

Israel, and America (Young et al., 1999). The disease is charac-

terized by early cognitive impairment with prominent memory

deterioration, abnormal behavior, and progressive signs of

motor dysfunction such as ataxia, tremor, and myoclonus, as

well as characteristic neuropathological signs. In the present

study, we found that mice carrying a transgene encoding

the mouse homolog of the CJD178 mutation accumulate an ab-

normal form of PrP in their brains and show neuropathological

Figure 8. Tg(CJD) Neurons Have Enlarged

Endoplasmic Reticulum and Abnormal In-

tracellular PrP Distribution

(A) Electron microscopy of granule neurons in the

cerebellumofa268-day-oldnon-Tg/Prnp0/0mouse

(Aa), a 262-day-old Tg(CJD-A21
+/�

) mouse (Ab),

and a 43-day-old Tg(CJD-A21+/+) mouse (Ac). Ar-

rowheads point to the endoplasmic reticulum (ER)

cisternae, which are normal in the non-Tg control

(Aa) mouse but are fragmented and swollen in the

Tg(CJD) mice (Ab and Ac). Scale bar in (Ac) (appli-

cable to [Aa]–[Ac]) = 500 nm.

(B) Cultures of cerebellar granule neurons from

non-Tg/Prnp+/+, Tg(WT), and Tg(CJD-A21+/�) mice

were fixed and labeled with anti-PrP antibody

using the Nanogold enhancement protocol. Wild-

type PrP is mostly found at the plasma membrane

(Ba); some staining is also visible in the ER (arrows)

and in the Golgi complex (arrowheads). D177N/

V128 PrP is mostly found in ER cisternae, which

appear moderately (Bb) or strongly (Bc) enlarged

and swollen. Scale bar in (Bc) (applicable to [Ba]–

[Bc]) = 250 nm.

(C) Quantification of gold particles in different cell

compartments. PM, plasma membrane.

(D) Quantification of ER and Golgi volumes of

cultured cerebellar granule neurons.

Data are the mean ± SD of at least 10 cells per

specimen.

changes of prion diseases. We also found

that the mutant mice develop a neurolog-

ical illness characterized by progressive

motor dysfunction, deficits in spatial

working memory, and abnormal sleep-

wake behavior with dramatic reduction

of REM sleep. Although sleep abnormalities are not commonly

considered symptoms of CJD178, we have now reported sleep

disorganization with severe reduction of REM epochs in a

recently diagnosed patient with the D178N/V129 mutation.

Thus, our combined behavioral and neurophysiological analyses

indicate that Tg(CJD) mice recapitulate essential clinical features

of CJD178. The results also suggest that perturbation of ER

homeostasis due to mutant PrP misfolding may be a critical

factor in neuronal dysfunction in inherited prion disease, indicat-

ing new pathogenic mechanisms and potential therapeutic

strategies.

Clinical Features of Tg(CJD) Mice
Tg(CJD) mice expressing mutant PrP at a level comparable to

that of endogenous PrP in wild-type mice develop a progressive

neurological disease that can be easily scored on the basis of ky-

phosis, foot clasp reflex, unbalanced body posture, and ataxia.

Tg(CJD) mice also show sensorimotor deficits, such as inability

to climb on a vertically oriented grill and poor performance on

a rotarod. These signs are indicative of motor dysfunction,

a prominent clinical feature of CJD. No neurological signs are ob-

served in nontransgenic littermates of Tg(CJD) mice or in Tg(WT)

mice, strongly indicating that the phenotype is due to expression

of the D177N/V128 transgene.
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We found that expression of mutant PrP above the endoge-

nous level dramatically exacerbates the Tg(CJD) phenotype. Ho-

mozygous mice of the A21 line develop neurological signs much

earlier than hemizygous mice (at�145 versus�450 days of age)

and show much faster disease progression, reaching the termi-

nal stage in �130 days (Figure 2B). Moreover, the G5 founder,

which expressed eight times the endogenous PrP level, died

with neurological disease at only 72 days of age, further support-

ing a direct correlation between D177N/V128 level and disease

severity. In contrast, Tg(CJD) lines with PrP expression below

the endogenous level remain healthy during their lifetime. This

dose-dependent effect of mutant PrP expression has been de-

scribed in other PrP mutant mice (Chiesa et al., 2000; Nazor

et al., 2005; Telling et al., 1996) and supports the concept that

higher levels of mutant PrP molecules result in earlier onset

and a faster course of disease.

Consistent with the dominant mode of inheritance of CJD178

(Goldfarb et al., 1992), expression of wild-type PrP does not res-

cue the neurological illness of Tg(CJD) mice. Tg(CJD) mice car-

rying either one or two copies of the endogenous wild-type Prnp

allele develop neurological signs at an age similar to Tg(CJD)/

Prnp0/0 littermates and invariably progress to terminal disease.

Further experiments, however, are necessary to determine

whether coexpression of wild-type PrP modifies any other as-

pects of the Tg(CJD) phenotype, such as the deficits in working

memory or the alteration of sleep-wake patterns.

Memory loss is a distinctive early sign of CJD178 (Brown et al.,

1992). Tg(CJD) mice have a significant deficit in working memory

detectable in the eight-arm radial maze well before onset of neu-

rological signs. Tg(CJD) mice appear to be affected specifically

in this function since they have no significant alterations in

aspects of reference memory as measured by the passive avoid-

ance, object recognition, or Morris water maze tests. Interest-

ingly, Tg(CJD) mice show alterations in calretinin-positive mossy

cell terminals of the hippocampus and bipolar interneurons of the

cerebral cortex, which are thought to play important roles in spa-

tial orientation and working memory (Crusio and Schwegler,

2005; Wang et al., 2004).

EEG Abnormalities and Sleep Disruption in Tg(CJD) Mice
and a CJD178 Patient
EEG alterations have been described in CJD since the early

1980s. The alterations depend on the stage of the disease, rang-

ing from nonspecific findings such as diffuse slowing and frontal

rhythmic delta activity in the early stage of disease to typical

PSWC in the middle and late stages. PSWC has been reported

in a carrier of the D178N/V128 mutation (Laplanche et al.,

1992) and were also detected in the patient analyzed here.

Tg(CJD) mice develop striking pathological EEG alterations

mimicking the human EEG pattern. Bursts of polyphasic com-

plexes and, to a lesser extent, ‘‘sawtooth’’ waves resemble the

EEG patterns observed in a feline model of CJD (Gourmelon

et al., 1987) and can be regarded as the equivalent of human

PSWC (Wieser et al., 2006).

Tg(CJD) mice also exhibit the sleep alterations seen in

sporadic CJD (Landolt et al., 2006) and in the CJD178 patient

described here. The most striking feature is a highly significant

reduction of REM sleep during both the light and dark phases
of the light-dark cycle in these mice. A second finding is the pres-

ence of epochs that cannot be assigned to any normal behav-

ioral state based on standard criteria used for the polygraphic

scoring of mouse sleep-wake behavior (‘‘unscored’’ epochs).

The pattern was similar in the CJD178 patient, who spent a signif-

icant amount of time in a condition that could not be assigned to

any normal vigilance or sleep state. A ‘‘nonwake-nonsleep’’ sub-

wakefulness state has been recognized in FFI (Montagna et al.,

2003) and in sporadic CJD (Landolt et al., 2006), and we found

a severe reduction of sleep efficiency, virtual absence of REM

sleep, and absence of usual ultradian modulation in our CJD178

patient.

Longitudinal 24 hr monitoring and spectral EEG analysis in FFI

patients show that an early and progressive reduction in thalamic

sleep spindles and K complexes is an early marker in the natural

history of the disease (Cortelli et al., 2006; Montagna et al., 2003);

spindling activity was completely absent in the whole 24 hr

recording of the CJD178 patient described here. Thus, sleep pro-

motion and organization appear to be altered in prion diseases

regardless of the specific etiology, suggesting a ‘‘continuum’’

between FFI, CJD178, and sporadic CJD.

The sleep-wake alterations observed in Tg(CJD) mice are not

seen in non-Tg littermates and Tg(WT) mice, consistent with

these alterations being caused by mutant PrP expression. PrP

may regulate circadian rhythm and promote sleep continuity

(Tobler et al., 1996), but no significant changes are seen in

the percentage of time spent in wakefulness, REM sleep, and

NREM sleep in Prnp0/0 mice. Therefore, the altered sleep-wake

behavior of Tg(CJD) mice seen here is unlikely to be due to

loss of any putative PrP function in sleep regulation.

Interleukin-1 and tumor necrosis factor are potent inhibitors of

REM sleep (Obal and Krueger, 2003). These cytokines are

elevated in sporadic and variant CJD and in CJD-infected mice

(Kordek et al., 1996; Sharief et al., 1999), suggesting their

involvement in the severe REM sleep reduction in Tg(CJD)

mice and the CJD178 patient.

Neuropathological Features and Biochemical
Properties of Mutant PrP in Tg(CJD) Mice
PrP deposition in most forms of prion disease is extracellular, oc-

curring either in typical amyloid plaques or as more diffuse ‘‘syn-

aptic-like’’ deposits in perineuronal and perivacuolar structures

throughout the neuropil. In familial CJD linked to the D178N/

V129 mutation, weak ‘‘synaptic-like’’ and small focal deposits

of PrP are observed (Parchi et al., 2003), and Tg(CJD) mice

have the same types of PrP deposits.

A striking pathological alteration in Tg(CJD) mice that appears

to be related to PrP deposition is the decrease of calretinin-pos-

itive GABAergic neurons in the dentate gyrus of the hippocam-

pus and in layers II and III of the neocortex. In the hippocampus,

loss of calretinin is accompanied by reduced synaptophysin

staining, suggesting that presynaptic terminals are affected. In

the neocortex, the decrease in calretinin is most evident in the

neuropil, whereas the cell bodies retain a certain degree of im-

munoreactivity. These observations suggest that nerve terminals

are primarily affected, consistent with the idea that synapses are

the main targets of abnormal PrP (Bouzamondo-Bernstein et al.,

2004; Jeffrey et al., 2000; Kitamoto et al., 1992).
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Specific subpopulations of GABAergic neurons in the hippo-

campus and cerebral cortex are selectively affected in sporadic

CJD and in experimental prion diseases (Guentchev et al., 1997,

1998). In sporadic CJD, parvalbumin-positive interneurons in the

frontal cortex are mostly involved, although there is also degen-

eration of calbindin- and calretinin-positive cells (Belichenko

et al., 1999).

In CJD-infected mice, loss of GABAergic inhibitory neurons oc-

curs very early after inoculation, suggesting that it may be an im-

portant step during disease development representing the basis

of excitatory symptoms (Guentchev et al., 1997, 1998). Whether

alterations of calretinin-positive GABAergic neurons in Tg(CJD)

mice contribute to the EEG abnormalities observed in this model

remains to be established.

Mutant PrP in the brains of Tg(CJD) mice can be distinguished

from PrPC by several biochemical properties, including propen-

sity to form detergent-insoluble aggregates, protease resistance,

and reactivity with the 15B3 antibody. D177N/V128 PrP, however,

differs from mutant PrP in the brains of CJD178 patients because it

is much less protease resistant and has a smaller protease-resis-

tant core, suggesting possible structural differences. Experi-

ments to test whether mutant PrP in Tg(CJD) brains is infectious

like that in CJD178 patients (Brown et al., 1992) are underway.

Impaired Trafficking of Mutant PrP and Its Potential Role
in Disease Pathogenesis
We observed that the ER of Tg(CJD) cerebellar granule neurons

was dramatically swollen and electron-dense and contained

abnormal amounts of mutant PrP. These data suggest that ER

retention of mutant PrP may be an instigating pathogenic mech-

anism in cerebellar granule neurons that could also be active in

other neuronal populations.

A number of inherited human diseases are attributable to

defects in export of a mutant protein out of the ER (Aridor and

Hannan, 2002). In some cases the misfolded mutant protein is tri-

aged by the ER quality control and degraded by the proteasome;

in other cases it is retained in the ER lumen and stimulates ER

stress response pathways, such as the unfolded protein re-

sponse (UPR), eventually leading to apoptosis (Kaufman,

1999). We have reported that PrP molecules carrying the

D177N mutation are delayed in their biosynthetic maturation in

the ER (Drisaldi et al., 2003) but are not subject to retrotransloca-

tion and proteasomal degradation in cerebellar granule neurons

(Fioriti et al., 2005). No signs of UPR were detected in the brains

of carriers of the D178N/V129 mutation (Unterberger et al.,

2006), and we did not find splicing of the mRNA encoding X

box-binding protein 1 or increased expression of UPR-regulated

genes such as Grp78/Bip and CHOP/GADD153 in the brains of

Tg(CJD) mice (data not shown), suggesting that some other

pathogenic mechanism may be triggered by this mutation. ER

overload with mutant PrP may lead to activation of NF-kB

(Pahl and Baeuerle, 1997), with possible consequences for neu-

ronal function and synaptic plasticity (O’Mahony et al., 2006). Al-

ternatively, buildup of the mutant protein in the ER may perturb

the ER calcium signaling essential for normal neuronal function

(Mattson et al., 2000). Finally, aggregation of mutant PrP in the

secretory pathway may interfere with folding, assembly, and

transport of other membrane proteins, such as multimeric ion
606 Neuron 60, 598–609, November 26, 2008 ª2008 Elsevier Inc.
channels or receptors (Schwappach, 2008), leading to defective

synaptic transmission.

The fact that Tg(CJD) mice accumulate a misfolded form of

mutant PrP in their brains and develop clinical features of CJD ar-

gues that essential aspects of pathogenesis are modeled in

these animals. Tg(CJD) mice may be suitable for investigating

disease mechanisms and testing potential therapies in inherited

prion diseases. Since the mutant mice spontaneously develop

profound alterations of sleep-wake behavior, they offer a unique

model for investigating the pathophysiology of sleep in prion dis-

orders. Finally, comparative studies of Tg(CJD) and transgenic

mice expressing other mutant PrPs may provide important infor-

mation on the cellular and molecular mechanisms responsible

for the phenotypic heterogeneity of inherited prion diseases.

EXPERIMENTAL PROCEDURES

Generation of Transgenic Mice

Production of transgenic Tg(WT) mice expressing wild-type PrP tagged with an

epitope for the monoclonal antibody 3F4 has been reported previously (Chiesa

et al., 1998). In this study, we used hemizygous or homozygous mice of the E1

line, which express two and four times the endogenous PrP level, respectively.

The cDNA encoding mouse PrP derived from the Prnpa allele and containing

the 3F4 epitope tag and the D177N and M128V substitutions has been de-

scribed previously (Fioriti et al., 2005). The coding region of this cDNA was am-

plified by PCR using Vent polymerase (New England Biolabs) and ligated into

the MoPrP.Xho vector, which contains a 12 kb fragment of Prnp, including the

promoter and intron 1, and drives expression of transgenic PrP in a tissue pat-

tern similar to that of the endogenous protein (Borchelt et al., 1996). Recombi-

nant plasmids were selected by PCR screening and restriction analysis, and

their identity was confirmed by sequencing the entire coding region (Chiesa

et al., 1998). The transgene was excised by NotI digestion and injected into

the pronuclei of fertilized eggs from an F2 cross of C57BL/6J 3 CBA/J F1 pa-

rental mice. Transgenic founders were bred with an inbred colony of Zürich I

Prnp0/0 mice (C57BL/6J 3 129 background) (Bueler et al., 1992; Chiesa

et al., 2000). The status of the Prnp gene and the presence of the transgene

were determined by PCR, and the zygosity of the transgene was determined

by Southern blot analysis (Chiesa et al., 1998). The transgenic lines were

maintained on the Prnp0/0 genotype. For some experiments, the Prnp allele

was reintroduced by breeding transgenic mice to C57BL/6J 3 CBA/J mice;

nontransgenic Prnp+/+ and Prnp0/0 littermates were used as controls.

All procedures involving animals and their care were conducted according

to European Union (EEC Council Directive 86/609, OJ L 358,1; December

12, 1987) and Italian (D.L. n.116, G.U., suppl. 40; February 18, 1992) laws

and policies and in accordance with the United States Department of Agricul-

ture Animal Welfare Act and National Institutes of Health Policy on Humane

Care and Use of Laboratory Animals.

Biochemical Analyses

Tissue homogenates were prepared in phosphate-buffered saline (PBS) con-

taining 0.5% NP-40 and 0.5% sodium deoxycholate using a glass/Teflon tis-

sue homogenizer. In some experiments, protease inhibitor cocktail (1 mg/ml

pepstatin and leupeptin; 0.5 mM phenylmethylsulfonyl fluoride; 2 mM EDTA)

was added to the homogenization buffer. Assays of detergent insolubility, pro-

teinase K (PK) resistance, and immunoprecipitation with antibody 15B3 were

carried out as described previously (Biasini et al., 2008; Chiesa et al., 1998;

Tremblay et al., 2004). Western blots were developed with monoclonal anti-

body 3F4 (Kascsak et al., 1987), which selectively recognizes transgenic

PrP, or polyclonal antibody P45–66 raised against a synthetic peptide encom-

passing residues 45–66 of mouse PrP.

Clinical Analysis of Mice

Mice were observed weekly for signs of neurological dysfunction according to

a set of objective criteria (Chiesa et al., 1998). Onset of disease was scored as
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the time at which at least two of the following neurological signs were ob-

served: foot-clasp reflex, kyphosis, unbalanced body posture, inability to

walk on a horizontal metal grid, and inability to remain on a vertical grid for

at least 30 s. An accelerating Rota-Rod 7650 (Ugo Basile) was used; mice

were first trained twice the week before official testing. They were positioned

on the rotating bar and allowed to become acquainted with the environment for

30 s. The rod motor was started at an initial setting of 3 rpm and accelerated to

30 rpm at a constant rate of 0.3 rpm/s for a maximum of 300 s. The perfor-

mance was scored as latency to fall, in seconds. Animals were given three tri-

als, and the average was used for statistical analysis.

Radial Maze

Spatial working memory was measured using an eight-arm radial maze made

of gray plastic with a Plexiglas lid. The arms, which radiated from an octagonal

central arena with a diameter of 12 cm, were 30 cm long, 5 cm wide, and 4 cm

high. Several external visual cues surrounded the apparatus. Starting one

week before testing, the mice were water deprived by being given access to

water for only 1 hr per day. One day before starting the task schedule, a habit-

uation trial was run. The mice were placed in the center of the maze and let free

to explore the environment for 10 min. The next day, the arms of the radial

maze were baited with 50 ml of water. Animals were placed in the center of

the maze, and the arm entry sequence was recorded. The task ended once

all eight arms of the maze had been visited or after a maximum of 16 trials,

whichever came first. Repeated entry into an arm that had already been visited

constituted an error. The number of errors and the latency to complete the test

were recorded manually by an operator (A.G.) blinded to the experimental

groups. Animals were tested for 10 consecutive days.

EEG and Sleep-Wake Behavior

EEG and sleep patterns were investigated in six non-Tg/Prnp+/+, six non-Tg/

Prnp0/0, sixTg(CJD-A21+/�), and five Tg(WT-E1+/+)mice.Micewere anesthetized

and instrumented for chronic EEG recording according to standard techniques

(Baracchi and Opp, 2008) and then allowed at least 10 days to recover from sur-

gery and adapt to the recording conditions. Mice were individually housed in

standard cages with food and water ad libitum. Cages were kept in sound-atten-

uated boxes at a constant temperature between 24.5�C and 26.0�C, with a 12/

12 hr light-dark cycle. Gross body activity was detected using an infrared sensor

housed in an observation unit that also contained a camera (BIOBSERVE GmbH)

allowing continuous recording of the animals’ behavior. Movements detected by

the infrared sensor were converted to a voltage output. The conditioned EEG

signal and the voltage output from the infrared sensor were digitized and col-

lected using custom software (M.R. Opp, University of Michigan). EEG signals

and gross body activity were recorded for 24 hr (starting at first light) in undis-

turbed conditions and used for polygraphic determination of vigilance state.

The animals were not handled starting from 48 hr before the recording session.

Two mice of different genotypes were randomly matched and recorded simulta-

neously.The orderof recording ofmiceof the different lines was also randomized.

Postacquisition determination of vigilance state was performed according to

standard criteria (Baracchi and Opp, 2008). Visual scoring of 12 s epochs was

performed by an investigator (L. Ferrari or S.B.) blinded to the strain. As de-

scribed in Results, it was sometimes impossible to assign certain epochs to

any behavioral state in Tg(CJD) mice. In these cases, epochs were classified

as ‘‘unscored.’’ EEG power density values were obtained for each animal

and each behavioral state by Fourier transform for each artifact-free 12 s scor-

ing epoch for the frequency range 0.5–20 Hz.

Histology

Brains were fixed in Carnoy’s fixative (6:3:1 ethanol:chloroform:acetic acid),

dehydrated in graded ethanol solutions, cleared in xylene, and embedded in

paraffin. Serial sections (5 mm thick) were cut and stained with hematoxylin

and eosin, Nissl, or thioflavin S. Some sections were immunostained with

rabbit polyclonal anti-glial fibrillary acidic protein (GFAP) (Dako, 1:1000),

anti-calretinin (Swant, 1:2000), anti-calbindin (Chemicon, 1:1000), or anti-

synaptophysin (Dako, 1:200), followed by visualization with a Vectastain

ABC kit (Vector) using 3,30-diaminobenzidine as chromogen. Alexa 488- or

Alexa 546-conjugated secondary antibodies (Molecular Probes Inc.) were

used for immunofluorescence.
For PrP immunohistochemistry, sections were incubated with PK (2 mg/ml in

0.1% Brij-35, 50 mM NaCl, 50 mM Tris-HCl [pH 7.8]) for 30 min at room tem-

perature and exposed to guanidine thiocyanate (3 M in H2O) for 30 min (Giac-

cone et al., 2000). PK-resistant PrP was detected with monoclonal antibody

3F4 (1:200) (Kascsak et al., 1987) or 12B2 (1:1000) (Langeveld et al., 2006).

Results were similar with the two antibodies.

Electron Microscopy

One 269-day-old Tg(WT) mouse, two non-Tg/Prnp0/0 mice aged 268 and

392 days, two Tg(CJD-A21+/�)/Prnp0/0 mice aged 262 and 488 days, and

one 43-day-old Tg(CJD-A21+/+)/Prnp0/0 mouse were deeply anesthetized

and perfused through the ascending aorta with PBS (0.1 M; pH 7.4) followed

by 4% paraformaldehyde (PFA) and 2.5% glutaraldehyde in PBS. The cerebel-

lum was excised and cut along the sagittal plane with a razor blade, postfixed

in 3% glutaraldehyde in PBS, and immersed for 2 hr in OsO4. After dehydration

in a graded series of ethanol, tissue samples were cleared in propylene oxide,

embedded in Epon 812 epoxy medium (Fluka), and polymerized at 60�C for

72 hr. From each sample, one semithin section (1 mm) was cut with a Leica

EM UC6 ultramicrotome and mounted on glass slides for light microscopic

inspection to identify the Purkinje and granular cell layers. Ultrathin sections

(70 nm thick) of the area of interest were obtained, counterstained with uranyl

acetate and lead citrate, and examined with an energy filter transmission elec-

tron microscope (Zeiss LIBRA 120 EFTEM) equipped with a YAG scintillator

slow-scan CCD camera.

Immunoelectron Microscopy

Cerebellar granule neurons were prepared from 6-day-old mice as described

previously (Fioriti et al., 2005) and cultured for 7 days before immunoelectron

microscopy. Cells grown on poly-L-lysine-coated glass coverslips were

washed with PBS and fixed in a solution of 4% PFA and 0.1% glutaraldehyde

in 0.2 M HEPES buffer (pH 7.4) for 15 min at room temperature. After washing

with PBS, cells were incubated for 30 min in blocking solution (50 mM NH4Cl,

0.1% saponin, 1% BSA in HEPES buffer) and then overnight at 4�C with anti-

PrP monoclonal antibody SA65 (Matucci et al., 2005) or 12B2 (Langeveld et al.,

2006) diluted 1:250 in blocking solution. Cells were washed and incubated for

1 hr at room temperature with Nanogold-conjugated anti-mouse IgG Fab0 frag-

ment diluted 1:100 in blocking solution and processed according to the Nano-

gold enhancement protocol (Nanoprobes). Stained cells were embedded in

Epon 812 and cut as described previously (Polishchuk et al., 2003). EM images

were acquired from thin sections using a Philips Tecnai 12 electron micro-

scope equipped with an ULTRA VIEW CCD digital camera (Philips). Gold par-

ticles were quantified in the different compartments of the secretory pathway,

and total cell, ER, and Golgi volumes were analyzed using analySIS software

(Soft Imaging Systems GmbH). The SA65 and 12B2 antibodies yielded similar

results.

Polysomnography

The 24 hr EEG recordings, including complete polysomnography, were taken

according to guidelines approved by the Standards of Practice Committee of

the American Academy of Sleep Medicine (Kushida et al., 2005). The EEG was

acquired with Ag/AgCl electrodes positioned over the vertex and the frontal,

central, and occipital regions bilaterally, according to the International 10-20

Electrode Placement System. Two electrooculographic channels, respiratory

channels, electrocardiography, bilateral tibialis anterior, and chin electromy-

ography were also recorded. All signals were digitalized at a sampling rate

of 256 Hz. The record was visually scored according to standard criteria (Re-

chtschaffen and Kales, 1968), and the hypnogram was stored digitally, linked

to the recording. Arousals, cardiorespiratory events, and EMG activities were

recognized by dedicated software and reviewed by a clinical neurophysiolo-

gist trained in sleep medicine. A control 24 hr recording was taken in an

age-matched healthy subject in the same sleep laboratory.
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