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Abstract

Considered herein is a two-component Camassa–Holm system modeling shallow water waves moving
over a linear shear flow. A wave-breaking criterion for strong solutions is determined in the lowest Sobolev
space Hs , s > 3

2 by using the localization analysis in the transport equation theory. Moreover, an improved
result of global solutions with only a nonzero initial profile of the free surface component of the system is
established in this Sobolev space Hs .
© 2010 Elsevier Inc. All rights reserved.
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1. Introduction

We consider here the coupled two-component Camassa–Holm shallow water system [12,23,
30,31], namely,

⎧⎨⎩
mt + umx + 2uxm − Aux + ρρx = 0, t > 0, x ∈ R,

m = u − uxx, t > 0, x ∈ R,

ρt + (uρ)x = 0, t > 0, x ∈ R,

(1.1)
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where the variable u(t, x) represents the horizontal velocity of the fluid, and ρ(t, x) is related to
the free surface elevation from equilibrium (or scalar density) with the boundary assumptions,
u → 0 and ρ → 1 as |x| → ∞. The parameter A > 0 characterizes a linear underlying shear
flow so that (1.1) models wave-current interactions (see the discussions in [15,25,26] and see
also [4,24]). All of those are measured in dimensionless units. Recently, Ivanov [23] gave a
rigorous justification of the derivation of the system (1.1) which is a valid approximation to the
governing equations for water waves in the shallow water regime with nonzero constant vorticity,
where the nonzero vorticity case arises for example in situations with underlying shear flow [24].

Set g(x) = 1
2e−|x|, x ∈ R. Then (I − ∂2

x )−1f = g ∗ f for f ∈ L2(R), where ∗ denotes the
spatial convolution. Let η := ρ − 1, (1.1) can be rewritten as a quasi-linear nonlocal evolution
system of the type⎧⎨⎩ut + uux = −∂xg ∗

(
u2 + 1

2
u2

x − Au + 1

2
η2 + η

)
, t > 0, x ∈ R,

ηt + uηx + ηux + ux = 0, t > 0, x ∈ R,

(1.2)

or equivalently, ⎧⎪⎪⎨⎪⎪⎩
ut + uux + ∂xP = 0, t > 0, x ∈ R,

−∂2
xP + P = u2 + 1

2
u2

x − Au + 1

2
η2 + η, t > 0, x ∈ R,

ηt + uηx + ηux + ux = 0, t > 0, x ∈ R.

For A = ρ = 0 in (1.1), one obtains the classical Camassa–Holm model [5], whose relevance
for water waves was established in [10,27]. The system (1.1) is formally integrable [19,23,31]
as it can be written as a compatibility condition of two linear systems (Lax pair) with a spectral
parameter ζ , that is,

Ψxx =
(

−ζ 2ρ2 + ζ

(
m − A

2

)
+ 1

4

)
Ψ,

Ψt =
(

1

2ζ
− u

)
Ψx + 1

2
uxΨ

and has a bi-Hamiltonian structure corresponding to the Hamiltonian

H1 = 1

2

∫
R

(
mu + (ρ − 1)2)dx

with m = u − uxx and the Hamiltonian

H2 = 1

2

∫
R

(
u(ρ − 1)2 + 2u(ρ − 1) + u3 + uu2

x − Au2)dx.

There are two Casimirs, i.e.
∫

ρ − 1 and
∫

m with boundary conditions are taken as u → 0 and
ρ → 1 as |x| → ∞.
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The system (1.1) without vorticity, i.e. A = 0, was also rigorously justified by Constantin and
Ivanov [12] to approximate the governing equations for shallow water waves. M. Chen, S. Liu
and Y. Zhang [8] established a reciprocal transformation between the two-component Camassa–
Holm system and the first negative flow of the AKNS hierarchy. More recently, Holm, Nraigh and
Tronci [22] proposed a modified two-component Camassa–Holm system which possesses singu-
lar solutions in component ρ. Mathematical properties of (1.1) with A = 0 have been also studied
further in many works. For example, Escher, Lechtenfeld and Yin [18] investigated local well-
posedness for the two-component Camassa–Holm system with initial data (u0, ρ0) ∈ Hs ×Hs−1

with s � 2 and derived some precise blow-up scenarios for strong solutions to the system. Con-
stantin and Ivanov [12] provided some conditions of wave breaking and small global solutions.
Gui and Liu [21] recently obtained results of local well-posedness in the Besov spaces (espe-
cially in the Sobolev space Hs ×Hs−1 with s > 3

2 ) and wave breaking for certain initial profiles.
More recently, Guan and Yin [20] studied global existence and blow-up phenomena for the sys-
tem (1.2) with initial data (u0, ρ0 − 1) ∈ Hs × Hs−1 with s � 5

2 .
It is known that different from the Korteweg–de Vries (KdV) equation, the Camassa–Holm

(CH) equation has a remarkable property, that is, the presence of breaking waves [5,11], which
means, the solution remains bounded while its slope becomes unbounded in finite time [9,11].
After wave breaking the solutions of the CH equation can be continued uniquely as either global
conservative [2] or global dissipative solutions [3]. The goal of the present paper is to investi-
gate whether or not the two-component Camassa–Holm system has the similar wave-breaking
phenomena as the classical Camassa–Holm equation in a lower Sobolev space Hs × Hs−1 for
s > 3

2 . In other words, whether or not both of two components u and ρ of the solution remain
bounded while their slopes become unbounded in finite time.

As we know, a crucial ingredient to obtain wave breaking in finite time or global solution for
the CH equation is the following invariant property [9].

m
(
t, q(t, x)

)
q2
x (t, x) = m0(x), (t, x) ∈ [0, T ) × R,

where m(t, x) = u(t, x) − uxx(t, x) and the function q ∈ C1 is an increasing diffeomorphism
of R and satisfies the following differential equation,⎧⎨⎩

∂q

∂t
= u(t, q), 0 < t < T,

q(0, x) = x, x ∈ R.

This is related to the geodesic equation which is on the diffeomorphism group of the circle
[14] or on the Bott–Virasoro group [13,28,29]. Without such a nice invariant property of the CH
equation, the issue of whether or not particular initial data of the two-component Camassa–Holm
system generate a global solution or wave breaking is more subtle.

Our work is motivated in the study of nonlinear models, especially of the transport equation,
that is, {

∂tf + v∂xf = g, (t, x) ∈ R
+ × R,

f |t=0 = f0.

It is well known that most of estimates are available when v has enough regularity. Roughly
speaking, the regularity of the initial data is expected to be preserved as soon as v belongs to
L1 (R+;Lip).
loc
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We give the following remark to explain the meaning of the lowest Sobolev space correspond-
ing to the system (1.1) or (1.2).

Remark 1.1. We say Hs × Hs−1 with s > 3
2 is the lowest Sobolev space for the two-component

Camassa–Holm system based on the following facts.
(a) For every Sobolev index s � 3

2 , the Sobolev space Hs cannot be embedded in the Lipschitz
space (Lip), which is the lowest condition for preserving the regularity of the strong solution to
the two-component Camassa–Holm system according to the localized analysis in the transport
equation theory.

(b) Without the effect of linear dispersion, i.e. A = 0, the system (1.1) has peakon solitons of
the form, u(x, t) = ce−|x−ct |, c �= 0 with ρ ≡ 0 as the solution of the Camassa–Holm equation.
It is noted that the peakon soliton ce−|x−ct | is the weak solution in the Sobolev space Hs only
for s < 3

2 .
(c) Following the proof of Proposition 4 in [17], one can see that (1.1) is not locally well posed

in B
3
2
2,∞ in the following sense.

There exists a global solution u ∈ L∞(R+;B
3
2
2,∞) and ρ ≡ 0 to (1.1) such that for any positive

T > 0 and ε > 0 there exists a solution v ∈ L∞(0, T ;B
3
2
2,∞) and ρ ≡ 0 with∥∥u(0) − v(0)

∥∥
B

3
2

2,∞
� ε and ‖u − v‖

L∞(0,T ;B
3
2

2,∞)

� 1.

Therefore, the exponent s = 3
2 is critical in the range of Besov spaces Bs

2,r for r ∈ [1,∞].
Inspired by [12], we use the properties of invariance of the component ρ associated to a

transport equation with more delicate localization analysis in the transport equation theory to
derive a new wave-breaking criterion for solutions for the system (1.1) in the lowest Sobolev
spaces Hs × Hs−1 with s > 3

2 . In this case, due to the Hamiltonian H1, the horizontal velocity
component u is uniformly bounded by the Sobolev imbedding of H 1 into L∞. It is shown that the
slope of u is bounded below, then the slope of the component ρ cannot break in finite time. This
implies that the wave breaking of the solution is determined only by the slope of the component u

of the solution definitely. Note in [12,18] that the wave breaking in finite time is determined by
either the slope of the first component u or the slope of the second component ρ in the Sobolev
space Hs × Hs−1 with s � 5

2 . It is, however, established in Theorem 4.1 and Theorem 4.2 that
the wave breaking in finite time only depends on the slope of the first component u in the Sobolev
space Hs × Hs−1 with s > 3

2 . In other words, the wave breaking in the first component u must
occur before that in the second component ρ in finite time.

On the other hand, we find a sufficient condition for global solutions which determined only
by a nonzero initial profile of the free surface component ρ of the system in Hs × Hs−1 with
s > 3

2 . This can be done because the slope of the component u can be controlled by the compo-
nent ρ in finite time provided the sign of ρ does not change. These of improved results of global
solutions and wave breaking indeed reveal more important features of wave propagation to the
system (1.1).

Our main results of the present paper are Theorem 4.1 (Wave-breaking criterion), Theorem 4.2
(Precise wave-breaking criterion) and Theorem 5.1 (Global solution).

The remainder of the paper is organized as follows. In Section 2, we recall some basic facts
on the Littlewood–Paley theory, which the localization technique is constantly used in the whole
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paper. Section 3 is devoted to the transport equation theory, where Theorem 3.2 is specially
interesting to the system (1.2). Using the transport equation theory in the Besov spaces, two
wave-breaking criteria to solutions in the lowest Sobolev space Hs × Hs−1 with s > 3

2 are
demonstrated in Section 4. Finally, a result of global existence of solution in the lowest Sobolev
space Hs × Hs−1 with s > 3

2 is obtained in the last section, Section 5.

Notation. Let A,B be two operators, we denote [A;B] = AB − BA, the commutator between
A and B; a � b means that there is a uniform constant C that may be different on different lines,
such that a � Cb. We denote (cj )j∈N (or (cj (t))j∈N) to be a sequence in �2 with norm 1. All of
different positive constants might be denoted by the uniform constant C which may depend only
on initial data.

2. Littlewood–Paley analysis

For convenience of the reader, we shall recall some basic facts on the Littlewood–Paley theory,
one may check [1,6,7,16,32] for more details.

Proposition 2.1 (Littlewood–Paley decomposition). (See [6].) Let B def= {ξ ∈ R
d, |ξ | � 4

3 } and

C def= {ξ ∈ R
d, 3

4 � |ξ | � 8
3 }. There exist two radial functions χ ∈ C∞

c (B) and ϕ ∈ C∞
c (C) such

that

χ(ξ) +
∑
q�0

ϕ
(
2−qξ

) = 1, ∀ξ ∈ R
d,

∣∣q − q ′∣∣ � 2 ⇒ Suppϕ
(
2−q ·) ∩ Suppϕ

(
2−q ′ ·) = ∅,

q � 1 ⇒ Suppχ(·) ∩ Suppϕ
(
2−q ·) = ∅,

and

1

3
� χ(ξ)2 +

∑
q�0

ϕ
(
2−qξ

)2 � 1, ∀ξ ∈ R
d .

Let h
def= F −1ϕ and h̃

def= F −1χ . Then the dyadic operators �q and Sq can be defined as
follows

�qf
def= ϕ

(
2−qD

)
f = 2qd

∫
Rd

h
(
2qy

)
f (x − y)dy, for q � 0,

Sqf
def= χ

(
2−qD

)
f =

∑
−1�k�q−1

�qf = 2qd

∫
Rd

h̃
(
2qy

)
f (x − y)dy,

�−1f
def= S0f and �qf

def= 0 for q � −2. (2.1)

Lemma 2.1 (Bernstein’s inequality). (See [6].) Let B be a ball with center 0 in R
d and C a ring

with center 0 in R
d . A constant C exists so that, for any positive real number λ, any nonnegative
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integer k, any smooth homogeneous function σ of degree m, and any couple of real numbers
(a, b) with b � a � 1, there hold

Supp û ⊂ λB ⇒ sup
|α|=k

∥∥∂αu
∥∥

Lb � Ck+1λk+d( 1
a
− 1

b
)‖u‖La ,

Supp û ⊂ λC ⇒ C−1−kλk‖u‖La � sup
|α|=k

∥∥∂αu
∥∥

La � C1+kλk‖u‖La ,

Supp û ⊂ λC ⇒ ∥∥σ(D)u
∥∥

Lb � Cσ,mλm+d( 1
a
− 1

b
)‖u‖La , (2.2)

for any function u ∈ La .

Definition 2.1 (Besov spaces). (See [6].) Let s ∈ R, 1 � p, r � ∞. The inhomogeneous Besov
space Bs

p,r (R
d) (Bs

p,r for short) is defined by

Bs
p,r

(
R

d
) def= {

f ∈ S ′(
R

d
); ‖f ‖Bs

p,r
< ∞}

,

where

‖f ‖Bs
p,r

def=
{

(
∑

q∈Z
2qsr‖�qf ‖r

Lp )
1
r , for r < ∞,

supq∈Z 2qs‖�qf ‖Lp , for r = ∞.

If s = ∞, B∞
p,r

def= ⋂
s∈R

Bs
p,r .

Remark 2.1.

(i) f ∈ Bs
p,r if and only if there exist a constant C and a sequence (cq)q∈N∪{−1} in �r with

norm 1 satisfying

‖�qf ‖Lp � Ccq2−qs . (2.3)

(ii) For s ∈ R, p = r = 2, the Besov space Bs
p,r coincides with the Sobolev space Hs .

Proposition 2.2 (Gagliardo–Nirenberg inequality). For s > 1
2 , the following statement holds:

‖f ‖L∞ � C
(
1 + ‖f ‖B0∞,∞ log

(
e + ‖f ‖Hs

))
,

where the constant C = C(s) is independent of f .

The proof of this proposition is trivial, which can be found in [6], and we omit it.
The following proposition is devoted to dealing with the pseudo-differential operator

∂x(1 − ∂2
x )−1 (or ∂xg∗).

Proposition 2.3. (See [6].) Let m ∈ R and f be an Sm-multiplier (that is, f : R
d → R is

smooth and satisfies that for all multi-index α, there exists a constant Cα such that ∀ξ ∈ R
d ,

|∂αf (ξ)| � Cα(1 + |ξ |)m−|α|). Then for all s ∈ R and 1 � p, r � ∞, the operator f (D) is con-
tinuous from Bs to Bs−m.
p,r p,r
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In this paper, we are going to use Bony’s decomposition which consists of writing

uv = Tuv + Tvu + R(u, v), (2.4)

where

Tuv =
∑

q�−1

Sq−1u�qv and R(u, v) =
∑

|q−q ′|�1

�qu�q ′v =
∑

q�−1

�qu�̃qv,

where �̃q := �q−1 + �q + �q+1.

Proposition 2.4 (1-D Moser-type estimates). The following estimates hold.

(i) For s � 0,

‖fg‖Hs(R) � C
(‖f ‖Hs(R)‖g‖L∞(R) + ‖f ‖L∞(R)‖g‖Hs(R)

)
. (2.5)

(ii) For s > 0,

‖f ∂xg‖Hs(R) � C
(‖f ‖Hs+1(R)‖g‖L∞(R) + ‖f ‖L∞(R)‖∂xg‖Hs(R)

)
. (2.6)

(iii) For s1 � 1
2 , s2 > 1

2 and s1 + s2 > 0,

‖fg‖Hs1 (R) � C‖f ‖Hs1 (R)‖g‖Hs2 (R), (2.7)

where C’s are constants independent of f and g.

Proof. The proof of this lemma is rather classical, and similar estimates can be found in [6].
(2.5) is a standard Moser-type estimate, and (2.7) was used in [16] and [21]. For completeness,
we present the detailed proof of (2.6) here. Thanks to Bony’s decomposition (2.4), we decompose
f ∂xg as follows:

f ∂xg = Tf ∂xg + T∂xgf + R(f, ∂xg).

Thanks to Bernstein’s inequalities (2.2), we have

∥∥�q(Tf ∂xg)
∥∥

L2 �
∑

|q−q ′|�5

∥∥�q(Sq ′−1f �q ′∂xg)
∥∥

L2 �
∑

|q−q ′|�5

‖Sq ′−1f ‖L∞‖�q ′∂xg‖L2

� C‖f ‖L∞
∑

|q−q ′|�5

cq ′2−sq ′ ‖∂xg‖Hs � Ccq2−sq‖f ‖L∞‖∂xg‖Hs (2.8)

and
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∥∥�q(T∂xgf )
∥∥

L2 �
∑

|q−q ′|�5

∥∥�q(Sq ′−1∂xg�q ′f )
∥∥

L2 �
∑

|q−q ′|�5

‖Sq ′−1∂xg‖L∞‖�q ′f ‖L2

� C‖f ‖Hs+1‖g‖L∞
∑

|q−q ′|�5

cq ′2−(s+1)q ′
2q ′

� Ccq2−sq‖f ‖Hs+1‖g‖L∞ . (2.9)

While for s > 0, using Bernstein’s inequalities (2.2) again and Young’s inequality, we get

∥∥�qR(f, ∂xg)
∥∥

L2 �
∑

q ′�q−5

∥∥�q(�q ′f �̃q ′∂xg)
∥∥

L2 �
∑

q ′�q−5

‖�̃q ′∂xg‖L∞‖�q ′f ‖L2

� C
∑

q ′=−1, q ′�q−5

‖�̃q ′g‖L∞‖�q ′f ‖L2

+ C
∑

q ′�0, q ′�q−5

‖�̃q ′g‖L∞‖�q ′∂xf ‖L2

� Ccq2−sq‖f ‖Hs+1‖g‖L∞,

which, together with (2.8), (2.9) and (2.3), completes the proof of (2.6). �
3. Transport equation theory

To study the well-posedness problem of the system (1.2), we need the following theorem
on the transport equation (especially taking the space dimension d = 1), which has been used
in [21].

Theorem 3.1. (See [16].) Suppose that s > − d
2 . Let v be a vector field such that ∇v belongs

to L1([0, T ];Hs−1) if s > 1 + d
2 or to L1([0, T ];H d

2 ∩ L∞) otherwise. Suppose also that f0 ∈
Hs , F ∈ L1([0, T ];Hs) and that f ∈ L∞([0, T ];Hs) ∩ C([0, T ]; S ′) solves the d-dimensional
linear transport equations

(T )

{
∂tf + v · ∇f = F,

f |t=0 = f0.

Then f ∈ C([0, T ];Hs). More precisely, there exists a constant C depending only on s, p and d ,
and such that the following statements hold:

(1) If s �= 1 + d
2 ,

‖f ‖Hs � ‖f0‖Hs +
t∫

0

∥∥F(τ)
∥∥

Hs dτ + C

t∫
0

V ′(τ )
∥∥f (τ)

∥∥
Hs dτ, (3.1)

or hence,
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‖f ‖Hs � eCV (t)

(
‖f0‖Hs +

t∫
0

e−CV (τ)
∥∥F(τ)

∥∥
Hs dτ

)
(3.2)

with V (t) = ∫ t

0 ‖∇v(τ)‖
H

d
2 ∩L∞ dτ if s < 1 + d

2 and V (t) = ∫ t

0 ‖∇v(τ)‖Hs−1 dτ else.

(2) If f = v, then for all s > 0, the estimates (3.1) and (3.2) hold with V (t) = ∫ t

0 ‖∂xu(τ)‖L∞ dτ .

The following theorem (Theorem 3.2) is crucial to prove wave-breaking criterion (Theo-
rem 4.1 in Section 4). Compared with Theorem 3.1, the following theorem is also specially
interesting to the regularity propagation of the solution to the second equation of the two-
component Camassa–Holm system (1.2) (where ρ − 1 = η �= u), since only one derivative of u

is involved in V (t) in (3.3) below. It is noted that the estimate (3.3) is quite different from (3.1)
in Theorem 3.1, because there is (1 + 1

2 )-order derivative of u involved. This then makes the
problem more difficult to deal with. The proof actually needs more delicate localization analysis
in details.

Theorem 3.2. Let 0 < σ < 1. Suppose that f0 ∈ Hσ , g ∈ L1([0, T ];Hσ ), v, ∂xv ∈
L1([0, T ];L∞) and that f ∈ L∞([0, T ];Hσ ) ∩ C([0, T ]; S ′) solves the 1-dimensional linear
transport equation

(T )

{
∂tf + v∂xf = g,

f |t=0 = f0.

Then f ∈ C([0, T ];Hσ ). More precisely, there exists a constant C depending only on σ and
such that the following statement holds:

∥∥f (t)
∥∥

Hσ � ‖f0‖Hσ + C

t∫
0

∥∥g(τ)
∥∥

Hσ dτ + C

t∫
0

∥∥f (τ)
∥∥

Hσ V ′(τ ) dτ (3.3)

or hence,

∥∥f (t)
∥∥

Hσ � eCV (t)

(
‖f0‖Hσ + C

t∫
0

∥∥g(τ)
∥∥

Hσ dτ

)

with V (t) = ∫ t

0 (‖v(τ)‖L∞ + ‖∂xv(τ )‖L∞) dτ .

Proof. The proof of this theorem is motivated by the one of Theorem 3.1 (see [16]). Applying the
localization operator �q to the transport equation (T ), we transform the transport equation (T )

along the flow of v, in the following equation (Tq) on �qf , which is a transport equation along
the flow of Sqv

(Tq)

{
∂t�qf + Sqv∂x�qf = �qg − Rq,

�qf |t=0 = �qf0,

where Rq = Rq(v,f ) := �q(v∂xf ) − v�q∂xf + (v − Sqv)�q∂xf .
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To deal with Rq , we need to use the following lemma, which we admit for the time being.

Lemma 3.1. For all 0 < σ < 1,

∥∥Rq(t)
∥∥

L2 � cq(t)2−qσ
∥∥f (t)

∥∥
Hσ

(‖v‖L∞ + ‖∂xv‖L∞
)

with cq(t) ∈ l2 and ‖cq(t)‖l2 ≡ 1.

With Lemma 3.1 in hand, we can continue the proof of Theorem 3.2. Taking the inner product
between the first equation of (Tq) and �qf in L2, we have

1

2

d

dt
‖�qf ‖2

L2 = −1

2

∫
R

Sqv∂x |�qf |2 + (�qg|�qf )L2 − (
Rq(v,f )|�qf

)
L2

� ‖∂xSqv‖L∞‖�qf ‖2
L2 + (‖Rq‖L2 + ‖�qg‖L2

)‖�qf ‖L2,

which implies

1

2

d

dt
‖�qf ‖2

L2 �
(‖∂xv‖L∞‖�qf ‖L2 + ‖Rq‖L2 + ‖�qg‖L2

)‖�qf ‖L2

� Ccq(t)2−qσ
(∥∥f (t)

∥∥
Hσ

(‖v‖L∞ + ‖∂xv‖L∞
) + ∥∥g(t)

∥∥
Hσ

)‖�qf ‖L2 .

Therefore, one has

∥∥�qf (t)
∥∥

L2 � ‖�qf0‖L2 + C

t∫
0

cq(τ )2−qσ
(∥∥f (τ)

∥∥
Hσ

(‖v‖L∞ + ‖∂xv‖L∞
) + ∥∥g(τ)

∥∥
Hσ

)
dτ.

(3.4)

Multiplying (3.4) by 2qσ , then taking the l2 norm over q and applying Minkowski’s inequality,
we reach

∥∥f (t)
∥∥

Hσ � ‖f0‖Hσ + C

t∫
0

∥∥g(τ)
∥∥

Hσ dτ + C

t∫
0

∥∥f (r)
∥∥

Hσ

(‖v‖L∞ + ‖∂xv‖L∞
)
dτ.

This ends the proof of Theorem 3.2. �
We now are in a position to prove Lemma 3.1.

Proof of Lemma 3.1. Firstly, using Bony’s decomposition, we decompose the term Rq as fol-
lows
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Rq = �q(v∂xf ) − v�q∂xf + (v − Sqv)�q∂xf

= [�q;Tv]∂xf + �qT∂xf v − T�q∂xf v + �qR(v, ∂xf )

− R(v,�q∂xf ) + (v − Sqv)�q∂xf :=
6∑

i=1

Ri
q. (3.5)

For R1
q = ∑

|q−q ′|�5[�q;Sq ′−1v]∂x�q ′f , thanks to (2.1), one has

[�q; Sq ′−1v]∂x�q ′f = 2q

∫
R

h
(
2q(x − y)

)[
Sq ′−1v(y) − Sq ′−1v(x)

]
∂x�q ′f (y)dy.

Hence, (2.2) applied ensures∥∥R1
q(t)

∥∥
L2 �

∑
|q ′−q|�5

‖∂xSq ′−1v‖L∞2−q‖∂x�q ′f ‖L2 � cq(t)2−qσ
∥∥f (t)

∥∥
Hσ ‖∂xv‖L∞ . (3.6)

For R2
q = �qT∂xf v = �q

∑
q ′�0, |q−q ′|�5 Sq ′−1∂xf �q ′v, (2.2) applied again implies

∥∥R2
q(t)

∥∥
L2 �

∑
q ′�0, |q ′−q|�5

‖Sq ′−1∂xf ‖L2‖�q ′v‖L∞

�
∑

q ′�0, |q ′−q|�5

∑
k�q ′−2

‖�k∂xf ‖L22−q ′ ‖�q ′∂xv‖L∞

�
∑

q ′�0, |q ′−q|�5

∑
k�q ′−2

2k‖�kf ‖L22−q ′ ‖�q ′∂xv‖L∞,

which yields that∥∥R2
q(t)

∥∥
L2 �

∑
q ′�0, |q ′−q|�5

∑
k�q ′−2

2kck2−kσ ‖f ‖Hσ 2−q ′ ‖�q ′∂xv‖L∞

�
∑

q ′�0, |q ′−q|�5

∑
k�q ′−2

2(k−q ′)(1−σ)ck‖f ‖Hσ 2−qσ ‖∂xv‖L∞

� cq(t)2−qσ ‖f ‖Hσ ‖∂xv‖L∞, (3.7)

where we used the assumption σ < 1.
Similarly, for R3

q = −T�q∂xf v = −∑
q ′�0, q ′�q−5 Sq ′−1�q∂xf �q ′v, we have

∥∥R3
q(t)

∥∥
L2 �

∑
q ′�0, q ′�q−5

‖Sq ′−1�q∂xf ‖L2‖�q ′v‖L∞

�
∑

q ′�0, q ′�q−5

‖�qf ‖L22q−q ′ ‖�q ′∂xv‖L∞

�
∑

′ ′
2q−q ′

cq2−qσ ‖f ‖Hσ ‖∂xv‖L∞ � cq(t)2−qσ ‖f ‖Hσ ‖∂xv‖L∞ . (3.8)

q �0, q �q−5
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Since R4
q = �qR(v, ∂xf ) = �q

∑
q ′�q−5 �q ′v�̃q ′∂xf , we get from (2.2) that

∥∥R4
q(t)

∥∥
L2 �

∑
q ′�q−5

‖�q ′v‖L∞‖�̃q ′∂xf ‖L2

=
∑

q ′=−1, q ′�q−5

‖�q ′v‖L∞‖�̃q ′∂xf ‖L2 +
∑

q ′�0, q ′�q−5

‖�q ′v‖L∞‖�̃q ′∂xf ‖L2

�
∑

q ′=−1, q ′�q−5

‖v‖L∞‖�̃q ′f ‖L2 +
∑

q ′�0, q ′�q−5

‖�q ′∂xv‖L∞‖�̃q ′f ‖L2,

which gives rise to∥∥R4
q(t)

∥∥
L2 �

∑
q ′=−1, q ′�q−5

cq ′2(q−q ′)σ ‖v‖L∞2−qσ ‖f ‖Hσ

+
∑

q ′�0, q ′�q−5

cq ′2(q−q ′)σ ‖∂xv‖L∞2−qσ ‖f ‖Hσ

� cq(t)2−qσ ‖f ‖Hσ

(‖v‖L∞ + ‖∂xv‖L∞
)
, (3.9)

where we used the assumption σ > 0.
While for R5

q = R(v,�q∂xf ) = ∑
|q−q ′|�5 �q ′v�̃q ′�q∂xf , we have

∥∥R5
q(t)

∥∥
L2 �

∑
|q−q ′|�5

‖�q ′v‖L∞‖�̃q ′�q∂xf ‖L2

=
∑

q ′=−1, |q−q ′|�5

‖�q ′v‖L∞‖�̃q ′�q∂xf ‖L2

+
∑

q ′�0, |q−q ′|�5

‖�q ′v‖L∞‖�̃q ′�q∂xf ‖L2 ,

from which and (2.2), we get∥∥R5
q(t)

∥∥
L2 �

∑
q ′=−1, |q−q ′|�5

2−q ′σ cq ′2(q−q ′)σ ‖v‖L∞2−qσ ‖f ‖Hσ

+
∑

q ′�0, |q−q ′|�5

cq ′2(q−q ′)σ ‖∂xv‖L∞2−qσ ‖f ‖Hσ

� cq(t)2−qσ ‖f ‖Hσ

(‖v‖L∞ + ‖∂xv‖L∞
)
. (3.10)

Finally, for R6
q = (v − Sqv)�q∂xf ,

∥∥R6
q(t)

∥∥
L2 �

∑
q ′�q

‖�q ′v‖L∞‖�q∂xf ‖L2

=
∑

′ ′
‖�q ′v‖L∞‖�q∂xf ‖L2 +

∑
′ ′

‖�q ′v‖L∞‖�q∂xf ‖L2 ,
q =−1, q �q q �0, q �q
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from which and (2.2), we reach∥∥R6
q(t)

∥∥
L2 �

∑
q ′=−1, q ′�q

‖v‖L∞‖�qf ‖L2 +
∑

q ′�0, q ′�q

2q−q ′ ‖�q ′∂xv‖L∞‖�qf ‖L2

� cq(t)2−qσ ‖f ‖Hσ

(‖v‖L∞ + ‖∂xv‖L∞
)
,

which together with (3.5)–(3.10) completes the proof of Lemma 3.1. �
4. Wave-breaking criteria

Let us first state the following local well-posedness result of (1.2), which was obtained in [21]
(up to a slight modification).

Lemma 4.1. Suppose that u0 = (u0, η0) ∈ Hs × Hs−1, s > 3
2 . Then there exist T =

T (‖u0‖Hs×Hs−1) > 0 and a unique solution u = (u, η) ∈ C([0, T );Hs × Hs−1) ∩ C1([0, T );
Hs−1 × Hs−2) of (1.2) with u(0) = u0. Moreover, the solution u depends continuously on the
initial value u0 and the maximal time of existence T > 0 is independent of s. In addition, the
Hamiltonian

H = H(u,η) = 1

2

∫
R

(
u2 + u2

x + η2)dx (4.1)

is independent of the existence time T .

With Lemma 4.1 in hand, we establish the associated Lagrangian scale of (1.2) the initial-
value problem ⎧⎨⎩

∂q

∂t
= u(t, q), 0 < t < T,

q(0, x) = x, x ∈ R,

(4.2)

where u ∈ C([0, T ),Hs) is the first component of the solution (u, η) of (1.2) with initial data
(u0, ρ0 − 1) ∈ Hs × Hs−1 with s > 3

2 , and T > 0 being the maximal time of existence. A direct
calculation also yields qtx(t, x) = ux(t, q(t, x))qx(t, x). Hence for t > 0, x ∈ R, we have

qx(t, x) = e
∫ t

0 ux(τ,q(τ,x)) dτ > 0,

which implies that q(t, ·) : R → R is a diffeomorphism of the line for every t ∈ [0, T ). This is
inferred that the L∞ norm of any function u(t, ·) ∈ L∞(R), t ∈ [0, T ) is preserved under the
family of diffeomorphisms q(t, ·) with t ∈ [0, T ), that is,∥∥u(t, ·)∥∥

L∞(R)
= ∥∥u

(
t, q(t, ·))∥∥

L∞(R)
, t ∈ [0, T ). (4.3)

Similarly, one gets

sup u(t, x) = sup u
(
t, q(t, x)

)
.

x∈R x∈R
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The following wave-breaking criterion shows that the wave breaking only depends on the
slope of u but not the slope of ρ. This improves the wave-breaking criterion in [21] and [20],
where the slopes of both components u and ρ must be considered. The proof of the following
result strongly depends on Theorem 3.2 on the localization analysis for the transport equation.

Theorem 4.1. Let u0 = (u0, η0) ∈ Hs × Hs−1 be as in Lemma 4.1 with s > 3
2 and u = (u, η)

being the corresponding solution to (1.2). Assume T ∗
u0

> 0 is the maximal time of existence. Then

T �
u0

< ∞ ⇒
T �

u0∫
0

∥∥∂xu(τ)
∥∥

L∞ dτ = ∞.

Proof. We shall prove this theorem by an inductive argument with respect to the index s. To this
end, let us first give a control on ‖η(t)‖L∞ .

In fact, applying the maximal principle to the transport equation about ρ,

ρt + uρx + ρux = 0,

we have

∥∥ρ(t)
∥∥

L∞ � ‖ρ0‖L∞ + C

t∫
0

‖∂xu‖L∞‖ρ‖L∞ dτ.

A simple application of Gronwall’s inequality implies∥∥ρ(t)
∥∥

L∞ � ‖ρ0‖L∞eC
∫ t

0 ‖∂xu‖L∞ dτ ,

which gives rise to∥∥η(t)
∥∥

L∞ �
∥∥ρ(t)

∥∥
L∞ + 1 � 1 + (

1 + ‖η0‖L∞
)
eC

∫ t
0 ‖∂xu‖L∞ dτ . (4.4)

Now let us concentrate our attentions to the proof of Theorem 4.1. This can be achieved as
follows.

Step 1. For s ∈ ( 3
2 ,2), applying Theorem 3.2 to the transport equation with respect to η,

ηt + uηx + ηux + ux = 0, (4.5)

we have (for every 1 < s < 2, indeed)

∥∥η(t)
∥∥

Hs−1 � ‖η0‖Hs−1 + C

t∫
0

‖η∂xu + ∂xu‖Hs−1 dτ + C

t∫
0

‖η‖Hs−1

(‖u‖L∞ + ‖∂xu‖L∞
)
dτ.

Thanks to the Moser-type estimate (2.5), one has



G. Gui, Y. Liu / Journal of Functional Analysis 258 (2010) 4251–4278 4265
‖η∂xu + ∂xu‖Hs−1 � ‖∂xu‖Hs−1 + C
(‖∂xu‖Hs−1‖η‖L∞ + ‖η‖Hs−1‖∂xu‖L∞

)
. (4.6)

Therefore, we have

∥∥η(t)
∥∥

Hs−1 � ‖η0‖Hs−1 + C

t∫
0

∥∥∂xu(τ)
∥∥

Hs−1

(
1 + ∥∥η(τ)

∥∥
L∞

)
dτ

+ C

t∫
0

∥∥η(τ)
∥∥

Hs−1

(∥∥u(τ)
∥∥

L∞ + ∥∥∂xu(τ)
∥∥

L∞
)
dτ. (4.7)

On the other hand, Theorem 3.1 applied to the equation about u,

ut + uux + ∂xg ∗
(

u2 + 1

2
u2

x + 1

2
η2 + η − Au

)
= 0,

implies (for every s > 1, indeed)

∥∥u(t)
∥∥

Hs � ‖u0‖Hs + C

t∫
0

∥∥∥∥∂xg ∗
(

u2 + 1

2
u2

x + 1

2
η2 + η − Au

)
(τ )

∥∥∥∥
Hs

dτ

+ C

t∫
0

∥∥u(τ)
∥∥

Hs

∥∥∂xu(τ)
∥∥

L∞ dτ.

Thanks to the Moser-type estimate (2.5) and Proposition 2.3, one has∥∥∥∥∂xg ∗
(

u2 + 1

2
u2

x + 1

2
η2 + η − Au

)∥∥∥∥
Hs

� C

∥∥∥∥u2 + 1

2
u2

x + 1

2
η2 + η − Au

∥∥∥∥
Hs−1

� C
(‖u‖Hs−1‖u‖L∞ + ‖∂xu‖Hs−1‖∂xu‖L∞

+ ‖η‖Hs−1‖η‖L∞ + ‖u‖Hs−1 + ‖η‖Hs−1

)
.

From this, we reach

∥∥u(t)
∥∥

Hs � ‖u0‖Hs + C

t∫
0

∥∥u(τ)
∥∥

Hs

(∥∥u(τ)
∥∥

L∞ + ∥∥∂xu(τ)
∥∥

L∞ + 1
)
dτ

+ C

t∫
0

∥∥η(τ)
∥∥

Hs−1

(∥∥η(τ)
∥∥

L∞ + 1
)
dτ, (4.8)

which together with (4.7) ensures that
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∥∥u(t)
∥∥

Hs + ∥∥η(t)
∥∥

Hs−1 � ‖u0‖Hs + ‖η0‖Hs−1 + C

t∫
0

(∥∥η(τ)
∥∥

Hs−1 + ∥∥u(τ)
∥∥

Hs

)
× (∥∥u(τ)

∥∥
L∞ + ∥∥∂xu(τ)

∥∥
L∞ + ∥∥η(τ)

∥∥
L∞ + 1

)
dτ. (4.9)

Thanks to the Gronwall’s inequality again, one can see∥∥u(t)
∥∥

Hs + ∥∥η(t)
∥∥

Hs−1 �
(‖u0‖Hs + ‖η0‖Hs−1

)
eC

∫ t
0 (‖u‖L∞+‖∂xu‖L∞+‖η‖L∞+1) dτ . (4.10)

Using the Sobolev embedding theorem Hs ↪→ L∞ (for s > 1
2 ), we get from (4.1) that∥∥u(t)

∥∥
L∞ � C

(‖u0‖H 1 + ‖η0‖L2

)
, (4.11)

which together with (4.4) and (4.10) implies that∥∥u(t)
∥∥

Hs + ∥∥η(t)
∥∥

Hs−1 �
(‖u0‖Hs + ‖η0‖Hs−1

)
eC1(t+1) exp{∫ t

0 C‖∂xu(τ)‖L∞ dτ }, (4.12)

where C1 = C1(‖u0‖H 1,‖η0‖L2,‖η0‖L∞).

Therefore, if the maximal existence time T �
u0

< ∞ satisfies
∫ T �

u0
0 ‖∂xu(τ)‖L∞ dτ < ∞, we

obtain from (4.12) that

lim sup
t→T �

u0

(∥∥u(t)
∥∥

Hs + ∥∥η(t)
∥∥

Hs−1

)
< ∞ (4.13)

contradicts the assumption on the maximal existence time T �
u0

< ∞. This completes the proof of

Theorem 4.1 for s ∈ ( 3
2 ,2).

Step 2. For s ∈ [2, 5
2 ), applying Theorem 3.1 to the transport equation (4.5), we have

∥∥η(t)
∥∥

Hs−1 � ‖η0‖Hs−1 + C

t∫
0

∥∥(η∂xu + ∂xu)(τ )
∥∥

Hs−1 dτ + C

t∫
0

‖η‖Hs−1‖∂xu‖
L∞∩H

1
2
dτ.

(4.6) applied implies that

∥∥η(t)
∥∥

Hs−1 � ‖η0‖Hs−1 + C

t∫
0

‖∂xu‖Hs−1

(
1 + ‖η‖L∞

)
dτ + C

t∫
0

‖η‖Hs−1‖∂xu‖
L∞∩H

1
2
dτ,

which together with (4.8) yields∥∥u(t)
∥∥

Hs + ∥∥η(t)
∥∥

Hs−1 � ‖u0‖Hs + ‖η0‖Hs−1

+ C

t∫ (∥∥η(τ)
∥∥

Hs−1 + ∥∥u(τ)
∥∥

Hs

)(‖u‖
H

3
2 +ε0

+ ∥∥η(τ)
∥∥

L∞ + 1
)
dτ
0
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with 0 < ε0 < 1
2 , where we used the fact H

1
2 +ε0 ↪→ L∞ ∩ H

1
2 . Gronwall’s inequality applied

gives that

∥∥u(t)
∥∥

Hs + ∥∥η(t)
∥∥

Hs−1 �
(‖u0‖Hs + ‖η0‖Hs−1

)
e
C

∫ t
0 (‖u‖

H
3
2 +ε0

+‖η(τ)‖L∞+1) dτ

. (4.14)

Therefore, thanks to the uniqueness of solution in Lemma 4.1, (4.1) and (4.13), we get that: if the

maximal existence time T �
u0

< ∞ satisfies
∫ T �

u0
0 ‖∂xu(τ)‖L∞ dτ < ∞, then (4.14) implies that

lim sup
t→T �

u0

(∥∥u(t)
∥∥

Hs + ∥∥η(t)
∥∥

Hs−1

)
< ∞

contradicts the assumption on the maximal existence time T �
u0

< ∞. This completes the proof of

Theorem 4.1 for 2 � s < 5
2 .

Step 3. For 2 < s < 3, by differentiating once (4.5) with respect to x, we have

∂tηx + u∂x(ηx) + 2uxηx + ηuxx + uxx = 0. (4.15)

Theorem 3.2 applied to (4.15) implies that

∥∥ηx(t)
∥∥

Hs−2 � ‖η0x‖Hs−2 + C

t∫
0

∥∥(2ηxux + η∂xux + ∂xxu)(τ )
∥∥

Hs−2 dτ

+ C

t∫
0

∥∥ηx(τ )
∥∥

Hs−2

(∥∥u(τ)
∥∥

L∞ + ∥∥∂xu(τ)
∥∥

L∞
)
dτ

� ‖η0x‖Hs−2 + C

t∫
0

(‖η‖Hs−1 + ‖u‖Hs

)(‖u‖L∞ + ‖∂xu‖L∞ + ‖η‖L∞ + 1
)
dτ,

(4.16)

where we used the following Moser-type estimates (from (2.6)):

‖ηxux‖Hs−2 � C
(‖∂xu‖Hs−1‖η‖L∞ + ‖∂xη‖Hs−2‖ux‖L∞

)
and

‖η∂xux‖Hs−2 � C
(‖η‖Hs−1‖∂xu‖L∞ + ‖uxx‖Hs−2‖η‖L∞

)
.

(4.16), together with (4.8) and (4.7) (where s − 1 is replaced by s − 2), implies that

∥∥η(t)
∥∥

Hs−1 + ∥∥u(t)
∥∥

Hs � ‖η0‖Hs−1 + ‖u0‖Hs + C

t∫
0

(∥∥η(τ)
∥∥

Hs−1 + ∥∥u(τ)
∥∥

Hs

)
× (∥∥u(τ)

∥∥ ∞ + ∥∥∂xu(τ)
∥∥ ∞ + ∥∥η(τ)

∥∥ ∞ + 1
)
dτ.
L L L
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Gronwall’s inequality applied again gives (4.10). Hence, using arguments as in Step 1, it com-
pletes the proof of Theorem 4.1 for 2 < s < 3.

Step 4. For s = k ∈ N, k � 3, by differentiating (4.5) k − 2 times with respect to x, we have

∂t ∂
k−2
x η + u∂x

(
∂k−2
x η

) +
∑

�1+�2=k−3, �1,�2�0

C�1,�2∂
�1+1
x u∂�2+1

x η + η∂x

(
∂k−2
x u

) + ∂k−1
x u = 0.

(4.17)

Applying Theorem 3.1 to the transport equation (4.17), we have∥∥∂k−2
x η(t)

∥∥
H 1

�
∥∥∂k−2

x η0
∥∥

H 1 + C

t∫
0

∥∥∂k−2
x η(τ )

∥∥
H 1

∥∥∂xu(τ)
∥∥

L∞∩H
1
2
dτ

+ C

t∫
0

∥∥∥∥( ∑
�1+�2=k−3, �1,�2�0

C�1,�2∂
�1+1
x u∂�2+1

x η + η∂x

(
∂k−2
x u

) + ∂k−1
x u

)
(τ )

∥∥∥∥
H 1

dτ.

Since H 1 is an algebra, we have∥∥η∂x

(
∂k−2
x u

)∥∥
H 1 � C‖η‖H 1

∥∥∂k−1
x u

∥∥
H 1 � C‖η‖H 1‖u‖Hs

and ∥∥∥∥ ∑
�1+�2=k−3, �1,�2�0

C�1,�2∂
�1+1
x u∂�2+1

x η

∥∥∥∥
H 1

� C
∑

�1+�2=k−3, �1,�2�0

C�1,�2

∥∥∂�1+1
x u

∥∥
H 1

∥∥∂�2+1
x η

∥∥
H 1 � C‖u‖Hs−1‖η‖Hs−1 .

Hence,

∥∥∂k−2
x η(t)

∥∥
H 1 �

∥∥∂k−2
x η0

∥∥
H 1 + C

t∫
0

(‖η‖Hs−1 + ‖u‖Hs

)(‖u‖Hs−1 + ‖η‖H 1 + 1
)
dτ. (4.18)

(4.18), together with (4.8) and (4.7) (where s − 1 is replaced by 1), implies that∥∥η(t)
∥∥

Hs−1 + ∥∥u(t)
∥∥

Hs

� ‖η0‖Hs−1 + ‖u0‖Hs + C

t∫
0

(∥∥η(τ)
∥∥

Hs−1 + ∥∥u(τ)
∥∥

Hs

)(∥∥u(τ)
∥∥

Hs−1 + ∥∥η(τ)
∥∥

H 1 + 1
)
dτ.

Gronwall’s inequality applied yields that
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∥∥u(t)
∥∥

Hs + ∥∥η(t)
∥∥

Hs−1 �
(‖u0‖Hs + ‖η0‖Hs−1

)
eC

∫ t
0 (‖u‖

Hs−1 +‖η‖
H1 +1) dτ . (4.19)

Therefore, if the maximal existence time T �
u0

< ∞ satisfies
∫ T �

u0
0 ‖∂xu(τ)‖L∞ dτ < ∞, thanks to

the uniqueness of solution in Lemma 4.1, we get that∥∥u(t)
∥∥

Hs−1 + ∥∥η(t)
∥∥

H 1

is uniformly bounded by the induction assumption, which together with (4.19) implies

lim sup
t→T �

u0

(∥∥u(t)
∥∥

Hs + ∥∥η(t)
∥∥

Hs−1

)
< ∞.

This leads to a contradiction.

Step 5. For k < s < k + 1 with k ∈ N, k � 3, by differentiating (4.5) k − 1 times with respect
to x, we have

∂t ∂
k−1
x η + u∂x

(
∂k−1
x η

) +
∑

�1+�2=k−2, �1,�2�0

C�1,�2∂
�1+1
x u∂�2+1

x η + η∂x

(
∂k−1
x u

) + ∂k
xu = 0.

Theorem 3.2 applied again implies that∥∥∂k−1
x η(t)

∥∥
Hs−k

�
∥∥∂k−1

x η0
∥∥

Hs−k + C

t∫
0

∥∥∂k−1
x η(τ )

∥∥
Hs−k

(∥∥u(τ)
∥∥

L∞ + ∥∥∂xu(τ)
∥∥

L∞
)
dτ

+ C

t∫
0

∥∥∥∥( ∑
�1+�2=k−2, �1,�2�0

C�1,�2∂
�1+1
x u∂�2+1

x η + η∂x

(
∂k−1
x u

) + ∂k
xu

)
(τ )

∥∥∥∥
Hs−k

dτ.

Using the Moser-type estimate (2.6) and the Sobolev embedding inequality, we have for ∀0 <

ε0 < 1
2 ∥∥η∂x

(
∂k−1
x u

)∥∥
Hs−k � C

(‖η‖L∞
∥∥∂k

xu
∥∥

Hs−k + ‖η‖Hs−k+1

∥∥∂k−1
x u

∥∥
L∞

)
� C

(‖η‖L∞‖u‖Hs + ‖η‖Hs−k+1‖u‖
H

k− 1
2 +ε0

)
and∥∥∥∥ ∑

�1+�2=k−2, �1,�2�0

C�1,�2∂
�1+1
x u∂�2+1

x η

∥∥∥∥
Hs−k

� C
∑

�1+�2=k−2, �1,�2�0

C�1,�2

(∥∥∂�1+1
x u

∥∥
L∞

∥∥∂�2+1
x η

∥∥
Hs−k + ∥∥∂�2

x η
∥∥

L∞
∥∥∂�1+1

x u
∥∥

Hs−k+1

)
� C

(‖u‖
k− 1 +ε

‖η‖Hs−1 + ‖η‖
k− 3 +ε

‖u‖Hs

)
.

H 2 0 H 2 0
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Hence,

∥∥∂k−1
x η(t)

∥∥
Hs−k �

∥∥∂k−1
x η0

∥∥
Hs−k + C

t∫
0

(∥∥η(τ)
∥∥

Hs−1 + ∥∥u(τ)
∥∥

Hs

)
× (‖u‖

H
k− 1

2 +ε0
+ ‖η‖

H
k− 3

2 +ε0
+ 1

)
dτ. (4.20)

(4.20), together with (4.8) and (4.7) (where s − 1 is replaced by s − k), implies that

∥∥η(t)
∥∥

Hs−1 + ∥∥u(t)
∥∥

Hs � ‖η0‖Hs−1 + ‖u0‖Hs + C

t∫
0

(∥∥η(τ)
∥∥

Hs−1 + ∥∥u(τ)
∥∥

Hs

)
× (‖u‖

H
k− 1

2 +ε0
+ ‖η‖

H
k− 3

2 +ε0
+ 1

)
dτ.

Applying Gronwall’s inequality then gives that

∥∥u(t)
∥∥

Hs + ∥∥η(t)
∥∥

Hs−1 �
(‖u0‖Hs + ‖η0‖Hs−1

)
e
C

∫ t
0 (‖u‖

H
k− 1

2 +ε0
+‖η‖

H
k− 3

2 +ε0
+1) dτ

.

In consequence, if the maximal existence time T �
u0

< ∞ satisfies
∫ T �

u0
0 ‖∂xu(τ)‖L∞ dτ < ∞,

thanks to the uniqueness of solution in Lemma 4.1, then we get that∥∥u(t)
∥∥

H
k− 1

2 +ε0
+ ∥∥η(t)

∥∥
H

k− 3
2 +ε0

is uniformly bounded by the induction assumption, which implies

lim sup
t→T �

u0

(∥∥u(t)
∥∥

Hs + ∥∥η(t)
∥∥

Hs−1

)
< ∞,

which leads to a contradiction.
Therefore, from Step 1 to Step 5, we complete the proof of Theorem 4.1. �

Theorem 4.2. Let (u0, η0) be as in Lemma 4.1 with s > 3
2 and u = (u, η) being the corre-

sponding solution to (1.2). Then the corresponding solution blows up in finite time if and only
if

lim
t→T �

u0

inf
x∈R

ux(t, x) = −∞. (4.21)

Lemma 4.2. Let (u, η) (with η := ρ − 1) be the solution of (1.2) with initial value (u0, ρ0 − 1) ∈
Hs(R) × Hs−1(R), s > 3

2 , and T the maximal existence time. If there is M1 � 0 such that

inf
(t,x)∈[0,T )×R

ux(t, x) � −M1, (4.22)

then
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∥∥ρ(t, ·)∥∥
L∞ � ‖ρ0‖L∞eM1t , (4.23)

sup
x∈R

ux(t, x) � ‖u0,x‖L∞ + C1 + ‖ρ0‖L∞eM1t (4.24)

hold for t ∈ [0, T ), with

C1 =
(

1 + A2

2

) 1
2 ∥∥(u0, ρ0 − 1)

∥∥
H 1×L2 , (4.25)

and C a positive constant depending only on A,M1 and the norm ‖(u0, ρ0 − 1)‖Hs×Hs−1 .

Proof. By Lemma 4.1 and a simple density argument, it is needed only to show the desired
results are valid when s � 3. So in the sequel of this section s = 3 is taken for simplicity of
notation. Differentiating both sides of the first equation of (1.2) with respect to x and using the
identity −∂2

xg ∗ f = f − g ∗ f lead to

utx + uuxx + 1

2
u2

x = A∂xg ∗ ux + u2 + 1

2
ρ2 − g ∗

(
u2 + 1

2
u2

x + 1

2
ρ2

)
. (4.26)

Given x ∈ R, let

M(t) = ux

(
t, q(t, x)

)
, γ (t) = ρ

(
t, q(t, x)

)
, (4.27)

t ∈ [0, T ), with q(t, x) determined in (4.2). Using these notations, Eq. (4.26) and the second one
of (1.2) can be rewritten, respectively, as

M ′(t) = −1

2
M2 + 1

2
γ 2 + f

(
t, q(t, x)

)
,

γ ′(t) = −γM, (4.28)

for t ∈ [0, T ), where the notation ′ denotes the derivative with respect to t and f represents the
function

f = A∂xg ∗ ux + u2 − g ∗
(

u2 + 1

2
u2

x + 1

2
ρ2

)
. (4.29)

Hence, we have

f = Agx ∗ ux + u2 − g ∗
(

u2 + 1

2
u2

x

)
− 1

2
g ∗ 1 − g ∗ (ρ − 1) − 1

2
g ∗ (ρ − 1)2

� |A||gx ∗ ux | + 1

2
u2 − 1

2
+ ∣∣g ∗ (ρ − 1)

∣∣,
with the help of g ∗ (u2 + 1

2u2
x) � 1

2u2 (cf. [9]). Applying Young’s inequality and g(x) = 1
2e−|x|

leads to
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|A||gx ∗ ux |(t, x) � |A|‖gx‖L2‖ux‖L2 � 1

2
|A|‖ux‖L2 � 1

4
+ 1

4
A2‖ux‖2

L2, (4.30)∣∣g ∗ (ρ − 1)
∣∣(t, x) � ‖g‖L2‖ρ − 1‖L2 � 1

2
‖ρ − 1‖L2 � 1

4
+ 1

4
‖ρ − 1‖2

L2, (4.31)

for (t, x) ∈ [0, T ) × R. On the other hand, the continuous embedding of H 1(R) into L∞(R)

gives (cf. [11], for example, for the best embedding constant)

2u2(t, x) �
∫
R

u2 + u2
x �

∫
R

u2 + u2
x + (ρ − 1)2 =

∫
R

u2
0 + u2

0x + (ρ0 − 1)2, (4.32)

for all (t, x) ∈ [0, T )× R, where we used the fact that H(u,ρ − 1) is the conservation law of the
system (1.2) in the last identity. Combining (4.30), (4.31), and (4.32) together gives

f � 1

4

(
1 + A2)∥∥(u,ρ − 1)

∥∥2
H 1×L2 = 1

4

(
1 + A2)∥∥(u0, ρ0 − 1)

∥∥2
H 1×L2 = 1

2
C2

1 , (4.33)

where the conservation law H(u,η) = ∫
R

u2 + u2
x + η2 of (1.2) was used again in the second

identity and C1 was introduced in (4.25). Similarly, we have

−f � |A||gx ∗ ux | + g ∗
(

u2 + 1

2
u2

x

)
+ 1

2
+ ∣∣g ∗ (ρ − 1)

∣∣ + 1

2
g ∗ (ρ − 1)2

� 1

4
+ 1

4
A2‖ux‖2

L2 + 1

2

∥∥∥∥u2 + 1

2
u2

x

∥∥∥∥
L1

+ 1

2
+ 1

4
+ 1

4
‖ρ − 1‖2

L2 + 1

4
‖ρ − 1‖2

L2,

where we used the estimate g ∗ (u2 + 1
2u2

x)(t, x) � ‖g‖L∞‖u2 + 1
2u2

x‖L1 � 1
2‖u‖2

H 1 . Therefore,
we get

−f � 1 + 1 + A2

2

∥∥(u,ρ − 1)
∥∥2

H 1×L2 � 1 + 1 + A2

2

∥∥(u0, ρ0 − 1)
∥∥2

H 1×L2 � 1 + C2
1 . (4.34)

In view of the definition of M(t) in (4.27), the assumption (4.22) is now expressed as, for
each x ∈ R,

M(t) � −M1, for t ∈ [0, T ).

In view of this condition, it then follows from the second equation of (4.28) that, for each x ∈ R,∣∣ρ(
t, q(t, x)

)∣∣ = ∣∣γ (t)
∣∣ = ∣∣γ (0)

∣∣e∫ t
0 −M(τ)dτ � ‖ρ0‖L∞eM1t , (4.35)

for t ∈ [0, T ). Hence combining this with (4.3) leads to (4.23).
Given any x ∈ R, let us define

P(t) = M(t) − ‖u0,x‖L∞ − C1 − ‖ρ0‖L∞eM1t ,

with M(t) = ux(t, q(t, x)) and C1 in (4.25). Observe that P(t) is a C1-differentiable function in
[0, T ) and satisfies
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P(0) = M(0) − ‖u0,x‖L∞ − C1 − ‖ρ0‖L∞ � u0,x(x) − ‖u0,x‖L∞ � 0.

We now claim

P(t) � 0, for all t ∈ [0, T ). (4.36)

Assume the contrary that there is t0 ∈ [0, T ) such that P(t0) > 0. Let

t1 = max
{
t < t0; P(t) = 0

}
.

Then P(t1) = 0 and P ′(t1) � 0, or equivalently,

M(t1) = ‖u0,x‖L∞ + C1 + ‖ρ0‖L∞eM1t1, (4.37)

and

M ′(t1) � M1‖ρ0‖L∞eM1t1 > 0. (4.38)

From (4.32), (4.35), (4.37), and the first equation of (4.28), it follows that

M ′(t1) = −1

2
M2(t1) + 1

2
γ 2(t1) + f

(
t1, q(t1, x)

)
� −1

2

(‖u0,x‖L∞ + C1 + ‖ρ0‖L∞eM1t1
)2 + 1

2
‖ρ0‖2

L∞e2M1t1 + 1

2
C2

1

� 0,

a contradiction to (4.38), so the claim (4.36) is valid. Therefore, the arbitrarily chosen of x and
(4.3) imply (4.24). �
Proof of Theorem 4.2. Assume (4.21) is not valid. Then there is some positive number M1 > 0
such that

ux(t, x) � −M1

holds for (t, x) ∈ [0, T ) × R. It now follows from (4.24) in Lemma 4.2 that

∣∣ux(t, x)
∣∣ � CeM1t ,

with C a positive constant depending only on A,M1 and the norm ‖(u0, ρ0 − 1)‖Hs×Hs−1 .
Theorem 4.1 applied implies that the maximal existence time T �

u0
= ∞, which contradicts the

assumption on the maximal existence time T �
u0

< ∞.

Conversely, the Sobolev embedding theorem Hs(R) ↪→ L∞(R) (with s > 1
2 ) implies that if

(4.21) holds, the corresponding solution blows up in finite time, which completes the proof of
Theorem 4.2. �
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Theorem 4.3. Assume that the initial value (u0, η0) ∈ Hs × Hs−1 with s > 3
2 . Let Tu0 > 0 be

the maximal time of existence for the corresponding solution (u, η) to the system (1.2). Then we
have

T �
u0

< ∞ ⇒
T �

u0∫
0

(∥∥∂xu(τ)
∥∥

B0∞,∞ + ∥∥ρ(τ) − 1
∥∥

B0∞,∞
)
dτ = ∞.

Proof. We only need to prove this theorem for the case 3
2 < s < 2. For s � 2, the induction

argument as in the proof of Theorem 4.1 will complete the proof of Theorem 4.3. Thanks to
Proposition 2.2, we have for s > 3

2 ,

‖∂xu‖L∞ � C
(
1 + ‖∂xu‖B0∞,∞ log

(
e + ‖∂xu‖Hs−1

))
(4.39)

and

‖η‖L∞ � C
(
1 + ‖η‖B0∞,∞ log

(
e + ‖η‖Hs−1

))
. (4.40)

Plugging (4.39) and (4.40) into (4.10), and using the fact (4.11), we get

∥∥u(t)
∥∥

Hs + ∥∥η(t)
∥∥

Hs−1

�
(‖u0‖Hs + ‖η0‖Hs−1

)
e
Ct+C

∫ t
0 (‖∂xu(τ)‖

B0∞,∞+‖η(τ)‖
B0∞,∞ ) log(e+‖u(τ)‖Hs +‖η(τ)‖

Hs−1 ) dτ
.

Therefore,

log
(
e + ∥∥u(t)

∥∥
Hs + ∥∥η(t)

∥∥
Hs−1

)
� log

(
e + ‖u0‖Hs + ‖η0‖Hs−1

) + Ct

+ C

t∫
0

(∥∥∂xu(τ)
∥∥

B0∞,∞ + ∥∥η(τ)
∥∥

B0∞,∞
)

log
(
e + ∥∥u(τ)

∥∥
Hs + ∥∥η(τ)

∥∥
Hs−1

)
dτ.

Applying Gronwall’s inequality yields

log
(
e + ∥∥u(t)

∥∥
Hs + ∥∥η(t)

∥∥
Hs−1

)
� e

C
∫ t

0 (‖∂xu(τ)‖
B0∞,∞+‖η(τ)‖

B0∞,∞ ) dτ (
log(e + ‖u0‖Hs + ‖η0‖Hs−1) + Ct

)
.

Hence, the proof of Theorem 4.3 is complete. �



G. Gui, Y. Liu / Journal of Functional Analysis 258 (2010) 4251–4278 4275
5. Global existence

In view of the criterion for wave breaking (Theorem 4.1), a sufficient condition of global
solutions can be obtained in the following.

Theorem 5.1 (Global solution). Let (u0, ρ0 − 1) ∈ Hs(R) × Hs−1(R) with s > 3
2 , and T > 0

being the maximal time of existence of the solution (u,ρ) to the system (1.1) with initial data
(u0, ρ0). If

inf
x∈R

ρ0(x) > 0, (5.1)

then T = +∞, and the solution (u,ρ) is global.

Remark 5.1. Theorem 5.1 improves the result of the global solutions in [20], where the special
case s = 2 is required.

To prove Theorem 5.1, we need the following lemma.

Lemma 5.1. Assume (u,ρ) is the local solution of (1.1) with the initial value (u0, ρ0 − 1) ∈
Hs(R) × Hs−1(R), s > 3

2 , and T the maximal existence time. If infx∈R ρ0(x) > 0, then

∣∣ux

(
t, q(t, x)

)∣∣, ∣∣ρ(
t, q(t, x)

)∣∣ � 1

|ρ0(x)|C5e
C4t (5.2)

hold for all t ∈ [0, T ), with (see (4.25) for C1)

C4 = 3

2
+ C2

1 = 3

2
+ 1

2

(
1 + A2)∥∥(u0, ρ0 − 1)

∥∥2
H 1×L2,

C5 = 1 + ‖u0,x‖2
L∞ + ‖ρ0‖2

L∞ ,

and positive constant C depending only on A and the norm ‖(u0, ρ0 − 1)‖Hs×Hs−1 .

Proof. In view of the proof of Lemma 4.2, by Lemma 4.1 and a simple density argument, it
suffices to show that the desired results are valid when s � 3. So in the sequel of this section
s = 3 is taken for simplicity of notation. Observe that the system (1.2) leads to the following
ordinary differential equations (see Lemma 4.2 for derivation) for a fixed x ∈ R,

M ′(t) = −1

2
M2 + 1

2
γ 2 + f

(
t, q(t, x)

)
, γ ′(t) = −γM, (5.3)

for t ∈ [0, T ) with notation M(t) = ux(t, q(t, x)), γ (t) = ρ(t, q(t, x)) defined in (4.27) and f

in (4.29). The second equation of (5.3) implies that γ (t) and γ (0) are of the same sign.
For every x ∈ R satisfying γ (0) = ρ0(x) > 0, define the Lyapunov function (cf. [12]),

w(t) := γ (0)γ (t) + γ (0)(
1 + M2(t)

)
,

γ (t)
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which is a positive function of t ∈ [0, T ). By (5.3), it yields

w′(t) = γ (0)γ ′ − γ (0)

γ 2
γ ′(1 + M2) + 2

γ
γ (0)MM ′

= 2

γ
γ (0)M

(
f

(
t, q(t, x)

) + 1

2

)
� γ (0)

γ

(
1 + M2)(∣∣f (

t, q(t, x)
)∣∣ + 1

2

)
� C4w(t),

in [0, T ), where |f | � 1 + C2
1 is derived from (4.33) and (4.34). The preceding differential in-

equality gives

w(t) � w(0)eC4t = C5e
C4t , t ∈ [0, T ) (5.4)

with the help of

w(0) = ρ2
0(x) + 1 + u2

0,x(x) � 1 + ‖u0,x‖2
L∞ + ‖ρ0‖2

L∞ = C5.

Recalling that γ (t) and γ (0) are of the same sign, the definition of w implies γ (0)γ (t) � w(t)

and |γ (0)||M(t)| � w(t). By (5.4),

∣∣ux

(
t, q(t, x)

)∣∣ = ∣∣M(t)
∣∣ � 1

|γ (0)|w(t) � 1

|ρ0(x)|C5e
C4t ,

∣∣ρ(
t, q(t, x)

)∣∣ = ∣∣γ (t)
∣∣ � 1

|γ (0)|w(t) � 1

|ρ0(x)|C5e
C4t

are valid for t ∈ [0, T ). Thus the conclusions of (5.2) are obtained. �
Proof of Theorem 5.1. Assume the contrary that T < ∞ and the solution blows up in finite
time. It then transpires from Theorem 4.1 that

T∫
0

∥∥ux(t, x)
∥∥

L∞ dt = ∞. (5.5)

Note that infx∈R ρ0(x) > 0. By (5.2) in Lemma 5.1, we have

∣∣ux(t, x)
∣∣ � 1

|ρ0(x)|CeCt � 1

infx∈R ρ0(x)
CeCT < ∞

for all (t, x) ∈ [0, T ) × R, a contrary to (5.5). So T = +∞, and the solution (u,ρ) is global. �



G. Gui, Y. Liu / Journal of Functional Analysis 258 (2010) 4251–4278 4277
Acknowledgments

The work of G. Gui is partly supported by Morningside Center of Mathematics, Chinese
Academy of Sciences and the work of Y. Liu is partially supported by the NSF grant DMS-
0906099. The authors would like to thank the referees for constructive suggestions and com-
ments.

References

[1] J.M. Bony, Calcul symbolique et propagation des singularités pour les q́uations aux drivées partielles non linéaires,
Ann. Sci. École Norm. Sup. (4) 14 (1981) 209–246.

[2] A. Bressan, A. Constantin, Global conservative solutions of the Camassa–Holm equation, Arch. Ration. Mech.
Anal. 183 (2007) 215–239.

[3] A. Bressan, A. Constantin, Global dissipative solutions of the Camassa–Holm equation, Appl. Anal. 5 (2007) 1–27.
[4] J.C. Burns, Long waves on running water, Math. Proc. Cambridge Philos. Soc. 49 (1953) 695–706.
[5] R. Camassa, D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett. 71 (1993) 1661–

1664.
[6] J.Y. Chemin, Localization in Fourier space and Navier–Stokes system, in: Phase Space Analysis of Partial Differ-

ential Equations, in: CRM Series, Scuola Norm. Sup., Pisa, 2004, pp. 53–136.
[7] J.Y. Chemin, Perfect Incompressible Fluids, Oxford Univ. Press, New York, 1998.
[8] M. Chen, S. Liu, Y. Zhang, A 2-component generalization of the Camassa–Holm equation and its solutions, Lett.

Math. Phys. 75 (2006) 1–15.
[9] A. Constantin, Global existence of solutions and breaking waves for a shallow water equation: a geometric approach,

Ann. Inst. Fourier (Grenoble) 50 (2000) 321–362.
[10] A. Constantin, D. Lannes, The hydrodynamical relevance of the Camassa–Holm and Degasperis–Procesi equations,

Arch. Ration. Mech. Anal. 192 (2009) 165–186.
[11] A. Constantin, J. Escher, Wave breaking for nonlinear nonlocal shallow water equations, Acta Math. 181 (1998)

229–243.
[12] A. Constantin, R.I. Ivanov, On an integrable two-component Camassa–Holm shallow water system, Phys. Lett.

A 372 (2008) 7129–7132.
[13] A. Constantin, T. Kappeler, B. Kolev, P. Topalov, On geodesic exponential maps of the Virasoro group, Ann. Global

Anal. Geom. 31 (2007) 155–180.
[14] A. Constantin, B. Kolev, Geodesic flow on the diffeomorphism group of the circle, Comment. Math. Helv. 78 (2003)

787–804.
[15] A. Constantin, W.A. Strauss, Exact steady periodic water waves with vorticity, Comm. Pure Appl. Math. 57 (2004)

481–527.
[16] R. Danchin, A few remarks on the Camassa–Holm equation, Differential Integral Equations 14 (2001) 953–988.
[17] R. Danchin, A note on well-posedness for Camassa–Holm equation, J. Differential Equations 192 (2003) 429–444.
[18] J. Escher, O. Lechtenfeld, Z.Y. Yin, Well-posedness and blow-up phenomena for the 2-component Camassa–Holm

equation, Discrete Contin. Dyn. Syst. 19 (2007) 493–513.
[19] G. Falqui, On a Camassa–Holm type equation with two dependent variables, J. Phys. A 39 (2006) 327–342.
[20] C. Guan, Z.Y. Yin, Global existence and blow-up phenomena for an integrable two-component Camassa–Holm

shallow water system, J. Differential Equations 248 (8) (2010) 2003–2014.
[21] G. Gui, Y. Liu, On the Cauchy problem for the two-component Camassa–Holm system, Math. Z. (2010)

doi:10.1007/s00209-009-0660-2.
[22] D.D. Holm, L. Nraigh, C. Tronci, Singular solutions of a modified two-component Camassa–Holm equation, Phys.

Rev. E 79 (2009) 016601.
[23] R. Ivanov, Two-component integrable systems modelling shallow water waves: The constant vorticity case, Wave

Motion 46 (2009) 389–396.
[24] R.S. Johnson, The Camassa–Holm equation for water waves moving over a shear flow, Fluid Dynam. Res. 33 (2003)

97–111.
[25] R.S. Johnson, Nonlinear gravity waves on the surface of an arbitrary shear flow with variable depth, in: Nonlinear

Instability Analysis, in: Adv. Fluid Mech., vol. 12, Comut. Mech. Southampton, 1997, pp. 221–243.
[26] R.S. Johnson, On solutions of the Burns condition, Geophys. Astrophys. Fluid Dyn. 57 (1991) 115–133.



4278 G. Gui, Y. Liu / Journal of Functional Analysis 258 (2010) 4251–4278
[27] R.S. Johnson, Camassa–Holm, Korteweg–de Vries and related models for water waves, J. Fluid Mech. 455 (2002)
63–82.

[28] B. Kolev, Poisson brackets in hydrodynamics, Discrete Contin. Dyn. Syst. 19 (2007) 555–574.
[29] G. Misiolek, A shallow water equation as a geodesic flow on the Bott–Virasoro group, J. Geom. Phys. 24 (1998)

203–208.
[30] P. Olver, P. Rosenau, Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support,

Phys. Rev. E 53 (1996) 1900.
[31] A.B. Shabat, L. Martínez Alonso, On the prolongation of a hierarchy of hydrodynamic chains, in: A.B. Shabat, et al.

(Eds.), New Trends Integrability and Partial Solvability, Proc. NATO Advanced Research Workshop, Cadiz, Spain
2002, in: NATO Sci. Ser. II Math. Phys. Chem., Kluwer Academic Publishers, Dordrecht, 2004, pp. 263–280.

[32] H. Triebel, Theory of Function Spaces, Monogr. Math., vol. 78, Birkhäuser Verlag, Basel, 1983.


	On the global existence and wave-breaking criteria for the two-component Camassa-Holm system
	Introduction
	Littlewood-Paley analysis
	Transport equation theory
	Wave-breaking criteria
	Global existence
	Acknowledgments
	References


