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Existence and Uniqueness of Solutions to Degenerate 
Semilinear Parabolic Equations 
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An elementary proof for the existence of solutions to semilinear degenerate 
parabolic equations is given. The assumptions are such that solutions to 
approximating parabolic problems are a priori bounded in I.,. Then an Ascoli- 
Arzela argument is used. Under more restrictive conditions on the coekients, 
uniqueness of the solutions is shown separately and a regularity result is 
provided. 3: 1991 Acadrmic Press, Inc. 

I. INTRODUCTION 

The main concern of this paper is to provide an elementary proof for the 
existence of a unique solution to the equation 

li( xt t) - div(a( x) grad u( x, t)) =.f( u( x, t)) in Qx[O,T’] 

u(x, I) = 0 on 82x [0, T+] 

u(x, 0) = UJX) in Q, 

on a smooth bounded subset Q of R” and where T’ is an arbitrary 
positive number. The coeficient matrix u(x) is assumed to be a positive 
definite symmetric N x N matrix, but its smallest eigenvalue might converge 
to zero as x approaches the boundary of the domain. This makes the above 
a degenerate parabolic problem which cannot be solved by the standard 
methods. The main idea of our proof is to approach the solution with 
solutions of regularized parabolic problems. We use an Ascoli-Arzela 
argument. Thus we have to show that the approximating solutions are 
uniformly bounded and continuous in certain function spaces. To achieve 
this we assume a geometric condition on the function f which implies an 
LX-bound for the solutions. To solve the approximating problem and to 
improve the estimates we use the theory of linear semigroups. The varia- 
tion-of-constants formula makes it very simple to prove that the solutions 
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are cquicontinuous in the natural energy space which is a weighted Sobolev 
space Hi(Q). It is worth observing that our construction is independent of 
the dimension N of the domain Q. 

The linear version of the above problem (i.e., j’(u) = cu) was considered 
by Fichera [2]. He developed a method to solve elliptic-parabolic 
problems. His proof is based on the Riesz representation theorem used on 
a weighted Sobolev space. His results were extended by Oleinik and 
RadkeviE [ll]. Their result is based on elliptic regularization; i.e., they 
subtract E(Z? + Au) from the left hand side of the equation and then let F 
converge to zero. Both methods [2, I l] apply to the more general class of 
linear second order problems with nonnegative characteristic form. 

The linear case of the above problem is also a special case of the results 
of Showalter [13]. He used the theory of analytic semigroups on a 
weighted Sobolev space. His results are more general since he can also 
solve problems with an additional factor c(x) in front of the &term. Our 
existence result applies to a wider class of functions a since a does not have 
to degenerate with a given order but need only be bounded from below 
(see (l), (12) and [ 13, Theorem 33). Nevertheless, the present result is a 
natural extension of [ 133 to the semilinear case. but the methods of proof 
are independent. 

In a recent series of papers Goldstein and Lin [3-63 solved similar 
quasilinear problems. Their functions a may depend on x and Vu. This 
makes the problem considerably more difficult to solve and our method 
certainly does not solve their problem. Their main tool is the Crandall- 
Liggett theorem on nonlinear semigroups. As a consequence the function f 
has to be monotone. Our assumption (8) on f‘ is much weaker. Their 
description of the solution space is not as precise as ours since it involves 
the abstract domain of definition of a nonlinear operator. The proof of our 
main result does not use the obvious semigroup approach since this would 
impost a strong restriction on the possible nonlinear functions j1 We could 
not Gnd a simple proof for L, a priori estimates which would enlarge the 
class of nonlinearities that can be handled. But we do list the result of this 
method in the last section. 

The author thanks Herbert Amann, Klaus Schmitt, and Andrejs 
Trcibcrgs for many helpful discussions. 

2. ASSUMPTIONS AND DEFINITIONS 

Let Q be a bounded open subset of R” with smooth boundary r. 
Let Q(X)= C+(x)1 I g j.is .% bc a smooth function on 0, which extends 
continuously to the closure of 52, such that there is a c, >O with 

a(x) 2 Cl d(x)= with 0 <u < 1 (1) 
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in a neighborhood of r where d(x) := dist(x, f) and 

g(x) = min 1 ai.jtx) 5,5j I Ii 5 I/ = 1 , 
i.i (2) 

ii(x) = max C u;,~(x) <,<, I )I < 11 = 1 . 
i, i 

We assume the existence of a sequence of open sets Q,, with smooth 
boundaries such that 

Q,cQ,+*cQ u Q,=Q 
n-z9 

lim sup {~~(x)(xEQ2\52,j =O. 
n *cc 

(3) 

We also assume that there are functions a, defined on 4 such that 

a, I Q,, = 4 
1 

a,(x) a- n 

U,(X)5~sr>U(X)5.5 vx E a V(ER” (4) 

lim sup {II a,,(x) - u(x)]1 1 x E L?} = 0. 
,I - U! 

The above assumptions are such that the coefficient matrix a might 
degenerate only on a part of I: The character of u might even change as 
we move along K Degeneracy at isolated points is also included. 

We use the notations 

Au=V.(clVu) 

Anu=V.(u,Vu) 
(5) 

and 

II u Ilp = II u II I&2) 

II u II k,p = ‘I u II w;(n) 

(u, ~1) = s, u(x) o(x) dx 

(uVU, VU) =S, c Ui,i(X) Z;U(X) diU(X) dX 
l.J- 1 

II u II X;(Q) = (UVU, Vu). 

(6) 



314 ANDREAS STAHEL 

Let HA(Q) be the closure of the smooth functions with support in 0 with 
respect to the norm (!I u/12,1 + (I ~l(;.~)‘:*. Observe that !I ~1;~: is not a norm 
on HA but only a seminoim. This will not cause problems since we will 
always be able to control the &-norm. 

It is our intention to solve, on the given time interval I= [0, T + 1; the 
problem 

fi - Au =f(u) inQx1 

u=o 0nrxI (7) 
u(O)=u, in Q, 

where we assume that the real-valued function f is smooth and that there 
is a number M such that 

This assumption will imply an L, a priori bound, which is essential for our 
purposes. As a consequence we also obtain solutions on time intervals of 
arbitrary length. 

All the results in this paper remain true if we replace (8) by the weaker 
condition 

sj-(S)<C(l +s’) b’s E R (9) 

for some c>O, but the proofs have to be modified slightly. 
We call u a weuk sofulion of (7) if all the following conditions are 

satisfied: 

UE CO(Z, L,(Q)) n CO(l, f@2’)) for any compact subset Q’ of Q 

/I u(f)lI &n) + I/ u(t)11 co G c u(O)=u, u(t)lr‘=O 

($(T)> u(T)) - (bw), u. > -JOT Ofh~L u(t)) dr 

= 
c 7’- (UW(~), Vu(t)> + ($(t), f(u(t))) fir 

*0 

V$ E C’(I, L,(Q)) n CO(l, ti#2)) VTE I. (10) 

A generic constant will always be called c and it should be clear from the 
context on what the constant depends. 
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3. MAIN RESUI.T 

We first state the main existence result for solutions of (7). 

THEOREM 1. Problem (7) has for euch u0 E W:(Q) n L,=(Q) whose sup- 
port is compactly contained in 52 a global weak solution which is Lipschitz 
continuous with respect to time with c&es in L,(Q). 

Comment. The condition of compact support for the initial value can 
be weakened. If we have a sequence of functions u,,,~E W:(Q) with 
u,,~( I‘= 0 and 

II un.0 Ii :r G Mz un.0 + un in L’(Q), /I A,u,.~ iI7 d c V’nEN (11) 

for some c > 0, then we obtain the same result. 
If we replace condition (1) by a stronger one which forces the largest 

eigenvalue ti of the coefficient matrix u to decay with a given rate as x 
approaches the boundary we derive a uniqueness result. 

THEOREM 2. !f we replace ( 1) by 

(~2db-)” 2 G(x) > g(x) >, C’d(X)” with 0 < 3 < 1, (12) 

for constunts cl, c2 > 0, then the problem (7) has, .for a giLen u. E L2(Q), at 
most one weak solution which is Lipschitz continuous with respect to time 
with c&es in Z+(Q). 

If the coefficient a satisfies (1) (i.e., is bounded from below) and is strictly 
bounded away from zero close to a connected component of the boundary 
r then the assumption (12) can be dropped for x close to that connected 
component. This is easily verified by checking the proof. 

Using standard results on analytic semigroups we find a simple abstract 
regularity proof for the solution u. 

THEORF:M 3. Zj’ we assume the conditions from Theorems 1 and 2 and 
f(0) = 0, then the solution u of’ (7) satis/ies 

ueC’((0, T’ ), L,(Q))nC’((O, T’). Hf, (52)). (13) 

A slightly more precise regularity result is given in the proof of this 
theorem. 

In the last section we list the result obtained by the standard semigroup 
approach to problem (7) and we also show that our approach can bc 
generalized to solve problems with nonselfadjoint differential operators. 
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4. SOME USEFUL LEMMAS 

We first consider some properties of solutions of the approximating 
problem 

&I --A,% =f(4z) in52xZ 

u,=o 0nZxZ (14) 

u,(O) = %.o in Q, 

Since A, is a uniformly elliptic operator in divergence form it is the 
generator of an analytic contraction semigroup etAn on L,(Q) for any 
l<p<co withdomA,=W~(Q)n{ujZ=O} (see [12]). 

The first lemma shows that the solutions of (14) are uniformly bounded. 
This is the starting point of all the estimates to come. Its proof would be 
trivial if the solutions were classical at time zero. We essentially have to 
show that the L,-norm does not blow up as t converges to zero. 

LEMMA 1. For all t E [0, T] andfor all n E N we have I( u,(t)l( o. < M+ 1. 

ProoJ: We first modify the function f for arguments x with (X ( B 2M 
such that f is globally Lipschitz continuous and (8) remains valid. 
Using q= vol(Q) we derive easily I/ ZA,,~ lip 6 ql’pM. From the well known 
variation-of-constants formula we obtain 

u,(t) = e’A”u,,O + 1’ e(‘-‘)Anf(u,(z)) dz. (15) 
0 

Using the Lipschitz constant of f and the contraction property of the 
semigroup we deduce 

II ~,Wll, G PM+ c s ; 1 + II G)llp dr. (16) 

Gronwall’s inequality shows that for p big enough 1) u,(t)llp < M+ 1 for 
all O<t<t,, where to does not depend on n and p, This implies 
)I u,(t) I( co < M + 1 for a positive t. Since we have classical solutions for t > 0 
the condition (8) leads us now to the same estimate for all positive t by a 
simple calculus argument. Observing that the above modification off does 
not influence the solutions, we have the desired result. 1 

If we want to prove Lemma 1 using the assumption (9) then we have to 
subtract a term &A on both sides of the equation and look at the modified 
nonlinearity 

f(s) =f(s) - 2,s (17) 

which satisfies property (8) if we only choose C big enough. The modified 
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differential operators A, will not generate contraction semigroups on 15, 
but the exponential growth rate does not depend on p. This is suflicient to 
prove the required results. 

Now we want to show that I&, is equibounded in L,(R). For this purpose 
we set 

L:,(f) = fin(l): cn.0 = c,,.o = A.un.0 +J‘(%.o). (18) 

From 

tl,,(t) = e’A”c,,,() + it e”-‘)Anf“(U,(T)) Ln(T) dT 
‘0 

(19) 

one obtains 

(20) 

I! c,,(t)‘1 2 6 !I C&O I, 2 CC’. 

Now the inequality I( c,,,~ 11 z d (1 A,,u,,” (I1 implies 

II u,t(r)ll* 6 c, (21) 

where c does not depend on n. Observe that this implies that the functions 
u,, are cquicontinuous in L,(Q), i.e., 

ilu,(t+h)-u,,(r)(l,~ch Vt e I, Vn EN, (22) 

where the constant c does not depend on n and t. The L,= a priori bound 
and Holder’s inequality imply that I(, is equicontinuous in any L, where 
p<CE. 

Using a bootstrapping argument we now prove that u,, is equicontinuous 
in H,!,(Q). Using (4), Green’s formula, the differential equation (14), and 
the estimate (21 j we deduce 

:I u,,(~+ww)l12 dtn) d II W + 11) - ~,,(W,~n~~~ 

= (Q,,v(u,(l+ h) - u,(f))* V(%(f + h) - u,(~))> 

= ( -A,,(u,,(t + h) - u,,(t)), (u,,(t + h) - u,(t))> 

= <k,(t) - z&At + h) -.f(u,,(r + II)) +f‘(u,,(~)), u,t(l+ A) -u,,(t)) 

~~ll~,~l+h~-zi,,~~)ll~+II.l‘(u,(t+h))-f’(u,~~))l!~) 

IIu,(t+h)-u,,(t)ll2~C IIU,(t+h)-%(t)ll2. (23) 

Thus (22) implies 

11 u,(t + h) - u,(t)llH~($~, d ch”‘2 VtEI. (24) 
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A similar argument shows that 

‘I %Wl,,~(Q) G II U,(f)ll If;“(a) d c. (25) 

Thus we have the following basic results which turn out to be important 
for our method of proof. 

LEMMA 2. The sequence { u,~ ). qf solutions of (14) is equicontinuous in 
H:(Q) and L,(Q) for I <p < ~0 and equibounded in HA(Q). ti, is equi- 
bounded in L2(Q). 

The next lemma is a compactness result for the weighted Sobolev space 
HA(Q). A similar but stronger result is given in [ 10, Theorem 4.1 I]. Since 
our proof is much simpler than the one in [lo] and we obtain the result 
needed for our purposes we give the proof. 

LEMMA 3. If‘ a set of functions 0 bounded in the HA(R)-norm und the 
L,(Q)-norm then the set is relatively compact in L,(Q) for 1 <p < 2/( 1 + a). 

Proof: The proof is based on a sufficient condition for a set to be 
pre-compact in L,,(Q) due to Kolmogorov and Frcchct (set [7, 
Theorem 2.5.2 3). Let v be a function in the above set and let 52’ be a 
compactly contained smooth subset of 52. We trivially have 

11 v (I ,,p((>‘,Q’) < !I u II * vol(Q\Q’)‘~~- ‘/2. (26) 

The assumption on p implies 1&(2--p) < 1. Since a(x) k c,d(x)* if .X is 
close to 1‘ we know that 

P!(2 P) dx < m. (27) 

For a smooth function v and a vector h with 2 I hi ddist(Q’, r) Holder’s 
inequality leads to 

1,. Iv(x+h)-v(x)/” dx 

” < I J )Vu(x+th)lPdt IhlYdx 
U’ 0 

glhlp/; [&g(x+th) +‘%‘x)’ pi’ 

p:2 

g(x+ th)(Vv(x+ th)l*dx > 1 dt 

(28) 
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A convolution argument shows that the inequality (28) is correct for the 
given functions C. Kolmogorov’s result now gives the desired convergent 
subsequence. 1 

Since the coefficients of A degenerate only on the boundary I. we can 
find interior estimates for the solutions II,,. 

b3IMA 4. For each m EN there is u constant c(m) .such that 

II h(t)ll dcfr,,,) d c(m) vn E Iv, t E I. (29) 

Proqf: For the sake of short notation we omit the argument t in this 
proof. WC only have to look at n such that A,, lQzm = A jQ7,,,. Pick a 
function +!I with 

$EC’(Q, R), $lQ,,,= 1, supp G c Q2,n. (30) 

On Qz,,, the product rule implies 

A($k?) = $4, + 2V$(uVu,,) + &,A$. (31) 

IJsing the differential equation (14) we deduce 

A(@42 I= $4, - vvl4,) + 2WUV%) + U,,@ in Q2, 
rc/u,, = 0 on ZQ,,,. 

(32) 

Because of the equiboundedness of u,, in H:(Q) and (21) the right hand 
side of this elliptic equation is bounded in L2(Q22,,) uniformly with respect 
to t and n. A IQ,, is uniformly elliptic on Rz,, and the constant of 
ellipticity depends only on m. Thus standard elliptic theory implies 

I! $u,, II w;ca,,l d 4m h (33) 

which immediately gives the desired result. i 

The above lemma gives us control on the behavior of the solutions in the 
interior of the domain 52. If we modify the weight function u in H:(Q) 
slightly we obtain also some information near the boundary. 

LEMMA 5. Let C?(X) be a positive definite smooth modification of the 
matrix valued function a(x) such that 

6(x) <c&x)’ +* for some jl > 0 (34) 

in a neighborhood of IT If a sequence of functions sati:fics 

II ui II H;(Q) d c, I! uj I/ 1 d c, ii ui II (35) 
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then there exist a u E HA(Q) and a subsequence (again denoted by (ui ,‘) such 
that 

u, + u in H<;(Q). (36) 

Proof The usual Sobolcv imbcdding and a diagonal sequence argu- 
ment give a subscqucnce {ui> which converges to u in L,(Q) and H!(Q,) 
for each m. In the next section we show by an independent proof that 
UE HA(Q). Thus we have UE HA(Q). For m big enough we calculate 

+i 
g(x)” 4x)lV(u(x) - u,(x))\’ dx 

u ‘, I?, 

For a given c>O we choose m such that the second term in the above 
expression is smaller than E. Then we determine an i, such that the first 
term is smaller than c, ‘if only i > i,. Thus WC have the desired result. 1 

5. PKOOF OF THEOKEM 1 

The following result collects the statements in the previous section and 
constructs the function u which is the solution to the original problem (7). 

Proposition 1. Given I = [0, T’ 1, there exists a subsequence (?f {ui} 
convergent in E= C’(l, L,(Q)) n C’(/, HA(Q)) n CO(I, Ht(Q,,,)) towar& 
u E E, where 1 < p < x is arbitrary. 

Prooj By repeated extraction of subsequences the results of the 
previous section imply that for each t E I the sequence {u,,(t)} has a 
convergent subsequence and the convergence is in the norms of L,(Q), 
H:(Q), and /IA( 

We know that ) u,,(t, x)1 d M + 1. This implies )I u(t)11 uc ,< M + 1. Using 
Holder’s inequality we obtain 

lb,(t)--u(N,,< IIM+-u(~)ll~ II~“w-wll~-” 

d liu,(t)-U(t)ll~(2M+2)‘- @, 
(38) 

where l/p = 0. This implies convergence of the same subsequence in any L, 



space. Now a simple application of the Banach space version of the 
Ascoli -Arzela lemma (e.g., [9]) leads to the claimed result. 1 

The next lemma shows that u(t) is in HA(Q) and it is uniformly bounded. 

LEMMA 6. For each t E I we huve u(t) E Hi and there is u wnstant c 
such that 

II u(r)ll Hf,(U) G ” (39) 

Proqf. Let xnr be the characteristic function of the set Q,,, and let 

$,,(x) = L,,(X) 4x1 W-x) .Wx), l/l(x) = u(x) Vu(x) .Vu(x). (40) 

The sequence {I++,} is monotone increasing and converges almost 
everywhere to $. Observing that 

,!\mx I,,, 0) Vu,,(x) .VU,(X) d-x = [ $,,(x) C~.U (41) 
J $2 

and recalling /( u,(t)\\ ,I~,nJ < c we can apply Lcbesgue’s monotone 
convergence theorem to ;how that 

This proves the lemma. 1 

Since u, converges uniformly to u in L,(Q) it is obvious that (22) implies 
the Lipschitz continuity of u in L,(Q). The Dirichlet boundary condition 
in (7) is satisfied since the trace operator is continuous from HZ(Q) to 
L,(T). This is a consequence of a simple imbedding and a trace result 
quoted in [8, Theorem 9.143. 

It remains to be shown that u is, in fact, a weak solution of (7). For this 
purpose we consider a fixed test function 

I(/ E C’(I, &(Q)) n C’(I, ti:(Q)). (43) 

Since u, is a classical solution of (14) we have for TE I 

($(V* u,,(T)) - <$W), u,,.o > - j; <Ij/(Q u,,(t)) dt 

= 
I 7 - <a,‘Wd~)~ Vu,(t)) + <t4t)J(u,(~))) dt. 0 

(44) 

Using Proposition 1 it is obvious that the first line in the above expression 



322 ANDKEASSTAHEL 

converges to the same expression, where U, is replaced by u if n converges 
to infinity. Similarly 

(&~),f‘(4,(t))> -+ <Il/(~Lf(u(~))) (45) 

uniformly with respect to t E [0, T]. 
The only problem is to show that 

(%W(~), V%,(l)) + (aVll/(t), Vu(t)>. 

For a given c > 0 one deduces by elementary calculations that 

I (%V% - uv:, v*> I 

(46) 

d c II un II l/;o(Q) s~P{I~,,w-4~)l I*=Q)‘:2 :Ie,ll.2 

* + 
IJ 

aV(u,-u).V$ dx 
Q,” 

+ L n 
uV( U, - U) . V+ dx 

‘,, m 

G C il Unll~/l~(Q) s”P{lun(x)-u(x)l IxER\QnI ‘I Ic/ :I 1.2 

+ c II 4 - u II II; Ii $ I’ I,2 

+ (II #?I II IIf + ‘I 24 II HA(R) 1 sup ( ! 4x)l ! x E Q’v-2, ] ‘!2 II $ II 1.2 

Gc II1(/111.2~ (47) 

if only n is large enough. To achieve the last inequality one has to use (3), 
(25), and Proposition 1. First we can choose m such that the third term is 
small enough and then make n big enough so that the first two terms are 
small. This implies that u is a weak solution of (7). 

A close inspection of the above calculations indicates that one could 
choose test functions $ in a bigger function space than indicated in the 
definition of a weak solution. But the improvement would be marginal. The 
above proof does not allow us to choose u as a test function. 

6. PROOF OF THEOREM 2 

The uniqueness proof does not depend on the construction of the 
solution. We use only the definition of a weak solution and the growth 
condition (12) on the coefficient a. Suppose we have two solutions o and 
w of (7) with the same initial value. Then u := u- w would be a weak 
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solution with u. = 0 and f‘(u) replaced by F(t) : = f(c( t)) -J( W( I)). We 
have to show that u is identically zero. The obvious way to achieve this 
would be to choose u as a test function. Unfortunately this is not directly 
possible and we have use an approximation procedure. 

LEMMA 7. There exist open sets 

and linear operators R, such thut 

R, E ,Y’( H;(Q), ff$2)) n .Y( H;(Q), W’;(Q)) 

with II R,u ‘I ip(n, d c !I u ‘I /p(Q) (49) 

and R,,u(x) = u(x) QxES,. 

The main point in the above lemma is the uniform boundedness of the 
linear operators R,, in Hi(Q). The condition (12) allows us to prove the 
right estimate. In a concrete example it might be possible to construct the 
above operators without assumption (12). 

Proof: Using local coordinates immediately reduces the problem to the 
situation where Q c R”- ’ xR+ and 

S,= (x=(& x’)EL? with .v’>n- ’ ). (50) 

We have d(x) =x’. R, is now constructed by reflection at the plane 
x’ = n ‘, i.e., 

u(&n-‘+h) if 1120 
Ru,,(i, n -- ’ + h) : = 

I 
4rr(xl,n .I--i)-3u(-i-,%‘-/I) if -n-‘<h<O. 

(51) 

Using the notation Sk := Q\,S, we compute now 

i._ a(X)v&u(X) VR,u(x) dX 
- .s: 

1 VR,u(x)l* dx 

<cc,n-” [ IVR,,u(x)l’dx 
‘K<.X’<211 ’ 

<CC+; I, a(x) VR,,u(x) .VR,,u(x) dx. (52) 
I_ 

SO5.93;2-R 
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A similar calculation shows that 

II R,ull2,;(,, d c(n)ll ~I’:,~(a, (53) 

where c(n) might blow up as n goes to infinity. This proves (49). 1 

The following lemma is an easy consequence of the above. 

LEMMA 8. For all u, v E Hf,(Q) we have 

(aVR,u, Vu> + (aVu, Vu> (54) 

as n goes to injinity. 

Proof: We have 

(aV(u-R,u),Vv)=~sca(x)V(u-R,u)~Vvdx 
n 

> 

I:2 (55) 

d II u - 4,~ II f+, a(x)lVcl’dx . 

Using (49) and Lebesgue’s bounded convergence theorem we deduce the 
claimed result. 1 

Note that we did not prove that R,u converges to 1( in HA(Q). 
Since u is only delined for t E I we extend it continuously to R by 0 for 

negative arguments and by u( T’ ) for t > T+. To obtain uniqueness of the 
solution we use the test functions 

&,Jt) := &j,‘Aab R,+(t) ds, (56) 

where 6 > 0. Obviously we have $,,.6 E C’(I, L,(Q)) n C”(Z, Ha(Q)) and 

1 
II/,,&) = z R,,(u(t + 6) - 4t - 6)). (57) 

The following arguments are formal; e.g., it is not obvious whether the 
limit .K,, exists. We omit the formally correct proof and give only the for- 
mulas that serve as guidelines for the technical, lengthy calculations that 
have to be carried out to achieve the desired result, namely (63). 

We first want to let b converge to zero. 

jo~(~~,s(r),u(t))dt=jo~~(u(t+~)-u(t-~),u(t)),dt 

+ f (I! 4T)li ~2~.~,~ - II dO)ll:2c.sn,) + K,,, (58) 
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where 

K,, : = lim ’ 
F 1 

s J :R,,(u(t+6)-u(t-6))u(t)dxdt 
a-*0- 1, s: 26 

(59) 

IK,,I < f’ cMvol(Sydt. 
‘0 

To verify the above inequality one uses the Lx-bound and the Lipschitz 
condition on u. Since UE CO(I, L,(Q)) n C”(Z, H:(Q)) WC deduce 

.+ i’- WR,uW, Vu(t)> + (&u(t), F(t)) dt 
“0 

(60) 

as 6 approaches zero. Since u is a weak solution we obtain 

II u(T)11 L2(a)- II u(O)11 t,(n) - $I! u(T)!I~.~(S,) - :I dO)il &.s,,)) + Kn 

= s T- (uVR,,u(t),Vu(t))+ (R,,u(t). F(t)) cit. (61: 0 
Now we let n to tend to infinity and we use the above lemma, u(0) = 0 and 

II F(t)112 = II I’(Qf)) -f(u’(l))llr <c II 41) - w(l)llz (62) 

to derive 
-7 

1;24(7-)11;<2c 1 !w)lI;df. 
'0 

(63) 

This implies that u is vanished identically and the proof of Theorem 2 is 
complete. 

7. PROOF OF THEOREM 3 

In this section we use semigroup theory to prove an abstract regularity 
result for the solution from the previous sections. For this purpose we need 
the following definition: 

uEdom AandAu=g~lJQ) iff 

LlEHi and (uVu,Vc> = -(g, u> t/c E Hi. 
(64) 

Basic results imply that the selfadjoint positive operator A is the generator 
of an analytic semigroup on L,(Q) and dom A”‘= Hb (e.g., [15, 
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Theorem 2.2.3 and Sect. 3.61). For a given &-valued function I;, which 
depends on the time t, WC call t‘ a mild solution of 

d-At; = F(f) 

t:(O) = I;() 
(65) 

if 

c(t) = f?%(, + c r e” ‘)‘F(T) dt. (66) 
“0 

The F(t) will be equal to f(u(t)), h w ere u is the unique solution from 
Theorem 2. We use the following well known regularity results on analytic 
semigroups. 

LEMMA 9. rJ‘ FE C”(R+, dom A”) then we haue LJE C”((0, ~cj), 
domAP”) jbr any ;~<l. IfFeCO(R+, domAP)firr sume p>O then we 
har;e IJE C’ ((0, m), L2(Q)). 

Now we have to show that there is a relation between the above 
definition of a mild solution and the previous concept of a weak solution. 

LEMMA 10. I” GE C”(R +, Hi)n Lip(R +, L,(Q)) is a mild solution of 
(65) and FE C”(R ‘, L,(Q)) then t: is also a weuk solution oj’(7), exceptfir 
the L,-hound. 

Proof We apply arguments very similar to the ones used in [ 141 in the 
case of hyperbolic problems. Without loss of generality we assume that the 
operator A has a continuous inverse in L,. We define 

w(f)=eA’A ‘uO+ [’ e(’ ‘)“4-‘F(r)dr-]‘A -‘F(r)dT (67) 
*0 0 

and realize 

k(t) = u(t) w(0) = A - ‘co w E C’(R+, dom A). (68) 

Now we choose a test function $ E C’(R, H,f) and multiply its derivative 
with the equality At+(t)= G(r) -sh F(T) dT. Integrating the resulting 
equation with respect to time and subsequent integrations by parts lead us 
to 

= J T- (W(f), Wt)> + (ICl(t), F(f)) dt. 0 (69) 

Thus t’ is a weak solution of (7), where S(u(t)) is replaced by F(t). 1 
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Using F(t) =f(u( t)) we easily derive 

LEMMA 11. 

FE C’(Z, dom A”) for any /I< A. (70) 

Proof: Using the L, and HA-bounds on u and Vj’(u) =f’(u) Vu we see 
that f‘(u) is bounded in Hi. Because ofJ(0) =0 we have a bound for,{(u) 
in dom A”‘. u is Lipschitz continuous with values in Lz thusf(u) has the 
same property. A simple interpolation argument proves the desired 
result. 1 

By redoing the uniqueness proof in the previous section for the right 
hand side F(t) instead of f(u(t)) WC observe that only an &-bound on F 
is necessary. Thus the above lemmas imply that the solution t’ of (65) is 
equal to the solution u of (7) given in Theorem 2 and 

UE: C’((0, T’ ), L,(Q))n C”((0, T ‘), dom A). (71) 

This proves the result claimed in Theorem 3. 

8. SOME REMARKS 

The obvious approach to solve (7) would be to look at the integral equa- 
tion (66) which defines a mild solution. To be able to use this approach we 
need the following slight extension of the classical Sobolev imbedding. 

LEMMA 12. If p > 1 + tl then we have for smooth bounded domuins 52 the 
imbedding 

q,m 4 L,(Q) for 
1 1 l+r 1 ->->-----,, 
P s P b 

Ii u II bl =I P.‘: Q Iu(x)j%+/ d(x)” IVu(x)l”dx. (73) 52 

Proof For l+r<r<p we define l/r’= 1 -l/r, q=pjr, and /3=x/r, 
NOW we choose r such that l/q - l/Y< l/s. Using Holder’s inequality wt: 

obtain 
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> 
I/l 

Q d(x) P’ dx d(x)p’ ) Vu(x)l“ dx 

The usual Sobolev imbedding implies the desired result. 1 

Now we look at (7) as a semilinear problem whose linear part generates 
an analytic semigroup, and we obtain the obvious result. 

THEOREM 4. !f u,, E Hi (Q), and 

If’(x)1 dc(l + IxJ~-‘)VXER where 
N 

?Iql +X)-2’ (75) 

then there exists a maximal time F> 0 such that (7) has a unique mild 
solution u with 

UE C"([O, f), L,(Q)) n C’((0, F’), Lz(Q)) n C”( [0, f), H;(Q)). (76) 

!f uO E L?(Q) and the real function f’ is globally Lipschitz continuous then 
(7) has a unique global mild solution u with 

u~C”(CO~aC:),L,(n))nCo((O, x),HJ(Q)). (77) 

ProoJ In the first case we realize that the substitution operator induced 
by f is locally Lipschitz continuous from Hi to L,. Thus we can use a 
Banach fixed point argument to obtain the solution in C”( [O, T, 1, HA(O)) 
for some small T,. A continuation argument and well known abstract 
regularity results prove the result. 

In the second case we realize that the substitution operator induced by 
fis Lipschitz continuous from Lz to L2. Thus similar arguments prove the 
result. 1 

Comment. The above approach is much simpler than the one we used 
in the previous sections. But please observe that the class of nonlinearities 
that can be handled is much smaller and we obtain less information about 
the solutions. E.g., there is no obvious way to prove L, a- priori bounds 
for the above solutions. This justifies the use of our approach even if it 
seems to be more complicated at first sight. 
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Now we want to show that our approach also applies to the 
nonselfadjoint problem; i.e., we add a term of first order to the equation. 
Let 

N 

Bu= c b,(x)E (x). 
I- 1 ’ I 

The definition of a weak solution for the equation 

ti - Au - Bu =f(u) in SzxZ 

u=o on I-xl 

u(0) = u(J in G 

(79) 

is very similar to (10); we only add a term l 

to the right hand side. Then we obtain the following extension of 
Theorem 1. 

THEOREM 5. We USE the assumptions of Theorem 1 und 

for some constant K and 

(81) 

x 2 
z 

lf cY>,- 

hi(x) d cd(x)” with /3 < 
n 

1 2 (82) 
- if’ cc<--. 
n n 

Then problem (79) has a global weak solution which is Lipschitz continuous 
with respect to time with values in L,(Q). 

To verify the correctness of the above statement we only list the changes 
that have to be made in the proof of Theorem 1. 

A result of Amann [I, Corollary 11.21 and assumption (81) imply that 
A, + B generate semigroups on L, whose exponential growth rate does not 
depend on n and p. Thus we can prove a result similar to Lemma 1. 

To modify calculation (23) we use the growth conditions (82), the 
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Sobolev imbedding (72), and multiple applications of Holders inequality to 
derive 

< c II u II H; il t’ II ,,, 

G c II t’ II II: II t’ II y,, II u II :,; tr (83) 

with l/r = 1 -2/s and s is given by (72) and I) < I. Thus we can reprove 
Lemma 2 for problem (79). The other lemmas remain essentially 
unchanged and the only minor problem is to show the limit u of the 
convergent sequence is a weak solution. To achieve this one has to perform 
an additional calculation similar to (47) only less complicated. 

This finishes the outline of the proof of Theorem 5. 
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