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In this paper, we show that a reducible companion matrix is

completely determined by its numerical range, that is, if two

reducible companion matrices have the same numerical range,

then they must equal to each other. We also obtain a criterion

for a reducible companion matrix to have an elliptic numerical

range, put more precisely, we show that the numerical range

of an n-by-n reducible companion matrix C is an elliptic disc if

and only if C is unitarily equivalent to A ⊕ B, where A ∈ Mn−2,

B ∈ M2 with σ(B) = {aω1, aω2}, ωn
1 = ωn

2 = 1, ω1 /= ω2, and

|a| �
(
|ω1 + ω2| +

√
|ω1 + ω2|2 + 4(1 + 2 cos(π/n))

)/
2.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Let Mn be the algebra of n-by-n complex matrices. For any matrix B, σ(B) denotes the set of its

eigenvalues, r(B) = max{|z| : z ∈ σ(A)} denotes the spectral radius of B and the numerical range of B

is the subset

W(B) = {〈Bx, x〉 : x ∈ Cn, ‖x‖ = 1}
of the plane. Properties of the numerical range can be found in [10, Chapter 1].

For any complexpolynomialp(z) = zn + a1z
n−1 + · · · + an−1z + an, there is associated ann-by-n

matrix

�
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1

0 1

· ·
· ·

· ·
0 1

−an −an−1 · · · −a2 −a1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

called the companion matrix of p and denoted by C(p). A familiar special case is the (nilpotent) Jordan

block Jn when all the aj ’s are zero. Such a matrix has the property that its minimal polynomial and

characteristic polynomial are both equal to p. Hence companion matrices are nonderogatory and, in

particular, are such that every eigenvalue has geometric multiplicity one. They arise as the building

blocks in the rational form of general matrices: every square matrix is similar to a direct sum C(p1) ⊕
· · · ⊕ C(pk) of companion matrices with pj+1 dividing pj for all j.

In this paper, we study the numerical ranges of companion matrices. For 2-by-2 companion matri-

ces, the numerical range provides the complete information: if A and B are 2-by-2 companion matrices,

then A = B if and only if W(A) = W(B). This is the consequence of the fact that 2-by-2 matrices

with equal numerical ranges are unitarily equivalent. Unfortunately, the same cannot be said about

companion matrices of size three. In [9, Example 2.1], the authors gave an example of two distinct

3-by-3 companion matrices whose numerical ranges are the same elliptic disc. The aim of this paper

is to prove that two n-by-n reducible companion matrices have the same numerical range, then they

must equal to each other. Recall that a matrix is reducible if it is unitarily equivalent to the direct sum

of two other matrices. In [9], the authors give a criterion in terms of the eigenvalues for a companion

matrix to be reducible. It roughly says that a companion matrix is reducible when its eigenvalues are

“equally distributed” on at most two circles with center at the origin and radii reciprocal to each other.

Proposition 1.1 [9]. An n-by-n (n� 2) companion matrix A is reducible if and only if its eigenvalues

are of the form: aωj1
n , . . . , aω

jp
n , (1/ā)ω

jp+1
n , . . . , (1/ā)ω

jn
n , where a /= 0, ωn denotes the nth primitive

root of 1, 1� p� n − 1, and {j1, . . . , jp} and {jp+1, . . . , jn} form a partition of {0, 1, . . . , n − 1}. In this

case, A is unitarily equivalent to a direct sum A1 ⊕ A2 with σ(A1) = {aωj1
n , . . . , aω

jp
n } and σ(A2) =

{(1/ā)ωjp+1
n , . . . , (1/ā)ω

jn
n }. In particular, every reducible companion matrix is invertible.

It follows as corollaries that a companion matrix unitarily equivalent to a direct sum with one

unitary summand or with at least three summands must itself be unitary. (cf. [9, Corollaries 1.2 and

1.3]). Moreover, if an n-by-n reducible companion matrix has spectral radius one, then it is unitary

and its numerical range is a regular n-sided polygon. Consequently, two n-by-n reducible companion

matrices have the same numerical range and one of them has spectral radius one, then they must

equal to each other. Therefore, wewill restrict our attention to the reducible companionmatrices with

spectral radius larger than one. Note that if C is an n-by-n reducible companionmatrix, by Proposition

1.1, the following are equivalent: (a) C is not unitary; (b) r(C) > 1; (c) C is unitarily equivalent to a

direct sumA ⊕ B,whereA ∈ Mk (1� k � n − 1)with r(A) < 1andB ∈ Mn−kwith r(B) = 1/r(A) > 1.

In this case, we call C the nonunitary reducible companion matrix. In Section 2, we first prove that

if C is a nonunitary companion matrix, then C is unitarily equivalent to a direct sum A ⊕ B with

rank(Ik − A∗A) = rank(In−k − B∗B) = 1. It is known that the numerical range W(C) is equal to the

convex hull of W(A) ∪ W(B). Therefore, we make a detailed study of the numerical ranges of n-by-n

matrices T with rank(In − T∗T) = 1. We obtain that such matrix T is determined by its numerical

range up to unitary equivalence, is irreducible and cyclic, and the boundary of its numerical range is

an algebraic curve which contains no line segment. If, in addition, r(T) > 1, then the homogeneous

polynomial pT (x, y, z) ≡ det(x(T + T∗)/2 + y(T − T∗)/(2i) + zIn) is irreducible. Finally, we use the

preceding results toprove that two reducible companionmatriceshave the samenumerical range, then

they must equal to each other. On the other hand, we also give a sufficient and necessary condition in

terms of eigenvalues for a reducible companion matrix has elliptic numerical range, more precisely,

we show that if C is an n-by-n reducible companion matrix, thenW(C) is an elliptical disc if and only
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if C is unitarily equivalent to A ⊕ B, where A ∈ Mn−2, B ∈ M2 with σ(B) = {aω1, aω2},ωn
1 = ωn

2 = 1,

ω1 /= ω2, and |a| �
(
|ω1 + ω2| +

√
|ω1 + ω2|2 + 4(1 + 2 cos(π/n))

)/
2.

2. Main results

We start with the properties of the direct summands of a nonunitary reducible companion matrix.

For abbreviation, we write dT = rank(In − T∗T) for an n-by-nmatrix T .

Theorem 2.1. If C is an n-by-n nonunitary reducible companion matrix. Then C is unitarily equivalent to

a direct sum A ⊕ B with dA = dB = 1.

To prove Theorem 2.1, we need the following lemma.

Lemma 2.2. Let C be an n-by-n matrix with no eigenvalue on the unit circle and A be a restriction of C. If
dC = 1, then dA = 1.

Proof. Since A is a restriction of C, there exists a unitary U ∈ Mn such that

U∗CU =
[
A ∗
0 ∗

]
,

where A ∈ Mk for some k, 1� k � n. Moreover, a simple computation yields that

U∗(In − C∗C)U = In − (U∗CU)∗(U∗CU) =
[
Ik − A∗A ∗

∗ ∗
]
.

Since C has no eigenvalue on the unit circle and σ(A) ⊆ σ(C), hence A is not unitary and

0 < rank(Ik − A∗A) � rank(U∗(In − C∗C)U) = rank(In − C∗C) = 1,

which show that rank(Ik − A∗A) = 1, completing the proof. �

Proof of Theorem 2.1. By Proposition 1.1, we may assume that σ(A) = {aωj1 , . . . , aωjk} and σ(B) =
{(1/ā)ωjk+1 , . . . , (1/ā)ωjn}, where 0 < |a| < 1 and ω denotes the nth primitive root of 1. For each

i = 1, . . . , k, let xi = (1, awji , (awji)2, . . . , (awji)n−1)T ∈ Cn be the eigenvector of C corresponding

to the eigenvalue awji . Let H be the subspace of Cn generated by {x1, . . . , xk}. From the proof of [9,

Theorem 1.1], A is the restriction C|H of C on H. Consider the n-by-n companion matrix

CA =

⎡
⎢⎢⎢⎢⎢⎣

0 1

0
. . .

. . . 1

an 0 . . . 0

⎤
⎥⎥⎥⎥⎥⎦ .

Then σ(CA) = {aωj : 0� j � n − 1}. We can see that xi is the common eigenvector of C and CA corre-

sponding to the common eigenvalue awji for each i = 1, . . . , k. Moreover, for any vector h ∈ H, then

h = ∑k
i=1 cixi for some scalars ci. Since

Ch = C

⎛
⎝ k∑

i=1

cixi

⎞
⎠ =

k∑
i=1

ciCxi =
k∑

i=1

ciaw
ji xi =

k∑
i=1

ciCAxi = CA

⎛
⎝ k∑

i=1

cixi

⎞
⎠ = CAh,

hence C|H is equal to the restriction CA|H of CA on H. It follows that A is also a restriction of CA. It is

easily check that rank(In − C∗
ACA) = 1, hence dA = 1 follows from Lemma 2.2.
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Next, consider the n-by-n companion matrix

CB =

⎡
⎢⎢⎢⎢⎢⎣

0 1

0
. . .

. . . 1

1/ān 0 . . . 0

⎤
⎥⎥⎥⎥⎥⎦ .

Then σ(CB) = {(1/ā)ωj : 0� j � n − 1} and dCB = 1. For each i = k + 1, . . . , n, let yi = (1, (1/ā)wji ,

((1/ā)wji)2, . . . , ((1/ā)wji)n−1)T ∈ Cn, then yi is the common eigenvector of C and CB corresponding

to the common eigenvalue (1/ā)wji . Let N be the subspace of Cn generated by {yk+1, . . . , yn}. From
the proof of [9, Theorem 1.1], B is the restriction C|N of C on N. By a similar argument, C|N is equal to

the restriction CB|N of CB on N, it follows that B is also a restriction of CB. Since dCB = 1, hence dB = 1

by Lemma 2.2, and we complete the proof. �

An n-by-n complex matrix A is said to be of class Sn if (i) the eigenvalues of A are all in the open

unit disc D, and (ii) dA = 1. In recent years, properties of the numerical ranges of Sn-matrices have

been intensely studied (cf. [4,6,7,13,14]). Among other things, it was obtained that the boundary of the

numerical rangeW(A) of an Sn-matrix A has the (n + 1)-Poncelet property. This means that there are

infinitely many (n + 1)-gons interscribing between the unit circle ∂D and the boundary ∂W(A) or,

put more precisely, for any point a on ∂D there is a (unique) (n + 1)-gon with a as one of its vertices

such that all its n + 1 vertices are in ∂D and all its n + 1 edges are tangent to ∂W(A) (cf. [4, Theorem
2.1] or [13, Theorem 1]).

If an Sn-matrix A is invertible, then

dA−1 = rank(In − (A−1)∗(A−1)) = rank((A−1)∗(A∗A − In)(A
−1)) = 1,

and all eigenvalues of A−1 have modulus greater than one. Recall that an n-by-n complex matrix B is

said to be of class S−1
n if (i) all eigenvalues of B have modulus greater than one, and (ii) dB = 1. It is

easily seen that if B is in S−1
n , then B∗ and eiθB are also in S−1

n for all θ ∈ R. On the other hand, by

Proposition 1.1 and Theorem 2.1, we have the following corollary.

Corollary 2.3. Let C be an n-by-n nonunitary reducible companion matrix. Then C is unitarily equivalent

to a direct sum A ⊕ B with A ∈ Sk and B ∈ S
−1
n−k , 1� k � n − 1.

In [6], the authors give a matrix representation for operators in Sn. Here we also give a matrix

representation for operators in S−1
n . Its proof is essentially the same as the one for [6, Corollary 1.3],

hence we omit the proof.

Theorem 2.4. An operator is in S−1
n if and only if it has the upper triangularmatrix representation [tij]ni,j=1,

where |tii| > 1 for all i and tij = sij(|tii|2 − 1)1/2(|tjj|2 − 1)1/2 for i < j with

sij =
⎧⎪⎨
⎪⎩

j−1∏
k=i+1

t̄kk if j > i + 1,

1 if j = i + 1.

Notice that in the preceding matrix representation for operator B in S−1
n , the entries tij are all

determined, up tomoduli, by thediagonal terms tii,which are the eigenvalues ofB. This is not surprising

since in the representation of B as the inverse of an invertible Sn-matrix, which is determined by

its eigenvalues. Hence if B1 and B2 are in S−1
n , then B1 is unitarily equivalent to B2 if and only if

σ(B1) = σ(B2) (counting multiplicities).
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We now apply Theorem 2.4 to study the numerical ranges of S−1
n -matrices. For a matrix T ∈ Mn,

Re T = (T + T∗)/2 and Im T = (T − T∗)/(2i) are the real and imaginary parts of T , respectively, and

∂W(T) is the boundary of the numerical range of T .

Theorem 2.5. Let B be an S−1
n -matrix.

(1) The maximal eigenvalue of Re(eiθB) is simple for all θ ∈ R.
(2) Let M be a proper invariant subspace for B, then W(B|M) ∩ ∂W(B) = ∅.
(3) If x is a unit vector in Cn for which 〈Bx, x〉 ∈ ∂W(B), then x is a cyclic vector of B.
(4) ∂W(B) contains no line segment.
(5) For any point λ in ∂W(B), the set {y ∈ Cn : 〈By, y〉 = λ‖y‖2} is a vector space of dimension one.
(6) B is irreducible.
(7) ∂W(B) is a differentiable curve.
(8) ∂W(B) lies on the real part of an irreducible algebraic curve of degree m� 2.

Notice that if A is an Sn-matrix, then the preceding properties (1)–(8) hold (cf. [4,5]). For the proof

of Theorem 2.5, we start with the following lemma.

Lemma 2.6. Let B be an S−1
n -matrix represented as in Theorem 2.4 and r be the maximal eigenvalue of

Re B. If x = (x1, . . . , xn)
T ∈ Cn is an eigenvector of Re B corresponding to the eigenvalue r, then xn /= 0.

Proof. The proof is by induction on n.

We first check the case n = 2. That is,[
r − Re t11 − t12

2

− t̄12
2

r − Re t22

] [
x1
x2

]
=

[
0

0

]
.

Suppose, contrary to our claim, that x2 = 0. Then x1 /= 0 and 0 = x1 t̄12. This contradicts the fact that

t12 = (|t11|2 − 1)1/2(|t22|2 − 1)1/2 /= 0.

Assume the assertion of the lemma holds for n − 1, we will prove it for n. On the contrary, suppose

that xn = 0. It implies that (rIn−1 − Re Bn−1)y = 0, where y = (x1, . . . , xn−1)
T ∈ Cn−1 and Bn−1 ∈

Mn−1 is the principal submatrix of B. It follows that y is the eigenvector of Re Bn−1 corresponding to

the maximal eigenvalue r. Note that Bn−1 is in S
−1
n−1 from Theorem 2.4. Therefore, by the hypothesis

of induction, we have xn−1 /= 0. On the other hand, let us compute the nth and (n − 1)th entries of

(rIn − Re B)x, we have

− 1

2

n−2∑
j=1

xjt̄j,n − 1

2
xn−1 t̄n−1,n = 0 (1)

and

− 1

2

n−2∑
j=1

xjt̄j,n−1 + xn−1(r − Re tn−1,n−1) = 0. (2)

By Theorem 2.4, we have

tj,n = tj,n−1 ·
√

|tn,n|2 − 1√
|tn−1,n−1|2 − 1

· t̄n−1,n−1, (3)

for 1� j � n − 2. Substituting (3) into (1) yields

0 = −
√

|tn,n|2 − 1

2
√

|tn−1,n−1|2 − 1
· tn−1,n−1

n−2∑
j=1

xjt̄j,n−1 − 1

2
xn−1 t̄n−1,n (4)
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Substituting (2) into (4) we obtain

0 = −
√

|tn,n|2 − 1√
|tn−1,n−1|2 − 1

· tn−1,n−1xn−1(r − Re tn−1,n−1) − 1

2
xn−1 t̄n−1,n (5)

Since xn−1 /= 0 and t̄n−1,n = (|tn,n|2 − 1)1/2(|tn−1,n−1|2 − 1)1/2 > 0, we can rewrite (5) as

|tn−1,n−1|2 − 1 = −2tn−1,n−1(r − Re tn−1,n−1). (6)

Note that |tn−1,n−1| > 1 and r � Re tn−1,n−1, Eq. (6) becomes

|tn−1,n−1|2 − 1 = 2|tn−1,n−1|(r − Re tn−1,n−1). (7)

Next, we will rearrange the diagonal entries of B to obtain that

|tn−2,n−2|2 − 1 = 2|tn−2,n−2|(r − Re tn−2,n−2). (8)

Indeed, since Bn−1 is in S
−1
n−1, by Theorem 2.4, there exists a unitary matrix V ∈ Mn−1 such that

V∗Bn−1V = [t′ij]n−1
i,j=1 which is represented as in Theorem 2.4 and t′n−2,n−2 = tn−1,n−1, t

′
n−1,n−1 =

tn−2,n−2 and t′i,i = ti,i for i = 1, . . . , n − 3. Let U = V ⊕ [1] ∈ Mn, B
′ = U∗BU and x′ = U∗x. Then

(rIn − Re B′)x′ = 0 and the nth entry of x′ is zero. As was proved above, we can obtain that

|t′n−1,n−1|2 − 1 = 2|t′n−1,n−1|(r − Re t′n−1,n−1).

Since t′n−1,n−1 = tn−2,n−2, it follows that

|tn−2,n−2|2 − 1 = 2|tn−2,n−2|(r − Re tn−2,n−2).

Now, note that r is the maximal eigenvalue of Re B, thus, the submatrix[
r − Re tn−2,n−2 − tn−2,n−1

2

− t̄n−2,n−1

2
r − Re tn−1,n−1

]

of (rIn − Re B) is positive semidefinite. Moreover, we have

0 � det

[
r − Re tn−2,n−2 − tn−2,n−1

2

− t̄n−2,n−1

2
r − Re tn−1,n−1

]

= (r − Re tn−2,n−2)(r − Re tn−1,n−1) − |tn−2,n−1|2
4

.

It follows that

|tn−2,n−1|2
4

� (r − Re tn−2,n−2)(r − Re tn−1,n−1) (9)

and (r − Re tn−2,n−2)(r − Re tn−1,n−1) > 0, since |tn−2,n−1|2 = (|tn−2,n−2|2 − 1)(|tn−1,n−1|2 − 1)
> 0. On the other hand, substituting (7) and (8) into the (9), we have

(r − Re tn−2,n−2)(r − Re tn−1,n−1) �
|tn−2,n−1|2

4

= (|tn−2,n−2|2 − 1)(|tn−1,n−1|2 − 1)

4

= |tn−2,n−2| · |tn−1,n−1|(r − Re tn−2,n−2)(r − Re tn−1,n−1).

Since (r − Re tn−2,n−2)(r − Re tn−1,n−1) > 0, the above inequality implies that 1� |tn−2,n−2| ·
|tn−1,n−1|. This contradicts the fact that |tii| > 1 for all i = 1, . . . , n. Therefore, we conclude that xn is

nonzero as asserted. �
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We are now ready for the

Proof of Theorem 2.5. (1) Since eiθB is also in S−1
n for all θ ∈ R, we may assume that θ = 0 and B

is represented as in Theorem 2.4. Let r be the maximal eigenvalue of Re B and K = ker(rIn − Re B). If
dim K � 2, then there exists a nonzero vector x ∈ K such that the nth entry of x is zero. This contradicts

to Lemma 2.6. Hence dim K = 1 and r is a simple eigenvalue of the hermitian matrix Re B.

(2) On the contrary, suppose that W(B|M) ∩ ∂W(B) is nonempty, say, λ ∈ W(B|M) ∩ ∂W(B).
Through a rotation, we may assume without loss of generality that

Re λ = max ReW(B) = max ReW(B|M) = max σ(Re (B|M)).

We can choose a suitable orthonormal basis such that B is represented as in Theorem 2.4 and B|M is

unitary equivalent to the k-by-k principal submatrix Bk of B, where k = dimM < n. Let y ∈ Ck be a

unit eigenvector of Re Bk corresponding to the maximal eigenvalue Re λ, and x =
[

y−→
0

]
∈ Cn. Then

‖x‖ = 1 and

Re λ = 〈(Re Bk)y, y〉 = 〈(Re B)x, x〉 = Re 〈Bx, x〉 � Re λ.

It follows that 〈(Re B)x, x〉 = Re λ = max ReW(B), consequently, x is an eigenvector of Re B corre-

sponding to themaximaleigenvalueRe λ. This contradicts theassertionof Lemma2.6.HenceW(B|M) ∩
∂W(B) = ∅.

(3) The proof is completed by showing that the spaceM = span{x, Bx, . . . , Bn−1x} is equal to Cn. If

M � Cn, then M is a proper invariant subspace for B, and 〈(B|M)x, x〉 = 〈Bx, x〉 ∈ W(B|M) ∩ ∂W(B),
contrary to (2). HenceM = Cn as asserted.

(4) Assume that [a, b] is a line segment in ∂W(B). Through a rotation, wemay assumewithout loss

of generality that Re a = Re b = max ReW(B) = max σ(Re B). Then there exist unit vectors x and y

such that 〈Bx, x〉 = a and 〈By, y〉 = b. Since a /= b, x and y are linearly independent. Moreover, x and y

are eigenvectors of Re B corresponding to the maximal eigenvalue. This leads to a contradiction since

the maximal eigenvalue of Re B is simple. We conclude that ∂W(B) contains no line segment.

(5) Through a rotation, we may assume without loss of generality that Re λ = max ReW(B) =
max σ(Re B). Then (5) is an easy consequence of (1), because the set {y ∈ Cn : 〈By, y〉 = λ‖y‖2} is

equal to the eigenspace of Re B corresponding to the maximal eigenvalue Re λ.
(6) Assume that B is reducible, that is, B is unitarily equivalent to a direct sum B1 ⊕ B2. From (2)

we have W(B1) ∩ ∂W(B) = ∅ and W(B2) ∩ ∂W(B) = ∅. By (4), the boundary of W(B) consists of

extreme points of W(B), hence that conv(W(B1) ∪ W(B2)) � W(B), a contradiction. We conclude

that B is irreducible.

(7) The differentiability of ∂W(B) follows easily from (6) since any nondifferentiable point λ of

∂W(B) is a reducing eigenvalue of A (i.e., By = λy and B∗y = λ̄y for some nonzero vector y) (cf. [10,

Theorems 1.6.3 and 1.6.6]).

(8) After translation, we may assume that B is an n-by-n non-Hermitian matrix such that the nu-

merical rangeW(B) contains 0 as an interior point. Under this assumption, the connected component

� of

{(x, y) ∈ R2 : pB(x, y, z) /= 0}
containing (0, 0) is a bounded convex set. From (1) and (7), we infer that the boundary of the compact

convex set � has no sharp point and lies on the real part of an irreducible component q(x, y, z) = 0

of the curve pB(x, y, z) = 0 with deg(q) � 2. That is, ∂W(B) lies on the real part of the dual curve of

q(x, y, z) = 0. This completes the proof. �

It is known that an Sn-matrix is determined by its numerical range, namely, matrices A1 and A2 in

Sn are unitarily equivalent if and only ifW(A1) = W(A2) (cf. [4, Theorem 3.2]). We have an analogous

result for S−1
n -matrices.
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Theorem 2.7. The following statements are equivalent for matrices B1 ∈ S−1
m and B2 ∈ S−1

n :

(1) n = m and B1 is unitarily equivalent to B2;
(2) W(B1) = W(B2);
(3) pB1(x, y, z) = pB2(x, y, z), where pB1(x, y, z) = det(xRe B1 + yIm B1 + zIm) and pB2(x, y, z)= det(xRe B2 + yIm B2 + zIn);
(4) σ (B1) = σ(B2) (counting multiplicities).

Note that pBj andW(Bj) are related by a result of Kippenhahn [11]: the numerical range of an n-by-n

matrix T equals the convex hull of the real points (u/w, v/w) of the dual {[u, v,w] ∈ CP2 : ux + vy +
wz = 0 is a tangent line of pT (x, y, z) = 0} of the curve pT (x, y, z) = 0 in the complex projective plane

CP2, where pT is the degree-n homogeneous polynomial in x, y and z given by

pT (x, y, z) = det(xRe T + yIm T + zIn).

Let us recall some other known properties of curves in the complex projective plane CP2. Let

p(x, y, z) be a degree-n homogeneous polynomial and Γ be the dual curve of p(x, y, z) = 0. If ax +
by + z is not a factor of p, Bézout’s theorem [12, Theorem 3.1] implies that the intersection of the

curve p = 0 and the line ax + by + z = 0 consists of exactly n points (counting multiplicities). By

duality, there are exactly n tangent lines of Γ passing through the point (a, b) for any point (a, b) /∈ Γ

(counting multiple lines). Among other things, a point λ = a + ib, a, b real, is called a real focus of Γ

if p(1,±i,−(a ± ib)) = 0 is satisfied. Consequently, the eigenvalues of an n-by-nmatrix T are exactly

the real foci of the dual curve of pT = 0 (cf. [11, Theorem 11]).

To prove the preceding theorem, we need the following lemmas.

Lemma 2.8. Let T be an n-by-n matrix and q(x, y, z) be a factor of pT (x, y, z). If Γ is the dual curve of

q(x, y, z) = 0, then the real foci of Γ are in the convex hull of the real points of Γ .

Proof. Let d be the degree of the homogeneous polynomial q(x, y, z). If λ is a real focus of Γ , then

q(1, i,−λ) = 0, that is, the curve Γ has the complex tangent line x + iy − λ = 0 through the focus

λ. Therefore, it is impossible that there are d real tangent lines of Γ passing through the focus λ. We

complete the proof by showing that if z0 ∈ C is not in the convex hull of the real points of Γ , then

there are d real tangent lines of Γ passing through the point z0. Indeed, for each θ ∈ R, the equation

pT (cos θ , sin θ ,−z) = det(Re(e−iθT) − zIn) = 0 has n real roots. Thus q(cos θ , sin θ ,−z) = 0 has d

real roots. Let λ1(θ) � λ2(θ) � · · · � λd(θ) be the roots of the equation q(cos θ , sin θ ,−z) = 0. Then

λj(θ) is continuous in θ for each j = 1, 2, . . . , d, because q is a polynomial. Moreover, the convex hull

of the real points of Γ is equal to the intersection⋂
θ∈[0,2π)

{z ∈ C : Re(e−iθ z) � λ1(θ)}.

Since z0 is not in the convex hull of the real points of Γ , then Re(e−iθ0z0) > λ1(θ0) for some θ0. By
symmetry, we also have

Re(e−i(π+θ0)z0) = −Re(e−iθ0z0) < −λ1(θ) = λd(π + θ0).

For each j = 1, 2, . . . , d, let fj(θ) = Re(e−iθ z0) − λj(θ) for θ ∈ R, then

fj(θ0) � Re(e−iθ0z0) − λ1(θ0) > 0

and

fj(π + θ0) � Re(e−i(π+θ0)z0) − λd(π + θ0) < 0.

Since fj is continuous on R, by the Intermediate Value Theorem, there exists a θj ∈ (θ0,π + θ0) such

that fj(θj) = 0 or Re(e−iθj z0) = λj(θj). This implies that q(cos θj , sin θj ,−Re(e−iθj z0)) = 0, that is,

Γ has the real tangent lines (cos θj)x + (sin θj)y − Re(e−iθj z0) = 0 for j = 1, 2, . . . , d. On the other
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hand, it is easily seen that the point z0 lies on these d real tangent lines, because (cos θj)Re z0 +
(sin θj)Im z0 − Re(e−iθj z0) = 0 for all j = 1, 2, . . . , d. This completes the proof. �

Remark. Let p(x, y, z) be a real homogeneous polynomial of degree n. Recall that p(x, y, z) is hyperbolic
with respect to (0, 0, 1) if any line containing (0, 0, 1) has n real points of intersection with the curve

p = 0 (countingmultiplicities). That is, the equation p(cos θ , sin θ , z) = 0hasn real roots for all θ ∈ R.

In [1], it is proved that a factor q(x, y, z) of a form p(x, y, z) hyperbolic with respect to (0, 0, 1) is also

hyperbolic with respect to (0, 0, 1). On the other hand, pT (x, y, z) is hyperbolic with respect to (0, 0, 1)
for any n-by-nmatrix T . Notice that the essential part of the proof of Lemma 2.8 is independent of the

matrix T . The proof essentially only depend on the hyperbolicity of q. Therefore, the core of Lemma 2.8

is formulated in the following.

Lemma 2.8′. Let q(x, y, z) be a real form hyperbolic with respect to (0, 0, 1). If Γ is the dual curve of

q(x, y, z) = 0, then the real foci of Γ are in the convex hull of the real points of Γ .

In [3], Fiedler gave a conjecture: if p(x, y, z) is a real homogeneous polynomial of degree nwhich is

hyperbolic with respect to (0, 0, 1), then there exist Hermitian matrices H1 and H2 such that

p(x, y, z) = det(xH1 + yH2 + zIn).

We remark that if Fiedler’s conjecture is true, then Lemma2.8’ follows easily fromKippenhahn’s result.

Indeed, by Fiedler’s conjecture, we may assume that

q(x, y, z) = det(xK1 + yK2 + zId)

for some Hermitianmatrices K1, K2. Then Kippenhahn’s theorems (cf. [11, Theorems 10 and 11]) imply

that

λ ∈ σ(K1 + iK2) ⊆ W(K1 + iK2) = conv(Γre)

for all real foci λ of Γ . However, the proof of Lemma 2.8 is independent of the validity of Fiedler’s

conjecture for q.

Lemma 2.9. Let B be an S−1
n -matrix and λ1(θ) � λ2(θ) � · · · � λn(θ) be the eigenvalues of Re(e−iθB)

for θ ∈ R.

(1) |λ2(θ)| � 1 for all θ ∈ R.
(2) The homogeneous polynomial pB(x, y, z) is irreducible.

Proof. (1) Let K = ker(In − B∗B), then dim K = n − dB = n − 1 since B is an S−1
n -matrix. Let B′ =

PKB|K the compression of B on K , where PK is the (orthogonal) projection from Cn onto K . For any

vector x ∈ K ,

‖(PKB|K)x‖2 � ‖Bx‖2 = 〈Bx, Bx〉 = 〈B∗Bx, x〉 = 〈x, x〉 = ‖x‖2,

showing that B′ is a contraction. Consequently, W(B′) ⊆ D. Let ρ(θ) be the maximal eigenvalue of

Re(e−iθB′) forθ ∈ R, it follows that |ρ(θ)| � 1 for allθ . SinceB′ is an (n − 1)-dimensional compression

of B, by the interlacing inequality [2, Corollary III.1.5], we have

1� ρ(θ) � λ2(θ) � λn−1(θ) = −λ2(θ + π) � −ρ(θ + π) � −1.

Thus |λ2(θ)| � 1 for all θ ∈ R as asserted.

(2) Assume that pB(x, y, z) = ∏m
j=1pj(x, y, z), where the pj ’s are irreducible homogeneous polyno-

mials in x, y and zwith real coefficients. By Theorem 2.5 (8), wemay assume, for convenience, that the

boundary ofW(B) is generated by p1(x, y, z) = 0, that is, p1(cos θ , sin θ ,−λ1(θ)) = 0 for all θ , and let

q = ∏m
j=2pj . For each θ ∈ R, γ (θ) denotes the maximal root of the equation q(cos θ , sin θ ,−z) = 0,

note that γ (θ) is also a root of the equation pB(cos θ , sin θ ,−z) = 0, thus γ (θ) � λ2(θ) � 1 by (1). On

the other hand, if Γ is the dual curve of q(x, y, z) = 0, then the convex hull of the real points of Γ is

equal to the intersection
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⋂
θ∈[0,2π)

{z ∈ C : Re(e−iθ z) � γ (θ)}

and contained in the closed unit disc. Moreover, Lemma 2.8 follows that all real foci of Γ are in the

closed unit disc, which means that B has some eigenvalue with modulus less than or equal to one,

since the real foci of Γ are also the eigenvalues of B. But B is an S−1
n -matrix, that is, every eigenvalue

of B has modulus greater than one, we reach a contradiction. This proves the irreducibility of pB. �

We are now ready for the

Proof of Theorem 2.7. The implication (4)⇒ (1) is an easy consequence of Theorem 2.4. The implica-

tion (2)⇒ (3) follows from Lemma 2.9 (2) and [9, Corollary 2.4]. Since (1)⇒ (2) is trivial, to complete

the proof we need only show (3) ⇒ (4). If (3) holds, then m = degree of pB1 = degreeof pB2 = n

and det(B1 + zIn) = det(Re B1 + iIm B1 + zIn) = pB1(1, i, z) = pB2(1, i, z) = det(B2 + zIn) for all z,

which implies that B1 and B2 have the same eigenvalues (counting multiplicities). This completes the

proof. �

We now restrict our attention to the numerical ranges of reducible companion matrices. Let C be

an n-by-n reducible companion matrix with r(C) > 1, then C is unitarily equivalent to A ⊕ B, where

A ∈ Sk and B ∈ S
−1
n−k with r(B) > 1, 1� k � n − 1. It is clear that W(C) = conv(W(A) ∪ W(B)). But

r(B) > 1 and W(A) is contained in the closed unit disc, it is impossible for W(A) to contain W(B).
Therefore, the boundary of the numerical range of C must contain part of ∂W(B) which lies outside

the closed unit disc. Now, we first show that a reducible companion matrix is completely determined

by its numerical range.

Theorem 2.10. Let C1 and C2 be n-by-n reducible companion matrices. ThenW(C1) = W(C2) if and only

if C1 = C2.

Proof. Assume thatW(C1) = W(C2), thenC1 andC2 have somecommoneigenvalues from [9, Proposi-

tion2.3]. IfC1 orC2 is unitary, fromProposition1.1,W(C1) = W(C2) is a regularn-sidedpolygon,which

implies σ(C1) = σ(C2) or C1 = C2 as asserted. Therefore, we may assume that C1 and C2 are nonuni-

tary. By Corollary 2.3, wemay assume that Cj is unitarily equivalent to Aj ⊕ Bj , where Aj ∈ Skj and Bj ∈
S
−1
n−kj

, 1� kj � n − 1, for j = 1, 2. Since conv(W(A1) ∪ W(B1)) = W(C1) = W(C2) = conv(W(A2) ∪
W(B2)) and W(Aj) � W(Bj) for j = 1, 2, we deduce that ∂W(B1) ∩ ∂W(B2) contains some common

arc. By Theorem2.5 (8) andBézout’s theorem (cf. [12, Theorem3.1]), thehomogeneouspolynomials pB1
and pB2 have a common factor. The irreducibility of pBj (cf. Lemma 2.9 (2)) implies that pB1 = pB2 . From

Theorem 2.7, we have n − k1 = n − k2 and σ(B1) = σ(B2), hence σ(A1) = σ(A2) by Proposition 1.1,

which shows that σ(C1) = σ(C2) or C1 = C2, completing the proof. �

Next, we give some equivalent conditions forW(C) = W(B). Recall that the numerical radius of an

n-by-nmatrix T is w(T) = max{|z| : z ∈ W(T)}.
Theorem 2.11. Let C be an n-by-n reducible companion matrix which is unitarily equivalent to A ⊕ B,

where A ∈ Mk and B ∈ Mn−k with r(B) > 1, 1� k � n − 1. Then the following are equivalent:
(1) W(C) = W(B);
(2) W(A) ⊆ W(B);
(3) W(Jn−1) ⊆ W(B);
(4) W(A) ⊆ W(Jn−1);
(5) w(A) � cos(π/n).
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Proof. The implications (1) ⇔ (2), (4) ⇔ (5) and (1) ⇒ (3) are trivial. We need only prove (3) ⇒
(4) and (4) ⇒ (1).

We now check (4) ⇒ (1). Assume thatW(A) ⊆ W(Jn−1), then

W(C) = conv(W(A) ∪ W(B)) ⊆ conv(W(Jn−1) ∪ W(B)) ⊆ W(C).

It follows thatW(C) = conv(W(Jn−1) ∪ W(B)). IfW(Jn−1)�W(B), then ∂W(Jn−1) ∩ ∂W(C) contains
a common arc. SinceW(Jn−1) is a circular disc, [8, Theorem] implies that 0 ∈ σ(C), contradicting the

invertibility of C (cf. Proposition 1.1). Therefore, we conclude that W(Jn−1) ⊆ W(B) and W(C) =
conv(W(Jn−1) ∪ W(B)) = W(B) as asserted.

Finally, we prove (3) ⇒ (4). For every θ ∈ R, let

λA(θ) = max σ(Re(eiθA))

and

λB(θ) = max σ(Re(eiθB)).

If (3) holds, we have

λB(θ) � cos
π

n
for all θ ∈ R.

On the contrary, suppose that W(A) �W(Jn−1), then there exists a real θ0 such that λA(θ0)
> cos(π/n). By the continuity of λA(θ) (cf. [2, Corollary III.2.6]), there is an ε > 0 such that

λA(θ) > cos
π

n
for all θ ∈ (θ0 − ε, θ0 + ε).

Note that λA(θ) and λB(θ) are eigenvalues of Re(eiθC) for each θ ∈ (θ0 − ε, θ0 + ε) and Re(eiθ Jn−1)

is an (n − 1)-dimensional compression of Re(eiθC), by the interlacing inequality [2, Corollary III.1.5],

we deduce that λB(θ) = cos(π/n) for all θ ∈ (θ0 − ε, θ0 + ε), that is, ∂W(B) ∩ ∂W(Jn−1) contains a
common arc. It forces that 0 ∈ σ(B) by [8, Theorem]. This contradicts the fact that B is invertible (cf.

Proposition 1.1). Hence we conclude that W(A) ⊆ W(Jn−1) as asserted. �

We end this paper by giving a test for a reducible companion matrix C to determine whenW(C) is
an elliptic disc.

Theorem 2.12. Let C be an n-by-n reducible companion matrix. Then W(C) is an elliptical disc if and only

if C is unitarily equivalent to A ⊕ B, where A ∈ Mn−2, B ∈ M2 with σ(B) = {aω1, aω2}, ωn
1 = ωn

2 =
1, ω1 /= ω2, and

|a| �
|ω1 + ω2| +

√
|ω1 + ω2|2 + 4(1 + 2 cos(π/n))

2
. (10)

Proof. Assume that W(C) is an elliptic disc, obviously, C is not unitary. Thus C is unitarily equivalent

to A ⊕ B, where A ∈ Mn−k , B ∈ Mk and 1� k � n − 1. Since ∂W(C) ∩ ∂W(B) contains a common arc

and ∂W(B) is an algebraic curve (cf. Theorem 2.5 (8)), Bézout’s theorem implies that pB has a quadratic

factor. By the irreducibility of pB (cf. Lemma 2.9 (2)), B must be a 2-by-2 matrix and W(B) = W(C).
FromProposition1.1,wemayassumethatσ(B) = {aω1, aω2},whereωn

1 = ωn
2 = 1andω1 /= ω2, then

W(B) is the elliptic disc having foci at aω1, aω2 and minor axis of length |a|2 − 1 from Theorem 2.4.

By Theorem 2.11, we haveW(Jn−1) ⊆ W(B). Since |aω1| = |aω2|, thenW(Jn−1) ⊆ W(B) if and only if

cos
π

n
+

∣∣∣∣aω1 + aω2

2

∣∣∣∣ �
|a|2 − 1

2
.

Moreover, a direct computation shows that the above inequality is equivalent to (10). This proves our

assertion.

Conversely, by our assumption, we have |a| > 1, consequently, B ∈ S
−1
2 by Corollary 2.3, andW(B)

is the elliptic disc having foci at aω1, aω2 and minor axis of length |a|2 − 1 from Theorem 2.4. As was
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proved above, the inequality (10) implies thatW(Jn−1) ⊆ W(B). Our assertion follows from Theorem

2.11. We complete the proof. �
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