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Abstract

This paper presents a comparison between deterministic and stochastically based three-dimensional finite-strain damage
models for fibrous biological soft tissues, accounting for separate contributions on damage for the matrix and the fibers.
Both models are compared in terms of their numerical performance and qualitative predictions under different loading
conditions. Continuum damage mechanics is used to describe the softening behavior of soft tissues under large deforma-
tion, making use of the concept of internal variables which provides a very general description of materials involving irre-
versible effects. In the stochastic model, statistical aspects related to the distribution of fiber length lead to the strain-driven
damage model for the fibrous part. Simulations of a uniaxial test, a hollowed plate under biaxial displacement control, and
a 3D simulation of a coronary artery undergoing balloon angioplasty are used to compare the performance of both
models. Numerical simulations indicate that both models provide similar predictions of damage.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Accurate constitutive models of soft biological tissue coupled with appropriate numerical approaches can
potentially aid for the study of pathologies (i.e., atherosclerosis, heart dysfunction) as well as for the simula-
tion of surgical interventions or accident trauma. This has promoted extensive research in this area in the last
few years (Fung, 1993; Humphrey, 2002; Holzapfel and Ogden, 2006). When modeling the mechanical behav-
ior of soft tissue, particular difficulties arise. Several soft biological tissues are subjected to large deformations
with negligible volume changes and show an anisotropic mechanical response due to their internal structure.
Uniaxial tensile tests (Fung, 1993) and biaxial inflation test (Holzapfel and Weizsäcker, 1998) conducted in
soft tissues show an initial low stiffness toe region part with approximately constant stiffness, a second region
of increasing stiffness, and a third region corresponding to progressive failure of the composing fibers. On the
other hand, the complex structure and composition of these materials also causes a large variability in the
0020-7683/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.
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mechanical properties (Sacks, 2000), a characteristic that can lead to wrong estimated values for the param-
eters in the constitutive equations as pointed out by Chew et al. (1986) and Sacks (2003).

Usually, the description of the constitutive behavior of this type of material relies on the identification of
an appropriate strain–energy density function from which stress–strain relations and local elasticity tensors
can be derived (Holzapfel, 2000). Even though different strain–energy functions have proved to be successful
for particular applications and for describing many of the material properties, their use is limited, in most
cases, to the range of physiological loads. In fact, most finite element applications have been limited to ana-
lyzing the mechanical response of soft tissue into the toe and linear regions (under normal physiological
loads), as, for example, Weiss et al. (1996), Pioletti and Rakotomanana (2000), Peña et al. (2005) for liga-
ments, Billiar and Sacks (2000) for heart valves, Farquhar et al. (1990) for cartilage, and Alastrué et al.
(2006) for the cornea.

On the other hand, the large variability in structure and composition exhibited by biological soft tissue
makes it necessary to include, to some extent, this information in the definition of the strain–energy function
(SEF). In this regard, Lanir (1983) developed a stochastic structural constitutive model in which the orienta-
tion of the fibers was modeled using a statistical distribution, whose parameters were estimated numerically by
fitting mechanical tests data. Decraemer et al. (1980) and Wuyts et al. (1995) proposed a constitutive model
accounting for the composition of the tissue, and assuming collagen fibers to be corrugated in a wavy pattern,
with an initial unfolded length following a probability distribution. In this model each collagen fiber obeyed
Hooke’s law. The model fitted well inflation tests of normal and atherosclerotic human aorta. Another model
which accounts for the composition of the tissue and the waviness of the collagen fibers has been recently pro-
posed by Zulliger et al. (2004). They use a log-logistic probability density function with distribution param-
eters estimated numerically as in the case of Lanir and Decraemer. More recently, Gasser et al. (2006)
proposed a constitutive model where the structural tensor is found from the mean fiber orientation of the tis-
sue, accounting also for fiber dispersion. However, these models only considered the elastic response of the
tissue.

Only few models have been proposed for describing the mechanical behavior of soft biological tissue with
damage. Non-physiological loads drive soft tissue to damage that arises from two possible mechanisms. One
would be tear or plastic deformation of fibers. Tear of fibers is consistent with Hurschler’s micromechanical
model for ligament behavior that includes fiber failure (Hurschler et al., 1997). Similarly, we found the
model of Arnoux et al. (2002) and Schechtman and Bader (2002) for ligaments and tendons, or the work
of Hokanson and Yazdami (1997) for damaging arteries. However, structural damage models that consider
separated contributions on damage from the matrix and fibers are not common. Gasser and Holzapfel
(2002) proposed a rate-independent multisurface elastoplastic constitutive model for soft tissue which intro-
duced inelastic deformation of the collagenous component of the tissue. Balzani et al. (2006) proposed a
discontinuous damage model for arteries in which damage of the fibers is treated following classical contin-
uous damage theory. This model is similar to the one proposed by Calvo et al. (2006) in which uncoupled
anisotropy damage models with separate contributions for the matrix and the fibers is also proposed. Rod-
rı́guez et al. (2006) developed a constitutive model which accounts for different damage processes for matrix
and fibers. Damage of the fibrous part is incorporated through the statistical distribution of the deformation
at the fully extended length of collagen fiber bundles. This implies that model calibration requires working
at two scale levels, so the numerical fit is laborious and the computational cost in finite element simulations
is expensive.

In this paper, we present a comparison between the two models proposed by Calvo et al. (2006) and Rod-
rı́guez et al. (2006). Both models are summarized and the basic expressions for the finite element implemen-
tation are derived. The models are tested on displacement-controlled and load-controlled examples and their
performance in terms of qualitative results is carried out. The remaining of the paper is organized as follows.
Section 2 gives a brief review on the constitutive equations for anisotropic hyperelastic materials. Section 3
describes damage models for biological soft tissues. Section 4 gives expressions for the decoupled elasticity ten-
sor for both models, and Section 5 shows some numerical examples of the application of both damage models
previously described. Numerical simulations correspond to a tensile test and a hollowed plate under displace-
ment control, and the simulation of a balloon angioplasty of a coronary artery (a load control case). Section 6
closes with some concluding remarks.
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2. Constitutive modeling of hyperelastic fibrous materials

Fibrous soft tissues such as ligaments, cardiac muscle, arteries, and veins are materials composed primarily
of connective tissue proteins, elastin and collagen, and smooth cells. These dense connective tissue consist
mainly of fibrous elastic tissue grouped in one or several families, embedded in a highly compliant solid matrix
(ground substance) (Fung, 1993). It is the presence of these elastic fibers along preferred directions which give
the typical anisotropic behavior to these material, with the solid matrix being responsible for their incompress-
ible response. This section reviews basic concepts in finite deformation continuum mechanics and constitutive
behavior of fibrous materials.

Let X0 be a continuum body defined as a set of points in a certain assumed reference configuration. It will
be also assumed that there exists a one-to-one mapping fv : X0 ! R3g continuously differentiable (as well as
its inverse v�1) which puts into correspondence X0 with some region X, the deformed configuration, in the
Euclidean space. This one-to-one mapping v transforms a material point X 2 X0 to a position x = v(X) 2 X
in the deformed configuration. The direction of a fiber at a point X 2 X0 is defined by a unit vector field
m0(X), jm0j = 1. It is usually assumed that, under deformation, the fiber moves with the material points of
the continuum body. Therefore, the stretch k of the fiber defined as the ratio between its lengths at the
deformed and reference configurations can be expressed as (see, e.g., Holzapfel, 2000)
kmðx; tÞ ¼ FðX; tÞ �m0ðXÞ; ð1Þ
where m is the unit vector of the fiber in the deformed configuration with
k2 ¼ m0 � FT F �m0 ¼ m0 � C �m0: ð2Þ
An analogous procedure follows for other families of fibers defined within the tissue. We shall denote as n0(X)
a second preferred fiber direction.

In (1), (2) F = ov/oX and C = FTF are the standard deformation gradient and the corresponding right
Cauchy–Green tensor, respectively. A multiplicative decomposition of F into volume-changing (dilational)

and volume-preserving (distortional) parts is usually established, as e.g. in Flory (1961), Ogden (1978)
F ¼ J
1
3 �F; C ¼ J

2
3 �C: ð3Þ
For isothermal and reversible processes, we postulate the existence of a unique decoupled representation of the
strain–energy function (SEF) W (Simo and Taylor, 1985). Because of the directional dependence on the mate-
rial behavior, we require that the function W depends on both the right Cauchy–Green tensor C and the fiber
directions m0 and n0 in the reference configuration. Since W has to be independent of the sign of m0 and n0, W
must be an even function of these vector fields and so it may be expressed by W = W(C,M,N) where
M = m0 � m0 and N = n0 � n0 are structural tensors (e.g. Weiss et al., 1996). Based on the kinematic descrip-
tion (3), the free energy function for isochoric processes can be written in the decoupled form as
WðC;M;NÞ ¼ WvolðJÞ þ �Wð�C;M;NÞ; ð4Þ
where Wvol(J) and �Wð�C;M;NÞ are purely volumetric and isochoric contributions to the material response,
respectively (Holzapfel, 2000). In terms of the strain invariants, Spencer (1954), W can be written as
W ¼ WvolðJÞ þ �Wð�I1ð�CÞ;�I2ð�CÞ;�I4ð�C;m0Þ;�I5ð�C;m0Þ;�I6ð�C; n0Þ;�I7ð�C; n0Þ;�I8ð�C;m0; n0Þ;�I9ðm0; n0ÞÞ; ð5Þ
with �I1 and �I2 the first two modified strain invariants of �C (note that I3 = J and �I3 ¼ 1). Finally, the pseudo-
invariants �I4, . . . ,�I9 characterize the constitutive response of the fibers (Spencer, 1954):
�I4 ¼�C : M; �I5 ¼ �C2 : M; ð6Þ
�I6 ¼�C : N; �I7 ¼ �C2 : N;

�I8 ¼ðm0 � n0Þm0 � �Cn0; �I9 ¼ ðm0 � n0Þ2:
While the invariants �I4 and �I6 are directly identified as the square of the stretch in the fiber directions, the influ-
ence of �I5, �I7 and �I8 is difficult to evaluate due to the high correlation among them. For this reason and the
lack of sufficient experimental data, it is common to neglect the effect of these invariants in the definition of W
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(Weiss et al., 1996; Holzapfel et al., 2000). Finally, �I9 does not depend of the deformation and, therefore, is not
relevant to the constitutive behavior.

Once defined the SEF, the constitutive equation for compressible hyperelastic materials in the standard
form is given by
S ¼ 2
oWðC;M;NÞ

oC
¼ Svol þ �S; ð7Þ
where the second Piola–Kirchhoff stress S consists of a purely volumetric contribution, Svol, and a purely iso-
choric one, �S. The associated decoupled elasticity tensor may be written as
C ¼ Cvol þ �C ¼ 2
oSvol

oC
þ 2

o�S

oC
: ð8Þ
The Cauchy stress tensor r and the spatial description of the elasticity tensor, C, are given by the weighted
push-forward of S and C, respectively (Marsden and Hughes, 1994; Holzapfel, 2000)
r ¼ J�1v�ðSÞ; C ¼ J�1v�ðCÞ: ð9Þ

For a more detailed derivation of the material and spatial elasticity tensors for compressible or incompressible
fibrous hyperelastic materials, and their explicit expressions, see e.g. Weiss et al. (1996) or Holzapfel (2000).

The section that follows presents three-dimensional, rate-independent finite strain damage models to
describe the loss in the mechanical stiffness in soft tissues for strains beyond the physiological range. The mod-
els are formulated within the framework of non-linear continuum damage mechanics and use the concept of
internal variables (Simo and Ju, 1987a,b). Both models are phenomenological, though structural, and describe
the macroscopic constitutive behavior for stresses assuming separated contributions of the matrix and the
fibers. Therefore, the SEF will be assumed to be of the form
WðC;M;NÞ ¼ WvolðJÞ þ �Wmð�CÞ þ �Wf ð�C;M;NÞ: ð10Þ
3. Damage models for biological soft tissue components

In this section two damage models for the fibrous part of the tissue are described: (i) a continuous damage
model, and (ii) a stochastic damage model. The continuous damage model has been recently proposed by
Calvo et al. (2006) in which damage in the fibers is described following the same model proposed for the
ground material. In contrast, the stochastic model recently proposed in Rodrı́guez et al. (2006) assumes elastic
fibers to behave following a worm-like chain model with a statistical distribution of the fiber length. In this
model, individual fiber failure occurs whenever the fiber stretch reaches a threshold value dependent on the
fiber length.

3.1. Continuum damage model

In the continuum damage model the free energy for the fibers is assumed to be of the forms
�Wf ð�C;M;NÞ ¼ �Wf
Mð�C;MÞ þ �Wf

N ð�C;NÞ
¼ ð1� DM

f Þ �W
f
0ð�C;MÞ þ ð1� DN

f Þ �W
f
0ð�C;NÞ; ð11Þ
where �Wf
0 denotes the isochoric effective strain–energy function of the undamaged fibers. The internal variables

DN
f ;D

M
f 2 ½0; 1� are referred to as the damage variables for the fibers. In what follows we will focus the devel-

opment in one family of fibers, since results are identical for the other family.
The time rate of change of (11) is found to be, after using the chain rule,
_�Wf
M ¼ ð1� DM

f Þ
o �Wf

0ð�C;MÞ
o�C

: _�C� �Wf
0ð�C;MÞ _DM

f : ð12Þ
Particularization of the Clausius–Planck inequality leads to the non-negative internal dissipation Dint (Neto
et al., 1998)
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DfM
int ¼ �SfM � J�

2
3P : ð1� DM

f Þ2
o �Wf

0ð�C;MÞ
o�C

" #
:

_�C

2
þ �Wf

0
_DM

f P 0; ð13Þ
where P ¼ I� 1
3

�C�1 � �C�1 is the fourth-order projection tensor.
Using standard arguments in continuum constitutive mechanics, the isochoric second Piola–Kirchhoff

stress �SfM may be written as
�SfM ¼ ð1� DM
f Þ�S

fM
0 ð14Þ
with
�SfM
0 ¼ 2J�

2
3P :

o �Wf
0ð�C;MÞ
o�C

; ð15Þ
and from the same arguments
DfM
int ¼ f M

f
_DM

f P 0; ð16Þ
with
f M
f ¼ �Wf

0ð�C;MÞP 0: ð17Þ
Inequality (16) clearly shows that damage is a dissipative process. The quantity f M
f denotes the thermody-

namic driving force which governs the damage evolution of the family of fibers defined by the structural tensor
M, and has the meaning of the effective strain energy, �Wf

0ðC;MÞ, of the corresponding family. f M
f is conjugate

of the internal variable DM
f

f M
f ¼ �Wf

0ð�C;MÞ ¼ �
o �Wf

M

oDM
f

: ð18Þ
3.1.1. Evolution of damage
The evolution of the damage parameter DM

f is characterized by an irreversible equation as given by (16).
Following Simo (1987), let
NfM
s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 �WfM

0 ð�CðsÞ;MÞ
q

; ð19Þ
where �CðsÞ is the modified right Cauchy–Green tensor at time s. Now, let NfM
t be the maximum value of NfM

s

over the past history up to current time t, that is
NfM
t ¼ max

s2ð�1;tÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 �WfM

0 ð�CðsÞ;MÞ
q

: ð20Þ
The feasible strain space for the fibers is defined as the condition that, at any time t of the loading process, the
following expression is fulfilled (Simo, 1987),
/fMðCðtÞ;NfM
t Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 �WfM

0 ð�CðtÞ;MÞ
q

� NfM
t 6 0: ð21Þ
The equation /fMð�CðtÞ;NfM
t Þ ¼ 0 defines a damage surface in the strain space. Denoting by

T M
f :¼ o/fM=o�C, the normal to the damage surface in that space, the following alternative situations

may occur:
/fM < 0 or /fM ¼ 0 and

TM
f : d�C < 0;

TM
f : d�C ¼ 0;

TM
f : d�C > 0;

8>>>><
>>>>:

ð22Þ
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where d�C is an arbitrary admissible variation of �C. Borrowing a terminology typically found in plasticity
(Simo and Hughes, 1998; Naghdi and Trapp, 1975), we speak of unloading, neutral loading, or loading from
a damage state, respectively. Finally, the evolution of the damage variable DM

f is specified by the irreversible
rate equation
dDM
f

dt
¼

�hM
f ðNfM ;DM

f Þ _NfM if /fM ¼ 0 and TM
f : _�C > 0;

0 otherwise:

8><
>: ð23Þ
Here �hM
f ðNfM ;DM

f Þ is a given function that characterizes damage evolution in the material. If �hM
f ðNfM ;DM

f Þ is
independent of DM

f , the deviatoric part of the second Piola–Kirchoff stress tensor for the matrix may be ex-
pressed in the following form
�SfMðtÞ ¼ �gf ðNfM
t Þ2

o �Wf
0ð�CðtÞ;MÞ

oC
¼ �gf ðNfM

t Þ�S
fM
0 ð�CðtÞ;MÞ; ð24Þ
with �hM
f ðNfMÞ ¼ �d�gf ðNfMÞ=dNfM .

To completely determine the damage model, it still remains to specify the function �gf ðNfMÞ, or equivalently,
the function �hM

f . Such a determination should be made on the basis of available experimental data.

3.2. Stochastic damage model

Histological studies performed in a number of soft tissues (Sacks et al., 1994; Canham et al., 1997; Hsu
et al., 1998; Dingemans et al., 2000) have shown that elastic fibers appear to be wavy and distributed about
preferential directions, Lanir (1983). Thus, as the load is applied, more and more fibers start to bear load.
However, the degree of straightening of each fiber will also depend upon its orientation relative to the loading
and the interstitial matter which might avoid the complete straightening of the fibers as suggested by Samila
and Carter (1981). In their work, they also found that collagen fibers straighten more at large strains, while
elastin lamellae unfolded quickly with initial stretch. The model here presented treats the wavy nature of elas-
tic fibers, as proposed by Rodrı́guez et al. (2006), where they are assumed to behave following a worm-like
chain model (Arruda and Boyce, 1993). The model does not consider any constraint imposed by the interstitial
matter over the deformation of the fibers, keeping the fully uncoupled nature of the original model. In what
follows, the fibrous part is considered to be composed of oriented bundles of fibers which can be grouped in
two families of elastic fibers. Therefore, it is first characterized the mechanical behavior of a bundle, and later,
bundle orientation is incorporated through the definition of the two families of fibers (defined by m0(X) and
n0(X)).

3.2.1. Fiber bundles

Each bundle of fibers is assumed to behave following the eight-chain model proposed by Arruda and Boyce
(1993) and particularized for the case of transversally isotropic materials, i.e.,
�WcollðkÞ ¼ D1 2
r2

0

L2
k2 þ 1

1� r0

L k
� r0

L
k 4

r0

L
þ 1

ð1� r0

L Þ
2
� 1

 !
r0

2L
lnðk2Þ

" #
� �Wr

coll; ð25Þ
with D1 a material constant, L the maximum fiber length, r0 < L a reference fiber length, k the actual fiber
stretch, and
�Wr
coll ¼ 2

r2
0

L2
þ 1

1� r0

L

� r0

L
; ð26Þ
a repository strain–energy that guarantees �Wcollð1Þ ¼ 0. This model considers the maximum fiber length, L, as
a Beta random variable, and assumes the same average orientation for all fibers within the bundle as well as
that fibers do not bear compressive loads. Hence, the SEF for a bundle of fibers is given by
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�Wbundðk; km
t Þ ¼

0; k < 1;R k
1

R j
aðr0k

m
t Þ

rcollðn; xÞfLðxÞdxdn; k P 1;

(
ð27Þ
where aðr0k
m
t Þ is a monotonically increasing function that determines the minimal fiber length within the bun-

dle for which failure has not yet occurred, rcoll � o �Wcoll=ok and fL(x) is a Beta probability density function with
parameters c and g
fLðxÞ ¼
1

j� r0

Cðgþ cÞ
CðgÞCðcÞ

x� r0

j� r0

� �c�1

1� x� r0

j� r0

� �g�1

; x 2 ½r0; j�: ð28Þ
The parameter km
t in (27) corresponds to the maximum fiber stretch attained by the bundle over the past his-

tory up to time t 2 Rþ. Therefore, the damage of the fiber bundle increases whenever kt � km
t P 0, and it is

strain driven. On the other hand, function aðr0k
m
t Þ is taken to be
aðr0k
m
t Þ ¼ exp

r0k
m
t

d

� �h
" #

r0k
m
t ; ð29Þ
where h and d are model parameters. Note that with this form of aðr0k
m
t Þ, the bundle will degrade faster as the

deformation gets larger (i.e., longer fibers will fail at a smaller fraction of their maximum length).
Note that, at the fiber level, this model differs from that proposed by Hurschler et al. (1997) in which the

fiber bundle is assumed to be linearly elastic and wavy with constant rupture energy (e.g., all fibers fail
when they reach a given limit strain). In this model the bundle is an assembly of fibers with a different
strain–energy at fracture. In addition, the fact that the Beta distribution is bounded ensures that the prob-
ability of a fiber bundle failure at 0 strain is 0 as well as for fiber bundles strained above the distribution
limit j.

3.2.2. Oriented fiber bundles

Eq. (27) defines the strain–energy for fiber bundles when stretched along their longitudinal axis. In a general
fibrous soft tissue, for a family of fibers aligned along a preferred direction m0, the fiber stretch at time s, kM

s is
given as
kM
s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M : �CðsÞ

q
�

ffiffiffiffiffiffiffiffiffiffi
�I4ðsÞ

q
; ð30Þ
and the maximum stretch over the past history is according to
kMm
t ¼ max

06s6t
fkM

s g: ð31Þ
The non-increasing damage criterion in the strain space is given by the condition that
uM
f ð�CðtÞ; k

Mm
t Þ :¼ kM

t � kMm
t 6 0; 8t 2 Rþ; ð32Þ
where uM
f ð�CðtÞ; k

Mm
t Þ ¼ 0 defines a damage surface in the strain space with normal TM

f :¼ ouM
f =o

�C �M=ð2kM
t Þ,

and the damaging criterion follows (22). Hence, the anisotropic component of the strain–energy function asso-
ciated with this family of fibers is
�Wf
Mð�I4ðtÞ; kMm

t Þ ¼ �Wbundð
ffiffiffiffiffiffiffiffiffi
�I4ðtÞ

q
; kMm

t Þ: ð33Þ
The second Piola–Kirchhoff stress tensor at time t, �SfMð�CðtÞ; kMm
t Þ, is then
�SfMð�CðtÞ; kMm
t Þ ¼

2J�2=3P :
o �Wf

M ð�I4;k
Mm
t Þ

o�C

� �
; if kM

t P 1;

0; otherwise:

(
ð34Þ
The Cauchy stress tensor is found by the weighted push-forward operation (9) of the previous expression.
Equivalent expressions for the second family of fibers are obtained by replacing �I4 by �I6 :¼ N : �C.
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3.3. Damage model for the matrix

Damage in the matrix is assumed to affect only the isochoric elastic part of the deformation, as proposed by
Simo (1987). Hence, the free-energy function for the matrix can be written as
�Wmð�CÞ ¼ ð1� DmÞ �Wm
0 ð�CÞ; ð35Þ
where �Wm
0 denotes the isochoric effective strain–energy function of the undamaged material, which describes

the elastic response of the matrix. The factor (1 � Dm) is known as the reduction factor (Simo, 1987), where
the internal variable Dm 2 [0,1] is a normalized scalar referred to as the damage variable for the matrix. The
evolution of the damage parameter and subsequent determination of stress tensors are described using the
concepts discussed in Section 3.1.

4. Decoupled representation of the elasticity tensor

An SEF of the form (10) allows for a decoupled representation of the material elasticity tensor as
C ¼ Cvol þ �Cm þ �Cf ; ð36Þ

where Cvol is given by the expression
Cvol ¼ pJðC�1 � C�1 þ 2IC�1Þ; ð37Þ
withðIC�1ÞIJKL ¼ �1=2ðC�1
IK C�1

JL þ C�1
IL C�1

JK Þ and �Cm may be obtained by applying the time derivative to the stress
tensor (24). Making use of the chain rule we have (Holzapfel, 2000)
_�Sm ¼ �Cm :
_C

2
¼

½�gm
�Cm

0 � �g0m�Sm
0 � �Sm

0 � :
_C
2
; if / ¼ 0 and Tm : _C > 0;

�gm
�Cm

0 :
_C
2
; otherwise;

8><
>: ð38Þ
with �g0m ¼ d�gm=dNm ¼ ��hm.
For the contribution of the fibers we must distinguish between the continuum and stochastic models. For

the continuum model, the elasticity tensor has a similar expression as the one for the matrix
_�Sf ¼ �Cf :
_C

2
¼

½�gf
�Cf

0 � �g0f �Sf
0 � �Sf

0 � :
_C
2
; if / ¼ 0 and Tf : _C > 0;

�gf
�Cf

0 :
_C
2
; otherwise;

8><
>: ð39Þ
and �g0f ¼ d�gf=dNf ¼ ��hf .
For the stochastic model, we express �Cf as
�Cf ¼ �CfM þ �CfN ; ð40Þ

with
�CfM ¼ 4
9
J�4=3ð�I4

�W4 þ �I2
4
�W44Þ�C�1 � �C�1

� 4
3
J�4=3ð �W4 þ �I4

�W4ÞðM� �C�1 � 1
3

�C�1 �MÞ
� 4

3
J�4=3�I4

�W4I�C�1 þ 4J�4=3 �W44M�M;

ð41Þ
and
�CfN ¼ 4
9
J�4=3ð�I6

�W6 þ �I2
6
�W66Þ�C�1 � �C�1

� 4
3
J�4=3ð �W6 þ �I6

�W6ÞðN� �C�1 � 1
3

�C�1 �NÞ
� 4

3
J�4=3�I6

�W6I�C�1 þ 4J�4=3 �W66N�N;

ð42Þ
where �W4 ¼ o �Wf=o�I4, �W6 ¼ o �Wf=o�I6, �W44 ¼ o
2 �Wf=o�I2

4, and �W66 ¼ o
2 �Wf=o�I2

6. Expressions for �W4, and �W44 are
given below. Thus,
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�W4ðkM
t ; k

Mm
t Þ ¼

0; if kM
t < 1;

1
2kM

t

R j
aðr0k

Mm
t Þ

rcollðkM
t ; xÞfLðxÞdx; if kM

t P 1;

(
ð43Þ
where aðr0k
Mm
t Þ is given in (29). For the second derivative with respect to �I4, �W44, we have
�W44ðkM
t ; k

Mm
t Þ ¼

WL
44ðk

M
t ; k

Mm
t Þ; if kM

t P kMm
t ;

WU
44ðk

M
t ; k

Mm
t Þ; if kM

t < kMm
t ;

0; otherwise;

8><
>: ð44Þ
where
�WU
44ðk

M
t ; k

Mm
t Þ ¼

1

4ðkM
t Þ

2

Z j

aðr0k
Mm
t Þ

1

kM
t

r0collðk
M
t ; xÞ � rcollðkM

t ; xÞ
" #

fLðxÞdx; ð45Þ
with r0collðk; xÞ ¼ orcollðk; xÞ=ok, and
�WL
44ðk

M
t ; k

M
t Þ ¼ �WU

44ðk
M
t ; k

M
t Þ �

1

4ðkM
t Þ

2
rcollðkM

t ; aðr0k
M
t ÞÞfLðaðr0k

M
t ÞÞ

oaðr0kÞ
ok

jk¼kM
t
: ð46Þ
The spatial description of the elasticity tensor is obtained by the weighted push forward of (36) given by Eq.
(9). Close form expressions for the spatial versions of the elasticity tensor are omitted for simplicity.
5. Examples

The damage models proposed above have been implemented in ABAQUS 6.5-1 through appropriate
UMAT Fortran subroutines.

In all examples, the proposed damage functions for matrix and fibers in the continuum model are given by
�gmðNm
t Þ ¼

1; if Nm
t < wm

min;

1� 1� bm þ bm Nm
t �wm

min

wm
min
�wm

max

� �2
� �

Nm
t �wm

min

wm
min
�wm

max

� �2

; if wm
min 6 Nm

t 6 wm
max;

0; if Nm
t > wm

max;

8>>><
>>>:

ð47Þ

�gf ðNf
t Þ ¼

1; if Nf
t < wf

min;

1� 1� bf þ bf Nf
t �wf

min

wf
min
�wf

max

� �2
" #

Nf
t �wf

min

wf
min
�wf

max

� �2

; if wf
min 6 Nf

t 6 wf
max;

0; if Nf
t > wf

max;

8>>>><
>>>>:

ð48Þ
where wm
min and wf

min are the strain energies at the initial damage for matrix and fibers, respectively, wm
max and

wf
max are the strain energies at maximum damage for matrix and fibers, and bm and bf the exponential param-

eters for matrix and fibers, respectively (Natali et al., 2005; Simo, 1987).
In addition, the volumetric part of the strain–energy function has been treated via a penalty method within

the ABAQUS formulation. The penalty function has been chosen to be Wvol(J) = (1/D)(J � 1)2, with
D = 1E � 5 for all simulations. For the matrix, the deviatoric function (49) has been used in both models.
Expression (50), taken from Holzapfel et al. (2000), has been assumed for each family of fibers in the contin-
uum model
�Wm
0 ¼ C1ð�I1 � 3Þ þ C2ð�I2 � 3Þ; ð49Þ

�Wf
0ð�C;AÞ ¼

C3

2C4

ðexpC4ð�C:A�1Þ2 � 1Þ: ð50Þ
For the stochastic model, fiber damage will be quantified as
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Df ¼ Beta
aðr0k

m
t Þ � r0

j� r0

; c; g

� �
; ð51Þ
where Beta[Æ] is the incomplete Beta function, and r0 = 1.215 for all calculations. Note that this corresponds to
the cumulative probability function of L measured in terms of aðr0k

m
t Þ. In other words, Df = 0.8 says that there

is an 80% probability of having all fibers broken for a bundle stretch km
t .

5.1. Uniaxial test: analytical example

This example considers a single finite element simulation of a uniaxial test along the collagen fiber direction
(only one family of fibers is considered) under displacement control. Material and damage parameters have
been taken to be that of a medium collateral ligament (MCL), and models have been calibrated with exper-
imental results reported in Weiss (1994). Damage parameters have been adjusted to capture the drop in the
stress–stretch curve, while elastic constants have been adjusted to capture the response at small stretch values
and subsequent rapid stiffening. The numerical fit of both models to experimental data in Weiss (1994) is
depicted in Fig. 1. Tables 1 and 2 show the numerical values for the parameters.

Fig. 2 shows the response of both models to cyclic loading. From the figure it can be observed that both
models are able to describe the typical Mullins’ effect. Note, however, that the stiffness loss is not the same
in both models. A slightly larger stiffness loss appears to be associated with the stochastic model, even though
both of them describe the same primary loading path (the one traced if there were no unloading).

Fig. 3 shows the damage functions (48) and (51) for both models. For the stochastic model, damage
occurs continuously from the moment fibers start to bear load, while for the continuum model, damage
occurs when the fiber energy reaches a given threshold (this threshold can be varied by changing the value
of wf

min). On the other hand, the stochastic model assumes that the fiber bundle is composed of an array of
fibers with different strain–energy to failure (the distribution follows the Beta distribution), while for the
continuum model damage does not affect the strain–energy function of the remaining fibers. For the sto-
chastic model, shorter fibers (shorter fibers are also stiffer, see Eq. (25) for larger L) fail first, and there-
fore, the model predicts a fast load bearing capacity lost at large stretch as compared with the continuum
model as shown in Fig. 2.

5.2. Stretching of a thin perforated square plate

This example presents the numerical simulation of a thin perforated plate subjected to biaxial stretching.
The geometry, boundary conditions and mesh are shown in Fig. 4. Due to the symmetry only one quarter
of the plate was considered in the finite element simulation. Two families of fibers defined at ±45� with respect
to the X direction were considered (m0 ¼ f

ffiffiffi
2
p

=2;
ffiffiffi
2
p

=2; 0:0g, n0 ¼ f
ffiffiffi
2
p

=2;�
ffiffiffi
2
p

=2; 0:0g). The thin plate is sub-
Fig. 1. Continuum and stochastic damage models fitted to experimental data.



Table 1
Material and damage parameters for the continuum model in the uniaxial test

C1 (MPa) C2 (MPa) C3 (MPa) C4 (–)
5.05 0.0 46.0 150.2

wm
min (

ffiffiffiffiffiffiffiffiffiffiffi
MPa
p

) wm
max (

ffiffiffiffiffiffiffiffiffiffiffi
MPa
p

) bm wf
min (

ffiffiffiffiffiffiffiffiffiffiffi
MPa
p

) wf
max (

ffiffiffiffiffiffiffiffiffiffiffi
MPa
p

) bf

0.1635 0.2974 20 0.4778 1.3342 0.01

The model has been calibrated with data reported in Weiss (1994).

Table 2
Material parameters for the stochastic model as calibrated with experimental data from Weiss (1994)

C1 (MPa) C2 (MPa) a b D1 (MPa)
5.05 0.0 0.49 5.78 0.011

c g j d h
5.07 1.0 1.308 15.1 1.88

Fig. 2. Model response under cyclic loading: (a) continuum model; (b) stochastic damage model. Strain history for both models is shown
in the insert.

Fig. 3. Evolution of damage for continuum and stochastic models, showing the more gradual evolution for the stochastic model.
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jected to an equi-biaxial displacement control experiment. The aim of this numerical experiment is to test both
models under biaxial load. Material parameters for both damage models are the same as in the previous
example.



Fig. 4. Thin perforated square plate. Geometry, boundary conditions and mesh.
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Figs. 5 and 6 show damage in both families of fibers for the continuum and the stochastic models in the
deformed configuration, respectively. A strong damage localization in both models can be observed, however,
it appears to be more acute in the continuum damage model. No damage is predicted for the continuum model
for the second family of fibers (orientation N2), while the stochastic model already predicts some damage to
occur, even though it is small. This behavior is explained by Fig. 3. While for the stochastic model damage in
the tissue occurs continuously as the fiber stretch increases, for the continuous model, damage occurs after a
given threshold is reached, at which point damage starts to increase monotonically. Damage localization for
continuum and stochastic models occur at the location where maximum fiber stress and stretch are found,
respectively, as shown in Fig. 7.

5.3. Damage in arteries after balloon angioplasty

The widespread use of balloon angioplasty has motivated to study the mechanical behavior of arteries at
pressures beyond the physiological range. In this regard, Gasser and Holzapfel (2002) developed an elasto-
plastic model for biological fibrous tissues and used it to model balloon angioplasty (Holzapfel et al.,
2002). Oktay (1993) carried out pressure–volume and extension experiments on bovine coronary arteries find-
ing a reduction in the stiffness of the material after angioplasty, proving that damage was induced by this
procedure.
Fig. 5. Damage contours for the two family of fibers for the continuum model: (a) elastic fiber along n0 direction; (b) elastic fiber along m0

direction.



Fig. 6. Damage contours for the two family of fibers for the stochastic model: (a) elastic fiber along n0 direction; (b) elastic fiber along m0

direction.

Fig. 7. (a) Fiber stress (m0 direction) for the continuum model; (b) fiber stretch (m0 direction) for the stochastic model.
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The purpose of this example is to compare both damage models under a more general loading condition in
a load control experiment. We will attempt to model Oktay experiments in bovine coronary arteries. The
geometry of a healthy left anterior descending coronary artery (LAD) with 40 mm in length, and internal
and external diameters Di = 2.7 mm and Do = 4.5 mm, respectively, has been considered. The artery has been
simulated as a multi-layered composite material by considering the media, and adventitia layers within the
model (thickness ratio of 1.65:1), and without plaque. The geometry has been discretized by means of
49,280 trilinear incompressible elements. The angle of the fibers with respect to the circumferential direction,
/, for both layers is given in Table 3. In addition, initial stress has been accounted for in the simulation by
imposing an opening angle of 120� by means of an initial compatible deformation gradient, as proposed by
Rodriguez et al. (1994). The axial extension is restrained at both ends while allowing radial expansion.
Table 3
Material and damage parameters for the coronary artery for the continuum model

C1 (kPa) C2 (kPa) C3 (kPa) C4 /
Media 27.4 0.0 0.64 3.54 10�
Adventitia 2.7 0.0 5.1 15.4 40�

wm
min (

ffiffiffiffiffiffiffiffiffiffiffi
MPa
p

) wm
max (

ffiffiffiffiffiffiffiffiffiffiffi
MPa
p

) bm wf
min (

ffiffiffiffiffiffiffiffiffiffiffi
MPa
p

) wf
max (

ffiffiffiffiffiffiffiffiffiffiffi
MPa
p

) bf

6.99 15.0 0.1 3.54 10 0.5
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Elastic parameters for the continuum model were taken from Gasser et al. (2002) and damage parameters
were obtained by fitting the damage model to data presented in Oktay (1993). For the stochastic model,
parameters have been fitted to reproduce the same uniaxial behavior (primary loading path) as the continuum
model, following the same procedure as in the uniaxial test problem presented in the first example. Tables 3
and 4 show the material parameters for both models used in this example. Fig. 8 depicts the stress–stretch
behavior for both models under uniaxial loading, showing an excellent agreement. We have to point out that
damage in the matrix has not been considered in this example, since we were mainly concerned with the dam-
age behavior of the fibers where both models differ substantially.

For the balloon, we have taken a Grüntzig-type balloon catheter. As the initial configuration of the bal-
loon, we have taken a cylindrical tube with external diameter d = 1.7 mm, wall-thickness 0.1 mm and length
20 mm. The geometry has been discretized by means of 1000 trilinear incompressible elements.

The material of the balloon has been modeled as a fiber-reinforced composite with fibers running longitu-
dinally and circumferentially, as suggested by Gasser and Holzapfel (2006), i.e.,
Table
Model

Media
Adven
WðC; nl; ncÞ ¼ UðJÞ þ c
2
ð�I1 � 3Þ þ

X
i¼l;c

k1i

k2i
fexp½k2iðk2

i � 1Þ2� � 1g
	 


ð52Þ
where ni, i = l,c, are the directions of the reinforcing fibers and k2
i ¼ ni � C � ni, and U(J) = Wvol(J).

In the model proposed by Gasser and Holzapfel (2006), the two families of fibers are immersed in a soft
isotropic matrix, with both families of fibers having different mechanical properties. The circumferentially-ori-
ented fibers are very soft at small strains, getting rapidly stiffer at larger strains. On the other hand, longitu-
dinal fibers are assumed to be already stiff from the beginning. These properties of the material cause small
shortening of the balloon, while allowing large diametral expansion. Fig. 9 shows the pressure–diameter
response of the balloon with material parameters given in Table 5.

Due to the symmetry of the problem, only a quarter of the geometry has been considered (see Fig. 10). The
total load in the model has been applied in three steps: (i) the residual stress is imposed in the model through
an initial deformation gradient, as proposed by Rodriguez et al. (1994); (ii) the artery is inflated up to a pres-
sure of 13.3 kPa (100 mmHg), assumed to be the mean arterial pressure (physiological conditions); (iii) the
balloon is inflated up to a pressure of 200 kPa (2 bar). The internal surface of the artery and the external sur-
face of the balloon where used to define a frictionless contact pair to model the inflation process in the last
step.

Fig. 10 shows the undeformed and deformed configurations of the artery upon balloon inflation. Note that
this loading causes a considerable amount of circumferential and longitudinal stretching in the artery in the
area around the balloon end. This particular deformation will cause a larger stretching in the fibers oriented
at wider angles with respect the circumferential direction, than for those closely packed along the circumfer-
ential direction of the artery.

Fig. 11 shows the damage distribution in the arterial wall after balloon inflation for the two models. Both
models predict damage to occur at the adventitia layer where fibers are oriented at 40� with respect to the cir-
cumferential direction and, therefore, being subjected to a larger stretch as mentioned before. In fact, the fiber
stretch in the zone of maximum damage is around 1.05 which corresponds to a damage value of 0.21 according
to (51) and the parameters given in Table 4. However, the amount and distribution of damage in both models
is quite different. While for the stochastic model damage is distributed more uniformly along the artery, where
fibers experience larger stretching (as expected for a strain-driven model), for the continuum model, damage is
highly localized near the balloon end. Even though the location of damage near the balloon end is expected
and also observed by other authors (Gasser and Holzapfel, 2006), the fact that damage appears in the adven-
titia layer might result surprising since damage is expected in the media. However, the results obtained by
4
parameters used for the computations of the balloon inflation of the coronary artery

C1 (kPa) D1 (kPa) c g j d h /

27.4 0.425 23.7 1.1 1.9 1.949 18.9 10�
titia 2.7 0.4 21.7 1.25 1.57 1.949 18.9 40�



Fig. 8. Uniaxial stress–stretch response for both models showing the excellent agreement between them for the primary loading path.

Fig. 9. Pressure–diameter curve for the Grüntzig-type balloon used in the simulations.

Table 5
Material parameters used in the material model of the balloon according to Gasser and Holzapfel (2006)

c (MPa) k1l (MPa) k2l k1c (MPa) k2c

0.5 500.0 0.01 0.001 0.55

Fig. 10. Artery and balloon geometries: (a) initial unloaded configuration; (b) deformed configuration upon balloon inflation at 2 bar, the
artery has been previously subjected to physiological pressure and initial stress.
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Fig. 11. Distribution of damage in the artery after balloon inflation: (a) continuum model; (b) stochastic model.

Fig. 12. Maximum principal Cauchy stress in the arterial wall for both models after balloon inflation: (a) continuum model; (b) stochastic
model.
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Gasser and Holzapfel (2006) show a remarkable larger stress in the adventitia layer (about four times larger)
than in the media, as also obtained in the present simulation (see below). For this particular stress field, and
for the damage models here considered, more damage should develop in the adventitia layer. This results
could be due to a number of reasons like an improper setting of the residual stress state in the load free con-
figuration, or bad specification of material constants and structural parameters of the model. However, we
have used numerical values reported in the literature and the results here obtained coincide with those
reported by others for similar problems.

Fig. 12 depicts the Cauchy stress distribution in the artery for both models. Note that even though the stress
magnitude is similar for both models, the stress distribution is more uniform along the artery for the stochastic
than for the continuum model. In fact, the area of maximum stress localization for the continuum model coin-
cides with the zone where maximum damage occurs, while for the stochastic model, the damage affects a wider
area. These results might be related to the damage criterion in both models. For the continuum model damage
criterion is based on energy while for the continuum model it is based on fiber stretch. This might make the
continuum damage model more sensitive to stress gradients than the stochastic one as observed in this
example.

6. Conclusions

3D anisotropic constitutive damage models at finite strains for fibrous soft biological tissues have been
described and compared. Decoupled damage mechanisms for the matrix and fibers are considered in both
models, and characterized by the maximum value previously attained by the strain–energy of the undamaged
material. For the fibrous part, the continuum model proposes a similar mechanism as for the matrix, while the
stochastic model assumes a different strain–energy to failure for each fibril within the fiber bundle, with the
distribution following a Beta probability density function.

Both models have been implemented in the Finite Element framework under large deformations, and closed
form expressions of the decoupled tangent elasticity tensors are given in the paper. Numerical examples under
finite strains show a similar performance for both models. In all examples, the continuum model showed larger
localization of damage than the stochastic one, with damage being localized near zones of large stress gradi-
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ents. In the uniaxial test, we observed that for a given stretch for which the stochastic model has lower damage
than the continuum one, the rate of stress lowering after unloading was always larger in the stochastic model
than in the continuum model (see Figs. 2 and 3). This characteristic is associated with the fact that the model
assumes fiber bundles as composed of fibrils with different strain to failure in which shorter fibrils fail first.
Therefore, recruitment of the remaining fibers will occur at larger stretch values with a rapid stiffening as fibrils
approach their full extended length. In addition, damage for the stochastic model was always located in areas
of large fiber stretch (as expected in a strain-driven damage model).
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Holzapfel, G.A., Weizsäcker, H.W., 1998. Biomechanical behavior of the arterial wall and its numerical characterization. Comput. Biol.

Med. 28, 377–392.
Holzapfel, G.A., Ogden, R.W. (Eds.), 2006. Mechanics of Biological Tissue. Springer-Verlag, Heidelberg.
Hsu, E.W., Muzikant, A.L., Matulevicius, S.A., Penland, R.C., Henriquez, C.S., 1998. Magnetic resonance myocardial fiber-orientation

mapping with direct histological correlation. Am. J. Physiol. Heart Circ. Physiol. 274, 1627–1634.
Humphrey, J.D., 2002. Cardiovascular Solid Mechanics. Springer, New York.
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