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Abstract

In the present paper, the authors introduce two new subclasses S(k)
s (φ) of close-to-convex functions and

C(k)
s (φ) of quasi-convex functions. The integral representations for functions belonging to these classes are

provided, the convolution conditions, growth theorems, distortion theorems and covering theorems for these
classes are also provided. The results obtained generalize some known results, and some other new results
are obtained.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction, definitions and preliminaries

Let A denote the class of functions of the form

f (z) = z +
∞∑

n=2

anz
n, (1.1)
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which are analytic in the open unit disk

U = {
z: z ∈ C and |z| < 1

}
.

Let S denotes the subclass of A consisting of all functions which are univalent in U . Also let P
denote the class of functions of the form

p(z) = 1 +
∞∑

n=1

pnz
n (z ∈ U),

which satisfy the condition �{p(z)} > 0.
We denote by S∗, K, C and C∗ the familiar subclasses of A consisting of functions which

are, respectively, starlike, convex, close-to-convex and quasi-convex in U . Thus, by definition,
we have (see, for details, [1,2]; see also [3,4])

S∗ =
{
f : f ∈ A and �

{
zf ′(z)
f (z)

}
> 0 (z ∈ U)

}
,

K =
{
f : f ∈ A and �

{
1 + zf ′′(z)

f ′(z)

}
> 0 (z ∈ U)

}
,

C =
{
f : f ∈ A, g ∈ S∗, and �

{
zf ′(z)
g(z)

}
> 0 (z ∈ U)

}
,

and

C∗ =
{
f : f ∈ A, g ∈ K, and �

{
(zf ′(z))′

g′(z)

}
> 0 (z ∈ U)

}
.

Let f (z) and F(z) be analytic in U . Then we say that the function f (z) is subordinate to F(z)

in U , if there exists an analytic function ω(z) in U such that |ω(z)| � |z| and f (z) = F(ω(z)),
denoted by f ≺ F or f (z) ≺ F(z). If F(z) is univalent in U , then the subordination is equivalent
to f (0) = F(0) and f (U) ⊂ F(U) (see [5]).

A function f (z) ∈A is in the class S∗(φ) if

zf ′(z)
f (z)

≺ φ(z) (z ∈ U),

where φ(z) ∈ P . The class S∗(φ) and a corresponding convex class K(φ) were defined by Ma
and Minda [6]. And the results about the convex class K(φ) can be easily obtained from the
corresponding results of functions in S∗(φ).

Sakaguchi [7] once introduced a class S∗
s of functions starlike with respect to symmetric

points, which consists of functions f (z) ∈ S satisfying the inequality

�
{

zf ′(z)
f (z) − f (−z)

}
> 0 (z ∈ U).

Following him, many authors discussed this class and its subclasses (see [8–16]). Motivated
by S∗

s , we can easily obtain the following class C∗
s of functions convex with respect to symmetric

points.

Definition 1. Let C∗
s denote the class of functions in S satisfying the inequality

�
{

(zf ′(z))′

f ′(z) + f ′(−z)

}
> 0 (z ∈ U).
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Now, we introduce the following classes of analytic functions with respect to k-symmetric
points and obtain some interesting results.

Definition 2. Let S(k)
s (φ) denote the class of functions in S satisfying the condition

zf ′(z)
fk(z)

≺ φ(z) (z ∈ U),

where φ(z) ∈P , k � 1 is a fixed positive integer and fk(z) is defined by the following equality:

fk(z) = 1

k

k−1∑
ν=0

ε−νf
(
ενz

) (
εk = 1

)
. (1.2)

If k = 2 and φ(z) = (1 + z)/(1 − z), then the class S(k)
s (φ) reduces to the class S∗

s . If k = 2,

then the class S(k)
s (φ) reduces to the class S∗

s (φ), which was introduced and investigated recently
by Ravichandran [14]. If φ(z) = (1 + βz)/(1 − αβz) (0 � α � 1, 0 < β � 1), then the class
S(k)

s (φ) reduces to the class S(k)
s [α,β], which was considered recently by Gao and Zhou [15].

Definition 3. Let C(k)
s (φ) denote the class of functions in S satisfying the condition

(zf ′(z))′

f ′
k(z)

≺ φ(z) (z ∈ U),

where φ(z) ∈P , k � 1 is a fixed positive integer and fk(z) is defined by equality (1.2).

If k = 2 and φ(z) = (1 + z)/(1 − z), then the class C(k)
s (φ) reduces to the class C∗

s . If k = 2,

then the class C(k)
s (φ) reduces to the class C∗

s (φ), which was also introduced and investigated
recently by Ravichandran [14].

In our proposed investigation of functions in the classes S(k)
s (φ) and C(k)

s (φ), we shall also
make use of the following definition.

Definition 4 (Hadamard product or convolution). Given two functions f,g ∈ A, where f (z) is
given by (1.1) and g(z) is defined by

g(z) = z +
∞∑

n=2

bnz
n,

the Hadamard product (or convolution) f ∗ g is defined (as usual) by

(f ∗ g)(z) = z +
∞∑

n=2

anbnz
n = (g ∗ f )(z).

In the present paper, first we prove that the classes S(k)
s (φ) and C(k)

s (φ) are subclasses of the
class of close-to-convex functions and the class of quasi-convex functions, respectively. Then
we provide the integral representations for functions belonging to these classes. At last, we pro-
vide the convolution conditions, growth theorems, distortion theorems and covering theorems for
these classes. The results obtained generalize some known results and some other new results are
obtained.
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2. Integral representations

First we give two meaningful conclusions about the classes S(k)
s (φ) and C(k)

s (φ).

Theorem 1. Let f (z) ∈ C(k)
s (φ), then fk(z) ∈K ⊂ S .

Proof. Suppose that f (z) ∈ C(k)
s (φ), from the definition of C(k)

s (φ) we can get

�
{

(zf ′(z))′

f ′
k(z)

}
> 0 (z ∈ U) (2.1)

since �{φ(z)} > 0. Substituting z by εμz in (2.1) respectively (μ = 0,1,2, . . . , k − 1; εk = 1),
then (2.1) is also true, that is,

�
{

f ′(εμz) + εμzf ′′(εμz)

f ′
k(ε

μz)

}
> 0 (z ∈ U; μ = 0,1,2, . . . , k − 1). (2.2)

According to the definition of fk(z) and εk = 1, we know f ′
k(ε

μz) = f ′
k(z). Then inequality (2.2)

becomes

�
{

f ′(εμz) + εμzf ′′(εμz)

f ′
k(z)

}
> 0 (z ∈ U). (2.3)

Let μ = 0,1,2, . . . , k − 1 in (2.3) respectively, and summing them we can get

�
{∑k−1

μ=0 f ′(εμz) + z
∑k−1

μ=0 εμf ′′(εμz)

f ′
k(z)

}
> 0 (z ∈ U),

or equivalently,

�
{

f ′
k(z) + zf ′′

k (z)

f ′
k(z)

}
> 0 (z ∈ U),

that is fk(z) ∈K ⊂ S . �
Remark 1. From Theorem 1 and inequality (2.1), we know that if f (z) ∈ C(k)

s (φ), then f (z) is
a quasi-convex function. So C(k)

s (φ) is a subclass of the class C∗ of quasi-convex functions.

By applying similar method as in Theorem 1, we have

Theorem 2. Let f (z) ∈ S(k)
s (φ), then fk(z) ∈ S∗ ⊂ S .

Remark 2. From Theorem 2 and the definition of S(k)
s (φ), we know that if f (z) ∈ S(k)

s (φ), then
f (z) is a close-to-convex function. So S(k)

s (φ) is a subclass of the class C of close-to-convex
functions.

In particular, if φ(z) = (1 + βz)/(1 − αβz), then the following results of Gao and Zhou [15]
are obtained as special case of Theorem 2.

Corollary 1. Let f (z) ∈ S(k)
s [α,β], then fk(z) ∈ S∗ ⊂ S .
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Now, we give the integral representations of functions belonging to the classes S(k)
s (φ) and

C(k)
s (φ).

Theorem 3. Let f (z) ∈ C(k)
s (φ), then we have

fk(z) =
z∫

0

exp

{
1

k

k−1∑
μ=0

εμζ∫
0

φ(ω(t)) − 1

t
dt

}
dζ, (2.4)

where fk(z) is defined by equality (1.2), ω(z) is analytic in U and ω(0) = 0, |ω(z)| < 1.

Proof. Suppose that f (z) ∈ C(k)
s (φ), from the definition of C(k)

s (φ) we have

(zf ′(z))′

f ′
k(z)

= φ
(
ω(z)

)
, (2.5)

where ω(z) is analytic in U and ω(0) = 0, |ω(z)| < 1. Substituting z by εμz in (2.5) respectively
(μ = 0,1,2, . . . , k − 1; εk = 1), we have

f ′(εμz) + εμzf ′′(εμz)

f ′
k(ε

μz)
= φ

(
ω

(
εμz

))
(μ = 0,1,2, . . . , k − 1). (2.6)

It is easy to know that f ′
k(ε

μz) = f ′
k(z), summing (2.6) we can obtain

(zf ′
k(z))

′

f ′
k(z)

= 1

k

k−1∑
μ=0

φ
(
ω

(
εμz

))
, (2.7)

from equality (2.7) we get

(zf ′
k(z))

′

zf ′
k(z)

− 1

z
= 1

k

k−1∑
μ=0

φ(ω(εμz)) − 1

z
. (2.8)

Integrating equality (2.8) we have

log
{
f ′

k(z)
} = 1

k

k−1∑
μ=0

z∫
0

φ(ω(εμζ )) − 1

ζ
dζ = 1

k

k−1∑
μ=0

εμz∫
0

φ(ω(t)) − 1

t
dt,

that is,

f ′
k(z) = exp

{
1

k

k−1∑
μ=0

εμz∫
0

φ(ω(t)) − 1

t
dt

}
. (2.9)

Therefore, integrating equality (2.9) we can obtain equality (2.4). �
Theorem 4. Let f (z) ∈ C(k)

s (φ), then we have

f (z) =
z∫

0

1

ξ

ξ∫
0

exp

{
1

k

k−1∑
μ=0

εμζ∫
0

φ(ω(t)) − 1

t
dt

}
· φ(

ω(ζ )
)
dζ dξ, (2.10)

where ω(z) is analytic in U and ω(0) = 0, |ω(z)| < 1.
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Proof. Suppose that f (z) ∈ C(k)
s (φ); from equalities (2.5) and (2.9) we have

(
zf ′(z)

)′ = f ′
k(z) · φ(

ω(z)
) = exp

{
1

k

k−1∑
μ=0

εμz∫
0

φ(ω(t)) − 1

t
dt

}
· φ(

ω(z)
)
. (2.11)

Integrating equality (2.11), we can obtain

f ′(z) = 1

z

z∫
0

exp

{
1

k

k−1∑
μ=0

εμζ∫
0

φ(ω(t)) − 1

t
dt

}
· φ(

ω(ζ )
)
dζ. (2.12)

Therefore, integrating equality (2.12) we can obtain equality (2.10). �
By applying similar method as in Theorem 3, we have

Theorem 5. Let f (z) ∈ S(k)
s (φ), then we have

fk(z) = z · exp

{
1

k

k−1∑
μ=0

εμz∫
0

φ(ω(t)) − 1

t
dt

}
,

where fk(z) is defined by equality (1.2), ω(z) is analytic in U and ω(0) = 0, |ω(z)| < 1.

Corollary 2. [15] Let f (z) ∈ S(k)
s [α,β], then we have

fk(z) = z · exp

{
1

k

k−1∑
μ=0

εμz∫
0

(1 + α)βω(t)

t (1 − αβω(t))
dt

}
,

where fk(z) is defined by equality (1.2), ω(z) is analytic in U and ω(0) = 0, |ω(z)| < 1.

By applying similar method as in Theorem 4, we have

Theorem 6. Let f (z) ∈ S(k)
s (φ), then we have

f (z) =
z∫

0

exp

{
1

k

k−1∑
μ=0

εμζ∫
0

φ(ω(t)) − 1

t
dt

}
· φ(

ω(ζ )
)
dζ,

where ω(z) is analytic in U and ω(0) = 0, |ω(z)| < 1.

Corollary 3. [15] Let f (z) ∈ S(k)
s [α,β], then we have

f (z) =
z∫

0

exp

{
1

k

k−1∑
μ=0

εμζ∫
0

(1 + α)βω(t)

t (1 − αβω(t))
dt

}
· 1 + βω(ζ )

1 − αβω(ζ )
dζ,

where ω(z) is analytic in U and ω(0) = 0, |ω(z)| < 1.
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3. Convolution conditions

In this section, we provide the convolution conditions for the classes S(k)
s (φ) and C(k)

s (φ).

Theorem 7. Let f (z) ∈A and φ(z) ∈ P , then f (z) ∈ S(k)
s (φ) if and only if

1

z

[
f ∗

(
z

(1 − z)2
− φ

(
eiθ

)
h(z)

)]
	= 0 (3.1)

for all z ∈ U and 0 � θ < 2π , where h(z) is given by (3.6).

Proof. Suppose that f (z) ∈ S(k)
s (φ), since

zf ′(z)
fk(z)

≺ φ(z)

if and only if

zf ′(z)
fk(z)

	= φ
(
eiθ

)
(3.2)

for all z ∈ U and 0 � θ < 2π . It is easy to know that the condition (3.2) can be written as

1

z

(
zf ′(z) − fk(z)φ

(
eiθ

)) 	= 0. (3.3)

On the other hand, it is well known that

zf ′(z) = f (z) ∗ z

(1 − z)2
. (3.4)

And from the definition of fk(z), we know

fk(z) = z +
∞∑

n=2

ancnz
n = (f ∗ h)(z), (3.5)

where

h(z) = z +
∞∑

n=2

cnz
n (3.6)

for

cn =
{

1, n = lk + 1,

0, n 	= lk + 1.

Substituting (3.4) and (3.5) into (3.3), we can get (3.1). This completes the proof of Theo-
rem 7. �

By applying similar method as in Theorem 7, we have

Theorem 8. Let f (z) ∈A and φ(z) ∈ P , then f (z) ∈ C(k)
s (φ) if and only if

1

z

{
f ∗

[
z

(
z

(1 − z)2
− φ

(
eiθ

)
h(z)

)′ ]}
	= 0

for all z ∈ U and 0 � θ < 2π , where h(z) is given by (3.6).
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4. Growth, distortion and covering theorems

Finally, we provide the growth, distortion and covering theorems for the classes S(k)
s (φ) and

C(k)
s (φ). For the purpose of this section, assume that the function φ(z) is an analytic function with

positive real part in the unit disk U , φ(U) is convex and symmetric with respect to the real axis,
φ(0) = 1 and φ′(0) > 0. The functions kφn(z) (n = 2,3, . . .) defined by kφn(0) = k′

φn(0)− 1 = 0
and

1 + zk′′
φn(z)

k′
φn(z)

= φ
(
zn−1)

are important examples of functions in K(φ). The functions hφn(z) satisfying hφn(z) = zk′
φn(z)

are examples of functions in S∗(φ). Write kφ2(z) simply as kφ(z) and hφ2(z) simply as hφ(z).
In order to prove our next theorem, we shall require the following lemma.

Lemma 1. [17] Let f (z) = z + ak+1z
k+1 + · · · ∈ K(φ), then we have[

k′
φ

(−rk
)]1/k �

∣∣f ′(z)
∣∣ �

[
k′
φ

(
rk

)]1/k
.

Now we give the following theorem.

Theorem 9. Let min|z|=r |φ(z)| = φ(−r), max|z|=r |φ(z)| = φ(r), |z| = r < 1. If f (z) ∈ C(k)
s (φ),

then we have

1

r

r∫
0

φ(−t)
[
k′
φ

(−tk
)]1/k

dt �
∣∣f ′(z)

∣∣ � 1

r

r∫
0

φ(t)
[
k′
φ

(
tk

)]1/k
dt, (4.1)

r∫
0

1

s

s∫
0

φ(−t)
[
k′
φ

(−tk
)]1/k

dt ds �
∣∣f (z)

∣∣ �
r∫

0

1

s

s∫
0

φ(t)
[
k′
φ

(
tk

)]1/k
dt ds, (4.2)

and

f (U) ⊃
{

ω: |ω| �
1∫

0

1

s

s∫
0

φ(−t)
[
k′
φ

(−tk
)]1/k

dt ds

}
. (4.3)

These results are sharp.

Proof. Suppose that f (z) ∈ C(k)
s (φ), and φ(z) is convex and symmetric with respect to the real

axis; it follows that

fk(z) = 1

k

k−1∑
ν=0

ε−νf
(
ενz

) = 1

k

k−1∑
ν=0

ε−ν

[
ενz +

∞∑
n=2

an

(
ενz

)n

]

= z +
∞∑
l=1

alk+1z
lk+1 ∈K(φ).

Thus, by Lemma 1, we have[
k′
φ

(−rk
)]1/k �

∣∣f ′
k(z)

∣∣ �
[
k′
φ

(
rk

)]1/k
.
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Now, for |z| = r < 1, we have

φ(−r)
[
k′
φ

(−rk
)]1/k �

∣∣(zf ′(z)
)′∣∣ =

∣∣∣∣ (zf ′(z))′

f ′
k(z)

· f ′
k(z)

∣∣∣∣ � φ(r)
[
k′
φ

(
rk

)]1/k
. (4.4)

By integrating (4.4) from 0 to r , we can get (4.1). (4.2) follows form (4.1). And (4.3) follows
form (4.2), since

r∫
0

1

s

s∫
0

φ(−t)
[
k′
φ

(−tk
)]1/k

dt ds

is increasing in (0,1) and bounded by 1.
The results are sharp for the function

f (z) =
z∫

0

1

s

s∫
0

φ(−t)
[
k′
φ

(−tk
)]1/k

dt ds ∈ C(k)
s (φ),

since it has real coefficients and is in K(φ). �
The proof of Theorem 10 below is much akin to that of Theorem 7 in [14], here we omit the

details.

Theorem 10. Let min|z|=r |φ(z)| = φ(−r), max|z|=r |φ(z)| = φ(r), |z| = r < 1. If f (z) ∈
S(k)

s (φ), then we have

h′
φ(−r) �

∣∣f ′(z)
∣∣ � h′

φ(r), −hφ(−r) �
∣∣f (z)

∣∣ � hφ(r),

and

f (U) ⊃ {
ω: |ω| � −h(−1)

}
.

These results are sharp.

Acknowledgment

The authors are grateful to the referee for his careful reading and constructive criticism of the original manuscript.

References

[1] P.L. Duren, Univalent Functions, Springer-Verlag, New York, 1983.
[2] H.M. Srivastava, S. Owa (Eds.), Current Topics in Analytic Function Theory, World Scientific, Singapore, 1992.
[3] S. Owa, et al., Close-to-convexity, starlikeness, and convexity of certain analytic functions, Appl. Math. Lett. 15

(2002) 63–69.
[4] K.I. Noor, On quasi-convex functions and related topics, Internat. J. Math. Math. Sci. 10 (1987) 241–258.
[5] C. Pommerenke, Univalent Functions, Vandenhoeck and Ruprecht, Göttingen, 1975.
[6] W.C. Ma, D. Minda, A unified treatment of some special classes of univalent functions, in: Proc. Conf. Complex

Analysis, Tianjin, 1992, in: Conf. Proc. Lecture Notes Anal., I, Internat. Press, Cambridge, MA, 1994, pp. 157–169.
[7] K. Sakaguchi, On certain univalent mapping, J. Math. Soc. Japan 11 (1959) 72–75.
[8] J. Stankiewicz, Some remarks on functions starlike with respect to symmetric points, Ann. Univ. Mariae Curie-

Skłodowska Sect. A 19 (1970) 53–59.
[9] J. Thangamani, On starlike functions with respect to symmetric points, Indian J. Pure Appl. Math. 11 (1980) 392–

405.



106 Z.-G. Wang et al. / J. Math. Anal. Appl. 322 (2006) 97–106
[10] H. Silverman, E.M. Silvia, Subclasses of starlike functions subordinate to convex functions, Canad. J. Math. 37
(1985) 48–61.

[11] R. Parvatham, S. Radha, On α-starlike and α-close-to-convex functions with respect to n-symmetric points, Indian
J. Pure Appl. Math. 17 (1986) 1114–1122.

[12] T.N. Shanmugam, Convolution and differential subordination, Internat. J. Math. Math. Sci. 12 (1989) 333–340.
[13] J. Sokól, et al., On some subclass of starlike functions with respect to symmetric points, Zeszyty Nauk. Politech.

Rzeszowskiej Mat. Fiz. 12 (1991) 65–73.
[14] V. Ravichandran, Starlike and convex functions with respect to conjugate points, Acta Math. Acad. Paedagog.

Nyházi (N.S.) 20 (2004) 31–37.
[15] C.-Y. Gao, S.-Q. Zhou, A new subclass of close-to-convex functions, Soochow J. Math. 31 (2005) 41–49.
[16] T.V. Sudharsan, et al., On functions starlike with respect to symmetric and conjugate points, Taiwanese J. Math. 2

(1998) 57–68.
[17] I. Graham, D. Varolin, Bloch constants in one and several variables, Pacific J. Math. 174 (1996) 347–357.


