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The major objective of this note is the explicit theoretical prediction of 
the rate of radiative energy loss through the boundaries of an absorbing- 
emitting medium of finite thickness. An arbitrary distribution of internal 
sources is assumed known and the incident radiation on the boundaries is 
either zero or uniform and isotropic. A close parallelism appears in the deve- 
lopment for planar and spherical geometries provided the latter case is 
limited to a single homogeneous sphere with uniform extinction coefficient. 
This parallelism has been noted by Davison [l] for neutron transport, and 
was used by Heaslet and Warming [2] to predict radiative transfer within a 
homogeneous sphere with a uniform distribution of internal sources. 

Two methods of calculating surface flux are given. First, Green’s formula 
for the governing integral equations is applied to the two geometries and 
leads in either case to predictions involving weighted quadratures of the 
internal source distribution. Second, an alternative evaluation in which 
moments of the Chandrasekhar-Ambartsumian [3] X and Y functions are 
used is applied to particular source distributions. Sobouti’s [4] tables of the 
moment functions then yield accurate numerical values of flux for these 
special cases. The flux relations contrast in an interesting manner: the mo- 
ment functions are weighted means over an angular variation at the bound- 
aries whereas Green’s formula provides an averaging over the entire optical 
path length through the medium. 

The main contribution here is one of assembling predictions of physical 
interest and of demonstrating the interplay between results for the two 
geometries. The formulas, being exact, can of course be derived in various 
ways or, in retrospect, can perhaps be seen to appear implicitly in other 
investigations. This is true especially for the planar problem where invariant 
embedding techniques and photon diffusion processes have been studied in 
considerable detail. Particular attention should be directed to Sobolev’s 
treatise [5] and papers by Horak [6], Horak and Lundquist [7], Bellman, 
Kalaba, and Ueno [8], and Ueno [9]. 

The presentation starts with the integral equation formulation for the 
source function 3 of radiative transfer theory. The analysis is slanted toward 
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the interests of continuum-radiation theory and the needs of the thermal 
engineer but, as will become apparent, the results apply also to problems 
involving spectral line emission and isotropic scattering. Extensions of 
Green’s formula to more complex geometries will, at the same time, be 
apparent. The notation is in essential agreement with that of Chandra- 
sekhar [3] and Kourganoff [lo]. 

A medium with local volumetric extinction coefficient a(~) is confined 
between two planar boundaries at s = 0 x = L. At the boundaries or walls 
the incident radiation is uniform and isotropic. Optical length T normal to the 
boundaries is introduced where dr = a(~) dx and 7 = 0 at x = 0 and 7 = ~a 
at .r: = L. The rate of internal energy release per unit volume has the speci- 
fied variation P(T). The source function S(T) satisfies the integral equation [3] 

34 =&+Fg E,(T) + ws JUT0 - 4 

In Eq. (l), w is a parameter to be defined more specifically below. The con- 
stants qi+ and q2- are, respectively, the imposed flux (rate of energy transport 
per unit area) into the medium from the left and right boundaries; E,(X) is 
the exponential integral function of index n, defined as 

Net flux normal to the boundaries and through a unit area at point T is 

q(T) = q+(T) - 4-(T) = h+-%(T) - 242-‘%o - T, 

+ 27r s’” J(T1) Sgll (T - T1) E,( 1 7 - 71 I) dT1 . (2) 
0 

Equations (1) and (2) are consistent with the differential relation 

The sign convention for total flux is chosen such that q(T) > 0 when the net 
energy transport is in the positive x: (or T) direction. 

The dependence on radiation frequency v has been suppressed in the above 
expressions. This offers no difficulty in interpretation in at least three prob- 
lems of physical interest: 
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(a) Transport of thermal radiation in the continuum regime and through 
a “gray” medium between heated walls. Here, w = 1, P/a is assumed known, 
J = uT4/.rr where T is local temperature and u is the Stefan-Boltzmann 
constant. 

(b) Monochromatic, isotropic scattering where P/a is known and w = w,, 
is the albedo of the medium. 

(c) Emission from a spectral line with a rectangular profile in an isother- 
mal environment of temperature To (see, e.g., Cuperman, Engelmann, and 
Oxenius [ll], or Sobolev [5]). H ere, 0 < w i 1, P/a = 47r( 1 - W) B,(T,) 
and BY(To) is Plan&s function for black-body radiation. 

Since Eq. (1) depends linearly on the source function, the analysis can be 
reduced to the solution of component equations. Thus, introducing the 
integral operator ~I~,~,[f(~i)] where 

A,WAl =f(d - $ j-)%,, JM 7 - 71 I) dT1 

and the transformation 

(4) 

e(T) = q1+ + (!72- - q1+) @(T) + A%(T) - %+(l - WI @“(T) (5) 

where ,4 is an appropriate nondimensionalizing constant, one gets the inte- 
gral equations 

4.7,P(,)l = F J%(~o - 4 b-4 

The function O,(r) is associated with a uniform distribution of internal 
sources, that is, P/a = A = const. In the study of thermal radiation or 
perfect scattering w = 1 and in this so-called conservative case 8,(r) and 
@I(T) - 8 are, respectively, even and odd functions about 7 = 7,42. The 
calculation of these functions can therefore be limited to a half portion of the 
thickness range. Such results have been given, for example, by Usiskin and 
Sparrow [12] and by Heaslet and Warming [13]. When w # 1 the non- 
conservative nature of the radiation field destroys the asymmetry of the 
component function and Oc7(~) can, in fact, be determined from a knowledge 
of e(7) over the full thickness range. Thus, the identity 

8(T) + @(To - 7) = 1 - 4(1 - w) 8,(T) (7) 

shows that the source function for uniform internal energy release with no 
incident radiation at the walls can be extracted from the solution for @(T) 
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alone. The fragmentation of 3( T introduced in Eq. (5) is, however, well ) 
adapted to the conservative case and, as will be shown, yields useful results 
in general. 

Once Eqs. (6) are solved, S(T) is given by Eq. (5) and the flux q(7) can then 
be predicted by a simple quadrature of equation (3) provided total flux at 
one boundary is known. But from Eqs. (2) and (5), flux at the right boundary 
is 

where 

duo) = h- - ql+) Q + AQp - 4~1+(1 - ~1 Qu (84 

Q = - 1 + 2 1; O(T) .J&(T~ - T) d7 (8’3) 

Qp = 2 1; &(r) E&T, - T) d7 (84 

Qu = 2 j-: &,(T) E,(T, - T) dT. (84 

Total wall flux can actually be calculated from a knowledge of O(T) alone 
for arbitrary variations of P/cc To show this, consider Green’s formula for 
the operator fl (see, e.g., Tricomi [14], p. 53) 

From Eqs. (6), (8). and (9) 

so that all flux components are now given by proper averages of O(T). When 
w = 1 and, in addition P/a is symmetric about the mid-plane, the oddness 
of O(T) about 7 = ~,,/2, 0 = * reduces equation (10) to the intuitively 
obvious result that the flux component AQP at the boundary is one-half the 
rate of energy production of the internal sources. 

Alternative evaluations will next be given for a linear variation of internal 
sources P/aA = a + by. These results follow from the application of the 
invariance principles of radiation theory and are expressed in terms of the 
moment functions 01, and &, defined as follows 

&TO 9 w) = s ’ -VT,, w, P) P 4, 8,bo , c-0) = 
0 

1’ Y(Q , w, 1.4 p” dp (11) 
0 

Sobouti [4] has tabulated these functions for n = 0, 1, 2 and 0 < 7s < 3. 
Extensions of these tables to greater optical thicknesses are not difficult if 
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Sobolev’s [15] asymptotic forms of X and Y are used. The predictions, in 
closed form, are a direct consequence of the methods discussed in [3] and [5]. 
The somewhat lengthy algebra leads to the final expressions 

QP=+ 011 -A 

1 - F (a0 - PO) 

+;I 82 - 012 - TOA a1 + PI 

1 - T (010 - PO) 
+ l--w ___ [To (1 - ; an) - ; (a1 - A)] 1 9 

w#l 

+ + (a1 + A) [% - A) + To(% - B2) + $bl - a,] f 9 

w = 1. (12) 

The value of the source function at 7 = 7,, can also be expressed in terms of 
the moment functions. In the analysis of thermal radiation between heated 
walls, the so-called “temperature slip” at the walls follows directly from such 
formulas. The desired relations are 

@(To) = 4 fYo; WV =po, W<l 

@(qJ + @(O) = 1, OJ=l 

@P(TO) = (a + ; To) [* _ ,,a, _ PO)] - @Fm w -G 1 
=- 2” [2 - $0 - BlJl 

b 
+4(1 - w) [To (1 - 4 %) - F (a1 - A)] 3 w#l 

+bl To 
4 (o+a[2(q-192)+7O(012--2)+~(C4--~1)]]r 

” = 1. (13) 
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HOMOGENEOUS SPHERE. Attention is limited here to a single sphere with 
constant (I: but with an arbitrary radial distribution of internal sources. Let p 
be optical length where p = w and Y is radial distance, 0 ,< Y < R. If the 
incident radiation at the single boundary is isotropic, P = P(p) is the volu- 
metric rate of internal energy release, and pa = aR, the integral equation 
for the source function J(p) may be written in operational form 

(14) 

where the x operator is defined as 

x,.,,[fbdl =fb) - T j-)W [-%(I P - PI I) - M P + PI I>1 41 

and 

(15) 

Wf > PO) = foJ%(P 0 - P) + E2hl - f) - f 04(Po + P) - 4(P 0 + P)* (16) 

The imposed isotropic flux into the medium at the boundary is q2-. 
Net flux at the optical radius p satisfies the differential relation 

w y = q - 4rr(l - w) p2J. (17) 

Once J is determined, flux can be calculated through integration since it 
vanishes at p = 0 and a boundary condition is therefore known. Flux at the 
boundary can also be expressed by means of the integral form 

po2qbo) = F 11 - Go2 - e-2p41 + Gdl + 277 1: ,db) ff(p, ~0) & (18) 

The fragmentation of Eqs. (14) and (18) can be carried out in an analogous 
manner to that used for the slab in Eqs. (5) and (8a). The absence of an inner 
boundary introduces simplifications, moreover, since only incident radiation 
flux q2- at the outer boundary is specified and ql+ is removed from the prob- 
lem. The following relations are therefore introduced 

a(f) = qz-Q(P) + AQ,(f) (19) 

Po24hJ = 42-Q + 42, (20) 

From Eqs. (14) and (19) one has 

X,.,,W(fl)l = F W% PO) (214 

xP.Po[PIQP(P1ll = & @lb) 

In a recent paper Kuznetsov [16] has derived equivalent equations for 
w = 1 and nonconstant 01. His paper also gives the conservative forms of 
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Eys. (21) but does not note the important simplification that can be used to 
eliminate H(p, ps) as the forcing term in the calculation of &J(p). Direct 
calculation does, in fact, establish the equality 

Q(P) = 1 - 4(1 - WI Q,(P) (22) 

where Q, is 52, when P/a = A = const. For the conservative case Eq. (22) 
reduces to Q(p) = 1. When w = 1 and no internal sources are present one 
knows that uniform incident radiation on the single boundary of a closed 
region can produce only a uniform effect within the region if equilibrium 
conditions are maintained. One of Kuznetsov’s two integral equations thus 
has a trivial solution, that is, the unknown function is a constant. 

An analytic advantage does, however, accrue from the dual equations (21). 
Thus, invoking Green’s formula for the operator x and applying the formula 
to the functions ~52 and pQP , Eqs. (1 S), (20), and (22) permit one to establish 
the following formula 

1 =- 
w I 

POppe& 31 - 4/“pp8Q&)dp. 
0 a 0 OL 

(23) w 

The energy loss from the system resulting from the internal energy release 
is predicted by a weighted average involving only the function Q,-,(p). As a 
check on the formula one notes that for the conservative case the second 
integral is removed from the expression and the total loss is then given by 
a volumetric integration of the energy released inside the sphere, a result 
that is intuitively clear. The application to energy loss associated with spectral 
line emission is less obvious intuitively. 

If Eq. (23) is used together with Eqs. (20) and (22) the complete expression 
of flux at the outer boundary is determined finally as 

Wo24(Po) = - 4%(1 - w) [g - 4u - w> jr p”Qn,(,) 41 

+ s,; y dp - 4( 1 - w) J‘; z J-L?&) dp. (24) 

We consider next a reduction of the integral equation for the homogeneous 
sphere to a simpler form. It is sufficient to consider the operator introduced 
in Eqs. (14) and (15). If the definition of the source function is extended such 
that J(p) = J(- p), the transformations 
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yield the operational equivalence 

The integral operator for the sphere thus reduces formally to the integral 
operator for the slab. In particular, setting 

TP3P) = KPQ(P) + APQ,(P) 

= !7-q4 + AZp(T) 

one gets the integral equation 

A,,,o[zp(Tl)] = p 1’ T - (To’2) ‘I 
4aA . 

(26) 

(27) 

Also, when d = P/a = const one has Z,(T) = Z,(T) and 

z(T) = (T - +I) - 4(1 - W) Z"(T). 6’8) 

The transformation thus establishes the relationship between spherical 
and planar problems: the solution of the former reduces to the latter provided 
the optical thickness of the slab is equal to the optical diameter of the sphere 
and the internal energy release within the slab is [T -(TO/~)] times the specified 
function for the sphere. 

Numerical predictions of L?&) h ave been given by Cuperman, Engelmann, 
and Oxenius [Ill, and Heaslet and Warming [2] have also given graphical 
results for w = 1. These solutions can be used directly in Ey. (24) with arbi- 
trary variations of P/a. When Pia is expressible as a polynomials in T, it is 
possible to predict flux and the source function at the boundary in terms of 
moments of the Chandrasekhar-Ambartsumian functions. The actual calcu- 
lations have been carried out in [2] for the special case P/a = const and the 
results are repeated here. If 01)~ = zn(2po , w), /3, = /&(2p,, , w), surface flux 
associated with uniform energy release is 

2 
[P, q(po)l P/cd =Q” a*-=0 

= [(% + Pa) + PO& + &)I 
4(1 - w) {POV - 4ao - PO)1 - 4% - A)) 

_ ito5 - P3) + PO& - &)I 
2 - 4ao - PO) ’ 

w # 1. (29) 
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Surface values for the source function satisfy the relations 

[ 
v oJ(P0) 

Pla 1 = PoQdfo) a*-=0 
= POD - (42) (.o4(1iy 7 (42) (011 - BJ , w#l w 

= * po2(q - 8,) + # Po($ - PA + Q (05 - &h w = 1. 

(30) 

The analytic and numerical properties of the moment functions are now 
well established (see [4], [ 15]), and as a consequence Eqs. (12) (13), (29), and 
(30) provide a standard of excellence for approximate methods that may be 
of interest in more complex problems. For arbitrary variations of energy 
release Eqs. (10) and (24) should be of general utility and highlight the need 
for accurate evaluations of the functions O(T) and Q&) for the full parametric 

(I b) 

FIG. 1. Dimensionless flux loss from an slab with an internal source of energy 
release P/ruA = a + br, showing dependence on the parameters s, and u. (a) Uniform 
energy release. (b) Linear energy release. 
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range 0 < w < 1. The special flux predictions of Eqs. (12) and (29) may be 
evaluated by means of Sobouti’s tables [4] of L-+ , /II1 , n = 0, 1, 2 and the 
tables of 0~s , /3s given in [2]. Figures I and 2 are graphical representations 
of these formulas. 

40 

20 

2 .4 w .6 1.0 

FIG. 2. Dimensionless flux loss from a sphere with uniform internal energy 
release, showing dependence on the parameters p0 and w. 
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