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In this paper we study static spherically symmetric wormhole solutions sustained by matter sources with 
isotropic pressure. We show that such spherical wormholes do not exist in the framework of zero-tidal-
force wormholes. On the other hand, it is shown that for the often used power-law shape function there 
are no spherically symmetric traversable wormholes sustained by sources with a linear equation of state 
p = ωρ for the isotropic pressure, independently of the form of the redshift function φ(r). We consider 
a solution obtained by Tolman at 1939 for describing static spheres of isotropic fluids, and show that it 
also may describe wormhole spacetimes with a power-law redshift function, which leads to a polynomial 
shape function, generalizing a power-law shape function, and inducing a solid angle deficit.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

In the framework of Einstein General Relativity the study of 
spherically symmetric traversable wormhole spacetimes [1] has 
been mostly focused in matter sources with anisotropic pressures. 
Mainly this is due to the fact that in order to correctly describe a 
wormhole spacetime one needs a redshift function without hori-
zons, or the redshift and the shape functions giving a desired 
asymptotic. In this way, the theoretical construction of wormhole 
geometries is usually performed by assuming a priori the form of 
the redshift and the shape functions, in order to have a desired 
metric. But Einstein’s field equations for spherically symmetric 
spacetimes imply that the radial and lateral (or transverse) pres-
sures are not equal. In such a way, by imposing restricted choices 
on the redshift and the shape functions we will obtain, in general, 
for the energy–momentum tensor that T 2

2 �= T 3
3 . This condition im-

plies that a wormhole configuration is necessarily supported by an 
anisotropic matter source. However, this method has some limita-
tions since we can obtain for the energy density, radial and lateral 
pressures algebraic expressions which are physically unreasonable.

One may also follow a more conventional method used for find-
ing solutions in general relativity, by prescribing the matter con-
tent with specific equations of state for the radial and/or the tan-
gential pressures, and then solve Einstein’s field equations in order 
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to find the redshift and shape functions. The often used equation 
of state is the linear barotropic equation of state pr = ωρ , which 
relates the radial pressure with the energy density [2]. From the 
cosmological setting, such an equation of state is associated with 
phantom dark energy if ω < −1, and also may sustain traversable 
static wormholes [3,4].

Anisotropic stress contributions to the gravitational field can 
arise from specific matter fields. A fluid source with anisotropic 
stresses supporting wormholes may be for example of electromag-
netic nature: linear [5] and nonlinear Maxwell fields [6] have been 
considered in the literature. An electric field coupled to a scalar 
field is considered in Ref. [7].

A spatially varying cosmological constant also has been con-
sidered in the framework of static wormholes supported by 
anisotropic matter sources [8]. In Ref. [9] the source of the stress-
energy tensor supporting the wormhole geometries consists of 
an anisotropic brown dwarf “star” which smoothly joins the vac-
uum and may possess an arbitrary cosmological constant, while in 
Ref. [10] anisotropic vacuum stress-energy of quantized fields has 
been proposed as source for static wormholes.

Such anisotropic scenarios are obtained also for regular static, 
spherically symmetric solutions describing wormholes supported 
by dark matter non-minimally coupled to dark energy in the form 
of a quintessence scalar field [11].

The main purpose of this paper is to present and discuss static 
spherically symmetric wormhole spacetimes supported by a sin-
gle perfect fluid, i.e. a matter source with isotropic pressure. As 
far as we know, the only spherical wormhole solution discussed 
up to now is the not asymptotically flat wormhole with isotropic 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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pressure considered in Ref. [4]. We will discuss this solution in 
more detail below in Sections 4 and 5. It must be noticed that the 
study of wormhole solutions sustained by a perfect fluid allows us 
to consider phantom wormholes sustained by inhomogeneous and 
isotropic phantom dark energy.

The paper is organized as follows. In Sec. 2 we write the 
Einstein equations for static spherically symmetric spacetimes. In 
Sec. 3 we analyze the possibility of having zero-tidal-force worm-
holes sustained by a matter source with isotropic pressure, while 
in Sec. 4 we analyze the possibility of having spherical wormholes 
sustained by a fluid with linear equation of state. In Sec. 5 we re-
obtain an analytical solution, previously obtained by Tolman, which 
describes static spheres of fluids with isotropic pressure, and we 
show that it may describe also a non-asymptotically flat wormhole 
geometry.

2. Field equations for static spherically symmetric spacetimes

The spacetime ansatz for seeking static spherically symmetric 
solutions can be written in Schwarzschild coordinates as

ds2 = e2φ(r)dt2 − dr2

1 − b(r)
r

− r2
(

dθ2 + sin2 θdφ2
)

, (1)

where eφ(r) and b(r) are arbitrary functions of the radial coor-
dinate. In the case of wormholes these functions are referred to 
as redshift function and shape function respectively. The essential 
characteristics of a wormhole geometry are encoded in these func-
tions, so in order to have a wormhole these two functions must 
satisfy some general constraints discussed by Morris and Thorne 
in Refs. [1,12].

By assuming that the matter content is described by a single 
imperfect fluid, from the metric (1) and the Einstein field equations 
Gμν = −κTμν we obtain

κρ(r) = b′

r2
, (2)

κ pr(r) = 2

(
1 − b

r

)
φ′

r
− b

r3
, (3)

κ pl(r) =
(

1 − b

r

)
×[

φ′′ + φ′ 2 − b′r + b − 2r

2r(r − b)
φ′ − b′r − b

2r2(r − b)

]
, (4)

where κ = 8πG , ρ is the energy density, and pr and pl are the ra-
dial and lateral pressures respectively. From the conservation equa-
tion T μν

;ν = 0 we obtain the hydrostatic equation for equilibrium 
of the matter sustaining the wormhole

p′
r = 2(pl − pr)

r
− (ρ + pr)φ

′. (5)

It becomes clear that the main condition for having a perfect 
fluid is given by

pr = pl. (6)

This condition on the radial and lateral pressures allows us to get 
the following differential equation connecting functions φ(r) and 
b(r):

φ′′ + φ′ 2 − b′r − 3b + 2r

2r(r − b)
φ′ = b′r − 3b

2r2(r − b)
. (7)

We may consider Eq. (7) as a differential equation for one of these 
involved functions, by giving the remaining one. By supposing that 
the redshift function φ(r) is given, we obtain a first order differen-
tial equation for the shape function b(r), whose general solution is 
given by

b(r) =
⎛
⎜⎝∫

2r
(
rφ′′ + rφ′ 2 − φ′) e

∫ 2r2φ′′+2r2φ′ 2−3rφ′−3
r(1+rφ′) dr

1 + rφ′ dr + C

⎞
⎟⎠

× e
− ∫ 2r2φ′′+2r2φ′ 2−3rφ′−3

r(1+rφ′) dr
, (8)

where C is an integration constant. Eqs. (7) and (8) have a gen-
eral character, in the sense that they do not involve an equation of 
state for ρ and p. It must be remarked that for these static con-
figurations, sustained by isotropic perfect fluids, the Einstein field 
equations are reduced to a set of three independent differential 
equations (2), (3) and (7) for four unknown functions, namely φ(r), 
b(r), ρ(r) and p(r). Thus, to study solutions to these field equa-
tions, restricted choices of one of the unknown functions must be 
considered.

To obtain a realistic stellar model, one can start with an equa-
tion of state. Such input equations of state do not normally allow 
for closed form solutions. In arriving to exact solutions, one can 
solve the field equations by making an ad hoc assumption for one 
of the metric functions or for the energy density. Hence the equa-
tion of state can be computed from the resulting metric.

3. On zero-tidal-force wormholes with isotropic pressure

It is well known that a simple class of solutions corresponds to 
zero-tidal-force wormhole spacetimes, which are defined by the 
condition φ(r) = φ0 = const [1,12]. By putting φ(r) = const into 
Eq. (8) we obtain b(r) = Cr3. By requiring that b(r0) = r0, the 
spacetime metric takes the form

ds2 = dt2 − dr2

1 −
(

r
r0

)2
− r2

(
dθ2 + sin2 θdφ2

)
. (9)

This metric represents a spacetime of constant curvature, for which 
the pressure and energy density are given by p = −ρ/3 = −1/κr2

0 , 
and it is a particular case of the well-known static Einstein uni-
verse (for which we have κρ = 3/r2

0 − 	 and κ p = −1/r2
0 + 	, 

where 	 is the cosmological constant).
The inverse of the radial metric component g−1

rr vanishes at 
r = r0, as we would expect for wormholes. However, for r > r0 the 
radial metric component grr becomes negative, so the solution is 
valid only for 0 ≤ r ≤ r0. This implies that there are no zero-tidal-
force wormhole solutions sustained everywhere by an isotropic 
perfect fluid. In other words, any zero-tidal-force wormhole must 
be filled by a single fluid with anisotropic pressure. Therefore, in 
order to generate spherically symmetric wormholes, sustained by 
a single matter source with isotropic pressure, we must consider 
spacetimes with φ(r) �= const.

Notice that this result does not mean that it is not possible to 
have a zero-tidal-force wormhole sustained by a perfect (ideal) 
fluid at spatial infinity. For an explicit example let us consider the 
spacetime

ds2 = dt2 − dr2(
r
r0

)α − 1
− r2

(
dθ2 + sin2 θdφ2

)
. (10)

For α > 0 the metric covers the range r0 ≤ r < ∞ and de-
scribes a wormhole spacetime. The energy density, radial and 

lateral pressures are given by κρ = − 1+α
2

(
r

r0

)α−2 + 2
r2 , κ pr =
r0
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1
r2

0

(
r

r0

)α−2 − 2
r2 and κ pl = α

2r2
0

(
r

r0

)α−2
. Since φ(r) = 0 this worm-

hole has anisotropic pressures as we would expect. The metric (10)
includes non-asymptotically flat spacetimes. Note that for α = 2
we have that ρ = −3/r2

0 + 2/r2, pr = 1/r2
0 − 2/r2 and pl = 1/r2

0 , 
obtaining at spatial infinity a spacetime with constant curvature 
and pr = pl = −ρ/3, which means that asymptotically we have a 
wormhole sustained by an ideal fluid (a string gas).

4. On spherical wormholes with isotropic pressure and linear 
equation of state

Since, for a vanishing redshift function, the only solution al-
lowed by the isotropic pressure condition (6) is the spacetime (9), 
we shall now on take into consideration a non-vanishing redshift 
function in all considered wormhole solutions.

In this section, in order to follow with our study, we shall im-
pose on the isotropic pressure the linear equation of state

p = ωρ, (11)

where the state parameter ω is a constant. Thus from Eq. (5) we 
have

ωρ ′ = −(1 + ω)ρφ′ (12)

and then the energy density is given by

ρ(r) = Ce− 1+ω
ω φ(r),

where C is an integration constant. If φ(r) = const we obtain that 
energy density is constant, in agreement with the result of the 
previous section.

From Eqs. (2), (7) and (12) the following master differential 
equation for the shape function b(r) is obtained:

−2r2ω(1 + ω)(r − b)b′b′′′ + 4ω

(
ω + 1

2

)
r2(r − b)b′′ 2

+ ωr((1 + ω)rb′ + (5ω − 3)b + 2r − 6ωr)b′b′′

− 3b′ 2
((

ω + 1

3

)
(1 + ω)rb′ −

(
1 + 5

3
ω2 + 16

3
ω

)
b + 8

3
ωr

)
= 0. (13)

In general it is hard to find analytical solutions to Eq. (13). Never-
theless, one can make some checks to prove the correctness of the 
above equation. Notice, for example, that Eq. (13) is fulfilled iden-
tically for b(r) = Ar3. Thus from Eq. (12) we obtain that ω = −1 or 
φ(r) = const. For the latter case p = −ρ/3 = −A, while for ω = −1
we have that eφ(r) = 1 − Ar2 with p = −ρ = −3A.

On the other hand, the first term of Eq. (13) vanishes for ω = 0
and ω = −1. Thus for ω = 0 we obtain b(r) = A, e2φ(r) = 1 − A/r, 
ρ = p = 0, i.e. the Schwarzschild solution. It is well known that 
the Schwarzschild solution may be interpreted as a non-traversable 
wormhole.

For ω = −1 we obtain the Kottler solution, i.e. b(r) = A + Br3, 
e2φ(r) = 1 − A/r − Br2, ρ = −p = 3B [13].

We turn next to often used power-law form of the shape func-
tion in wormhole spacetimes: b(r) = A/rn . This choice ensures that 
for r → ∞ and n > −1 the M-T constraint b(r)/r ≤ 1 is satisfied. 
Thus, by putting b(r) = A/rn into the master equation (13) we 
find that this equation is satisfied if n = −3 (for arbitrary ω) or 
n = −5/3 (and ω = −3).

The obtained negative values of the n-parameter are less 
than −1. This implies that there are no spherically symmetric 
traversable wormholes characterized by a radial metric compo-
nent given by g−1

rr = 1 − (r0/r)n+1 (with n > −1), and sustained 
by isotropic pressure sources with a linear equation of state (11), 
independently of the form of the redshift function φ(r). The impli-
cations of this result tell us that we must consider more general 
forms of the shape function b(r) and/or of the equation of state of 
the isotropic pressure p(ρ).

Lastly, let us note that this conclusion is not in agreement with 
the result obtained in subsection III-B of the Ref. [4], where the 
author discusses the non-asymptotically flat wormhole given by

ds2 = (r/r0)
2ω

(
3−α
1+ω

)
dt2 − dr2

1 − (r0/r)1−α
−

r2
(

dθ2 + sin2 θdφ2
)

, (14)

p = ωρ = − 1

8πr2
0

( r0

r

)3−α
, (15)

where α = −1/ω (see Eqs. (32) and (33) of Ref. [4]). Notice that 
the equation of state (15) has the linear form of Eq. (11) and the 
shape function just the form not allowed by the master Eq. (13), 
therefore this non-asymptotically flat solution is not consistent 
with Einstein equations (2)–(4). It becomes clear that this solution 
is defined by a redshift function of general form given by

eφ(r) =
(

r

r0

)β

, (16)

with β a constant. In the following section we shall discuss the 
solution generated by field equations (2)–(4) with the restricted 
choice (16).

5. On spherical wormhole with eφ(r) =
(

r
r0

)β

In order to show the correctness of the conclusion of the pre-
vious section, we must provide the static spherically symmetric 
solution with the specific choice of the power-law redshift func-
tion (16). In Ref. [14] Tolman provides explicit analytical solutions 
for static spheres of fluids with isotropic pressure. For our pur-
pose, it is convenient to consider the solution V, obtained in Sec. 4 
of Ref. [14], which justly takes into account the metric component 
gtt having the form of Eq. (16). We shall re-obtain the Tolman so-
lution by assuming that the redshift function is given by Eq. (16).

By putting Eq. (16) into Eq. (7) we find for the shape function

b(r) = β (β − 2)

β2 − 2β − 1
r − C r− (2 β+1)(−3+β)

1+β , (17)

where C is a constant of integration. It becomes clear that this 
form of the shape function is more general than the discussed 
above power-law shape function b(r) = A/rn , as we would expect. 
Thus, the metric, energy density and pressure are provided by

ds2 =
(

r

r0

)2β

dt2 − dr2

1 − β (β−2)

β2−2 β−1
+ C̃

(
r
r0

)− 2(β2−2β−1)
1+β

− r2
(

dθ2 + sin2 θdφ2
)

, (18)

κρ(r) = C̃

(
r

r0

)−2 −2 β−1+β2

1+β

(2β + 1) (β − 3) (1 + β)−1 r−2

+ (β − 2)β(−2β − 1 + β2
)

r2
, (19)

κ p(r) = (2β + 1) C̃

(
r

r0

)−2 −2 β−1+β2

1+β

r−2

− β2(−2β − 1 + β2
)

r2
, (20)
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respectively, where C̃ = Cr−2(β2−2β−1)/(1+β)

0 . Note that the pres-
sure is isotropic but not of barotropic type. We have such an 
equation of state only for C̃ = 0 and β = −1/2, obtaining for the 
latter value gtt = r0/r, g−1

rr = C̃r0/r − 4, and −p = ρ/5 = 1
κr2 , i.e. 

ω = −1/5. This solution exhibits a solid angle deficit, and does not 
describe a wormhole geometry.

By requiring the standard wormhole condition b(r0) = r0 on 
Eq. (17) we obtain for the metric (18) the following expression:

ds2 =
(

r

r0

)2β

dt2 − (1 + 2β − β2)dr2

1 −
(

r
r0

) 2(1+2β−β2)
1+β

−

r2
(

dθ2 + sin2 θdφ2
)

. (21)

In order to the metric (21) describes a traversable wormhole 
the condition 1+2β−β2

1+β
< 0 must be required, implying that the pa-

rameter β varies in the ranges β > 1 + √
2 or −1 < β < 1 − √

2. 
However, in this case 1 + 2β − β2 < 0, so the radial metric com-
ponent grr becomes negative, and then the metric (21) does not 
describe a wormhole solution.

The metric component grr does not change its sign if we re-

quire 1+2β−β2

1+β
> 0 and 1 + 2β − β2 > 0. This implies that the 

parameter β varies in the ranges 1 − √
2 < β < 1 + √

2. In this 
case the radial coordinate varies from zero to a maximum value 
rmax = r0 > 0, hence the solution corresponds to a fluid sphere of 
radius r0 with isotropic pressure.

Nevertheless, as we shall see in the following subsection, the 
considered Tolman solutions can describe wormhole geometries 
fulfilling the required conditions grr > 0 and r ≥ r0.

5.1. A truly wormhole geometry

In order to show that the metric (21) may correctly describe a 
Lorentzian spacetime for r ≥ r0 let us rewrite it in the following 
form:

ds2 =
(

r

r0

)2β

dt2 − (β2 − 2β − 1)dr2

(
r
r0

) 2(1+2β−β2)
1+β − 1

−

r2
(

dθ2 + sin2 θdφ2
)

. (22)

It becomes clear that this metric describes a Lorentzian spacetime 
for r ≥ r0 if β2 − 2 β − 1 > 0 and 1+2β−β2

1+β
> 0, which implies that 

the condition β < −1 must be required.
For the metric (22) the energy density and the isotropic pres-

sure are given by

κρ =
(

r
r0

)− 2(β2−2β−1)
1+β

(2β + 1)(β − 3)

(1 + β)(β2 − 2β − 1)r2
+

β(β − 2)

(β2 − 2β − 1)r2
, (23)

κ p =
(

r
r0

)− 2(β2−2β−1)
1+β

(2β + 1)

(β2 − 2β − 1)r2
−

β2

(β2 − 2β − 1)r2
. (24)

It is interesting to note that this geometry describes a spacetime 
with a solid angle deficit (or excess). This can be seen directly by 
making the rescaling �2 = (β2 − 2β − 1)r2. Then, the metric (22)
becomes

ds2 =
(

�

�0

)2β

dt2 − d�2

(
�
�0

) 2(1+2β−β2)
1+β − 1

−

�2

(β2 − 2β − 1)

(
dθ2 + sin2 θdφ2

)
. (25)

This new form of the metric (22) shows explicitly the presence of 
a solid angle deficit for −∞ < β < 1 − √

3 or 1 + √
3 < β < ∞, 

and a solid angle excess for 1 −√
3 < β < 1 −√

2 or 1 +√
2 < β <

1 + √
3. These topological defects vanish for β = 1 ± √

3, obtaining 
a non-flat asymptotic spacetime.

The geometrical properties and characteristics of these solu-
tions can be explored through the embedding diagrams, which 
helps to visualize the shape and the size of slices t = const, θ = π

2
of the metric (22) by using a standard embedding procedure in or-
dinary three dimensional Euclidean space. In general, in order to 
embed two dimensional slices t = const, θ = π

2 of the generic met-
ric (1) the equation

dz(r)

dr
= 1√

r
b(r) − 1

(26)

is used for the lift function z(r) [1]. Thus, for slices t = const, θ =
π
2 of the metric (22) we obtain for the first derivative of the lift 

function

dz(r)

dr
=

√√√√√√√√
β(β − 2) −

(
r
r0

) 2(1+2β−β2)
β+1

(
r

r0

) 2(1+2β−β2)
β+1 − 1

. (27)

This expression implies that at the throat dz(r)
dr = ∞, and it van-

ishes for β = 1 ± √
2 > −1, so we have the standard behaviour of 

this derivative at the wormhole throat. On the other hand, we can 
see from Eq. (27) that the embedding of considered spacetimes in 
ordinary three dimensional Euclidean space has a finite size since 
it extends from r0 up to a maximum radial value rmax . Effectively, 
the radial coefficient grr of the metric (22) implies that the denom-
inator of the fraction is positive for any r > r0, thus the numerator 

must be also positive. Then the condition β(β − 2) 
(

r
r0

) 2(β2−2β−1)
β+1 ≤

1 must be required, implying that r0 ≤ r ≤ rmax , where

rmax = r0(β(β − 2))
− β+1

2(β2−2β−1) . (28)

Notice that for any value of the β-parameter we have that 
dz(r)

dr |r0 = ∞ and dz(r)
dr |rmax = 0. It can be shown that for β = −1

this rmax = r0, as well as for β → −∞ we have that rmax → r0. The 
sphere rmax has a maximum value for β = −4.745695219 where 
it takes the value rmax = 1.232835973 r0. In Fig. 1 we show the 
behaviour of rmax for β ≤ −1 and r0 = 1.

In order to study the shape and the size of slices t = const, 
θ = π

2 of the metric (22) we shall consider for the β-parameter 
values β = −2, −3, −4.745695219, −10, −15, −30, −100 < −1. 
These embeddings are shown in Fig. 2. For a full visualization 
of the surfaces the diagrams must be rotated about the verti-
cal z-axis. We conclude from these diagrams that for β < −1 the 
metric (22) has typical wormhole shapes, i.e. presence of a global 
minimum at r = r0, where the throat of the wormhole is located. 
The radial extension for all embeddings is finite as we would ex-
pect, and the height of the z-function increases with decreasing 
β-parameter.
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Fig. 1. Plot shows the behaviour of rmax of Eq. (28) for β ≤ −1 and r0 = 1. The 
maximum value is reached at β = −4.745695219 where rmax = 1.232835973. For 
β → −∞ we have rmax → 1.

Fig. 2. Plots of the embedding function z(r) for various values of the β-parameter 
are shown. The throat width has been set to r0 = 1. The embedding of each slice 
t = const, θ = π

2 , β = const of the wormhole (22) extends from the throat r0 = 1
to rmax > r0. The height of the z-function increases with decreasing β-parameter. It 
becomes clear that as β → −∞ the rmax → r0 = 1.

In Fig. 3 we show three-dimensional wormhole embedding di-
agrams for the values of the β-parameter −2, −3, −4.745695219,

−10. It becomes clear that all embedding surfaces flare outward. 
This can be seen also from the fact that for the metric (22) the 
inverse of the embedding function r(z) satisfies

d2r/dz2 =
−r(β2 − 2β − 1)2

(
r
r0

)2β

r2
0(1 + β)

((
r

r0

) 2β2
1+β

(β2 − 2β) −
(

r
r0

) 2(2β+1)
1+β

)2
, (29)

implying that at the throat we have that

d2r/dz2|r0 = − 1

r0(1 + β)
, (30)

which is positive for any β < −1. Thus, the required flare-out con-
dition for the wormhole throat is satisfied [1]. Note that Eq. (30)
implies that for β → −∞ we have d2r/dz2|r0 → 0. By taking into 
Fig. 3. The figure shows three dimensional wormhole embedding diagrams for β =
−2, −3, −4.745695219, −10. The heights of the diagrams increase with decreasing 
β-parameter. The throat width is the same for all diagrams.

account that we have also that rmax → r0 if β → −∞, then we may 
conclude that the shape of the wormhole embedding becomes a 
cylinder of radius r0 for big negative values of the β-parameter.

In conclusion, the metric (22) describes a wormhole geometry 
with isotropic pressure which extends from r = r0 to r = ∞. Since 
these wormholes are not asymptotically flat, and the embedding 
in ordinary three dimensional Euclidean space extends from r0 to 
rmax , we may match them, as an interior spacetime, to an exterior 
vacuum spacetime at the finite junction surface r = rmax .

From Eqs. (23) and (24) we conclude that at the throat we have 
for the energy density that ρ(r0) < 0 if −3 < β < −1 and ρ(r0) ≥ 0
for β ≤ −3, while for the pressure we obtain p(r0) = −1/r2

0 < 0. 
On the other hand we have that

ρ + p =
2
(

r
r0

)− 2(β2−2β−1)
1+β

(2β + 1)(β − 1)

(1 + β)(β2 − 2β − 1)r2
−

2β

(β2 − 2β − 1)r2
, (31)

then at the throat ρ + p = 2
(1+β)r2

0
is fulfilled. Thus for β < −1 we 

have that always ρ + p < 0, which allows us to conclude that the 
energy conditions are not satisfied at the wormhole throat.

Since we are interested in studying static wormhole configura-
tions, for which we must require β < −1, we conclude that we 
have wormholes only exhibiting a solid angle deficit, for which we 
obtain that 0 < 1

β2−2β−1
< 1/2. The polar and azimuthal angles 

are restricted to 0 ≤ θ ≤ π and 0 ≤ φ < 2π , respectively, therefore 
0 ≤ θ̃ ≤ π/

√
2 and 0 ≤ φ̃ <

√
2π , where θ̃ = θ/

√
β2 − 2β − 1 and 

φ̃ = φ/
√

β2 − 2β − 1.

6. Conclusions

The study of spherically symmetric traversable wormholes 
in General Relativity has been mostly focused in sources with 
anisotropic pressures. In this work we present and discuss static 
spherical wormhole spacetimes supported by a single perfect fluid, 
for which the condition pr = pl must be required for radial and 
lateral pressures.

We show that it is not possible to sustain a zero-tidal-force 
wormhole by a perfect fluid, thus a single fluid threading a zero-
tidal-force wormhole must be necessarily anisotropic. This implies 
that if we want to generate spherically symmetric wormholes, sus-
tained by a single matter source with isotropic pressure, we must 
consider spacetimes with φ(r) �= const.
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Also we discuss the possibility of having isotropic fluids with a 
linear equations of state. In particular, we show that a wormhole 
with a power-law shape function cannot be supported by an ideal 
fluid with a linear equation of state. Therefore we consider more 
general forms for the shape function and the equation of state of 
the isotropic pressure.

In this manner, we generate and discuss the general solution for 
a non-asymptotically flat family of static wormholes characterized 
by a redshift function given by Eq. (16). The obtained wormhole 
solutions exhibit always a solid angle deficit and do not satisfy 
energy conditions. The embeddings of these spacetimes in ordi-
nary three dimensional Euclidean space have a finite size since 
they extend from r0 up to a maximum radial value rmax given 
by Eq. (28). However, notice that the metric (22), or equivalently 
the metric (25), is well behaved for r ≥ r0, including the sphere 
rmax . For r ≥ rmax wormhole slices cannot be embedded in an 
ordinary Euclidean space. Instead, a space with indefinite metric 
must be used. It is interesting to note that one may match such a 
non-asymptotically flat wormhole, as an interior spacetime, to an 
exterior vacuum spacetime at the finite junction surface r = rmax .
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