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Abstract

We study a natural notion of communication structure associated with asynchronous
automata: we characterize which transition systems are isomorphic to an asyn-
chronous automaton w.r.t. a given communication structure. For that, we present
an algorithm to split global states into local states of communicating processes,
similar to the regional technique for the synthesis problem of Petri nets. Our main
result is an axiomatic criterion for the communication structures which decompose
the same class of transition systems; this allows us to characterize and compare sev-
eral particular classes of asynchronous automata. An immediate corollary of this
study is a generic extension of Zielonka’s theorem. We finally apply this method
to asynchronous automata which describe systems of processes that communicate
through shared memories.

Key words: Asynchronous (cellular) automaton, (asynchronous)
transition system, Mazurkiewicz traces, shared memory,
distributed system, concurrency.

Introduction

The study of distributed systems uses several kinds of models such as Petri
nets, asynchronous transition systems, Mazurkiewicz traces or event struc-
tures. The comparison of these models essentially relies on the characterization
of their intrinsic expressive power with the help of semantics between distinct
levels of abstraction [2,16,5]; this allows to study such and such feature in the
most convenient model. For instance, the so-called synthesis problem consists
in deciding which transition systems correspond to the marking graph of par-
ticular classes of Petri nets; this issue was first tackled by Ehrenfeucht and
Rozenberg who introduced the theory of regions [8] and since then it has been
developed in many ways (see, e.g., [1,4]). In [12], we extended this issue to
synchronized products of automata and deterministic classical asynchronous
automata [17].

In this paper, we first address the question of characterizing several other
classes of asynchronous automata studied in the literature, namely the 2-
asynchronous automata [3], the cellular asynchronous automata [18] or the
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exclusive-read-owner-write asynchronous automata [6]. Each of these partic-
ular subclasses is characterized by some properties of the associated commu-
nication structures which specify read and write alphabets for each process.
In Section 2, we show how to decide whether a transition system may be de-
composed as a set of communicating processes w.r.t. a given communication
structure. We obtain a criterion similar to the regional axioms known for
Petri nets. We should recall here that such regional characterizations recently
proved to be useful to synthesize distributed systems from abstract specifica-
tions [1,4]. Similarly, it may be the case that the regional criterion obtained
here could help to build protocols for systems of communicating processes
satisfying some given specifications.

Next, we associate to each particular model a single specific communication
structure. Therefore, in order to compare the expressive power of particular
classes of asynchronous automata, we simply compare their associated com-
munication structures. For this, we introduce a simulation pre-order over the
set of communication structures. Our main result asserts that two communi-
cation structures decompose the same class of transition systems if and only
if they simulate one another (Th. 3.4).

As an immediate corollary, we observe that none of the generalizations
of classical asynchronous automata really extends their expressive power in
terms of underlying transition systems; moreover this study may be related
to Zielonka’s theorem [17,18] and lead to the following generalization: any
recognizable trace language is the language of a finite asynchronous automaton
w.r.t. to (almost) any communication structure.

Finally, in Section 4, we illustrate the generality of our approach and
present a specific communication structure for the asynchronous automata
which describe systems of processes communicating with shared memories
[10]. This completes the results of [12] which studies the transition systems
that correspond to distributed systems composed of processes and communi-
cation channels.

1 Basic Notions

Zielonka’s asynchronous automata are a useful model for concurrent systems;
they give theoretically a finite distributed implementation of any recogniz-
able trace language [17] and provide a framework for describing the behavior
of distributed systems or parallel machines [10]. The main aspect of this
model lies in the representation of the system as a set of interacting sequen-
tial components; therefore, global states appear as sets of local states: this is
the fundamental difference from the so-called asynchronous systems [2], trace
automata [16] or automata with concurrency relations [7] which are more ab-
stract representations of concurrent systems.
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Fig. 1. Independent automaton Ay

1.a Asynchronous Automata

Throughout the paper, we will consider a fixed alphabet ¥ equipped with a
symmetric and irreflexive relation || over X; this independence relation tells
which actions can occur simultaneously — or in any order — at distinct local-
ities of the network. Now, a very common way to represent the behaviors of a
concurrent system is simply to specify an automaton which describes its pos-
sible sequential executions: the concurrent runs of the system correspond then
to the associated Mazurkiewicz’ traces [5] w.r.t. the independence relation.

Definition 1.1 An independent automaton over (X,||) is a structure A =
(Q,S, X, —, F,||) where Q is a set of states, S C Q) is the non-empty set of
initial states, F' C () is the set of final states, and —C Q) X ¥ X ) 1s a set of
labeled transitions. As usual, we will write ¢ — ¢' instead of (q,a,q") e—.

In this paper, we assume that each state q is reachable, i.e. there is an integer
n € N, some states qo,..., ¢, and actions ay,..., a, such that ¢ — q1,...,
Qo1 = g, =q and ¢ € S. As usual we say that two independent automata
over (X,]|) are isomorphic if there is a one-to-one correspondence between
their sets of states which preserves the initial states, the final states, and the
labeled transitions. Note that, opposite to [2,16], we do not assume here any
link between the underlying transition system of an independent automaton
and its associated independence relation. Also, the independent automata
studied in this paper may be non-deterministic.

Example 1.2 Figure 1 describes an independent automaton A, with six states,
represented by circles, and eleven transitions, represented by labeled arrows.
There is no final state and only one initial state decorated with a grey arrow.

As explained above, a less abstract useful model for concurrent systems
is provided by asynchronous automata. We adopt here the definition intro-
duced by Diekert and Métivier [6] which extends both original asynchronous
automata [17] and cellular asynchronous automata [18]. Essentially, an asyn-
chronous automaton consists of a set K of processes which synchronize on
particular actions according to their respective read and write alphabets.
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Fig. 2. Asynchronous automaton As

Definition 1.3 An asynchronous automaton of rank K over (X, ]) is an in-
dependent automaton A= (Q, S, X, —, F, ||) for which there are

* a family of sets of local states (Qr),cx such that Q C [],cx @k,
* gread relation R C ¥ x K and and a write relation W C ¥ x K such that
So: for each action a € ¥, W(a) C R(a),

e for each action a € X, a transition function 6, C erR(a) Qr X erw(a) Qr,

such that the transitions of A respect the following synchronization rule
Vk & W(a),q, = qx
((‘Jk)keR(a) ’ (q;c)kEW(a)> € da

and the independence relation satisfies the two following conditions:

Si: Va,b € X: allb= W(a) N R(b) = 0;
Sy: Va,b € X: R(a) N R(b) =0 = al|b.

Here, the behavior of the system consists of transitions which synchronize
some particular processes: in order to perform a transition a, the local states
of the processes in its read domain R(a) are read and according to their values
and the transition function 0, some local changes of states are enabled for
the processes of its write domain W(a). This procedure is atomic. Now,
condition S; indicates that two actions a and b can occur independently —
hence in any order — only if action a cannot change the local states read by
b. Therefore, any asynchronous automaton satisfies the usual forward and
independent diamond properties [15,2,13,12].

(Qk)ke[( — (qllc)keK A

b b
FD: QIL%/\QI—>Q3/\a||b:>E|Q4€Q7QZ_>Q4/\Q3L>Q4-
a b b a
ID: ¢ — @2 — @ Aa|b=3g3 € Q,q1 — g3 — qu.

The second requirement S, for the independence relation insures that when-
ever two actions involve distinct components, they can occur independently;
this corresponds to the intuition of concurrency in systems of communicating
processes.



AVLAJALLN

Example 1.4 Figure 2 describes an asynchronous automaton As with two
processes x and y. Process x has two states; it can switch from 0 to 1 and
back by performing a transition a. Process y has three states; it can change
its local state from 0 to 1 with a transition b; the read domain R(c) of ¢
contains both x and y: depending on their local states, process y can perform
a transition c.

We remark here that A; and A, of Figures 1 and 2 are isomorphic: there is a
bijection between their states which preserves and reflects labeled transitions
and initial or final states. Unfortunately, most independent automata are not
isomorphic to an asynchronous automaton; that is why the construction of
a finite asynchronous automaton associated with a given recognizable trace
language is often not easy [17,11,18,9].

1.b  Particular Models

First, in the original model, there is no difference between the read domain or
the write domain of any action; therefore, we will say that an asynchronous
automaton is classical if R = W. In [3], it is proved that one can restrict
to classical asynchronous automata for which each process can perform only
two actions without loss of expressive power; the 2-asynchronous automata of
rank K are such that Vk € K: Card(R™'(k)) < 2. Next, in [18], Zielonka
introduced cellular asynchronous automata: here, each process is associated
with one specific action which is repeatedly performed according to the local
states of its neighbors; the network is formalized by the independence relation:
a Jf{b means that process a executes an action a depending on the local state
of process b. Formally, an asynchronous automaton of rank K is cellular if
K = ¥ and for each action a: W(a) = {a} and R(a) = {b € £ | b}fa}. Finally,
in [6], the more general model used in this paper is introduced (Def. 1.3)
together with the following properties.

Definition 1.5 Let A be an asynchronous automaton; A satisfies the Exclusi-
ve-Read property if VYa,b € ¥, a|lb & R(a) N R(b) = 0. It satisfies the
Concurrent-Read property if Va,b € 3, a||b & R(a)NW (b) = R(b)NW (a) = 0.
Finally, A is Owner-Write if W(a) "W (b) #0 = a = b.

The Concurrent-Read property corresponds to the so-called Bernstein condi-
tions whereas the Exclusive-Read property forbids simultaneous readings of
the local state of one process by two other ones. Clearly, any classical asyn-
chronous automaton satisfies the Exclusive-Read and the Concurrent-Read
properties; furthermore, any cellular asynchronous automaton is Owner-Write
and Concurrent-Read. Note also that the asynchronous automaton of Fig. 2
is not classical because R(c) # W (c). We should stress finally that Zielonka
introduced in [5, chap 7] some generalized asynchronous automata which are
not required to satisfy Axiom Sy of Def. 1.3. However, they are easily shown
to be isomorphic to Concurrent-Read asynchronous automata.

5



AVLAJALLN

2 Synthesis of Asynchronous Automata

In this section, we relate the model of independent automata with the model
of asynchronous automata. Precisely we characterize which independent au-
tomata can be decomposed into sequential communicating processes; this
study extends to non-deterministic and more general asynchronous automata
the technique sketched in [12]. We show moreover why the underlying algo-
rithm is much simpler when we restrict ourself to deterministic independent
automata.

2.6 Realizable Communication Structures

The distributed structure and the communication between the processes of
an asynchronous automaton of rank K is based on its read relation R and
its write relation W, this constitutes the communication structure of each
asynchronous automaton (Def. 1.3).

Definition 2.1 A communication structure of rank K is a pair 7 = (R, W)
of relations over ¥ X K satisfying axioms So, S1 and Se of Def. 1.3.

Note that if action a belongs to the write alphabet W~'(k) and action b be-
longs to the corresponding read alphabet R~'(k) then, by S;, a and b are
dependent; hence, each write alphabet is a clique! of the dependence graph
(X, )). Moreover, S, insures that each action appears in at least one read
alphabet.

Thus, in order to decompose an independent automaton A one has to
choose a communication structure 7 such that A is isomorphic to an asyn-
chronous automaton associated with 7. Such a communication structure is
called realizable for A.

Definition 2.2 A communication structure T is realizable for an indepen-
dent automaton A if A is isomorphic to an asynchronous automaton whose
commaunication structure 1S T.

Now, given a communication structure 7, we aim to know which indepen-
dent automata are isomorphic to an asynchronous automaton whose commu-
nication structure is 7. Clearly, these independent automata should fulfill the
classical diamond properties of so-called asynchronous systems [2,12]. Yet, a
more precise criterion is given by the following result.

Lemma 2.3 Let A be an independent automaton and 7 = (R, W) be a com-
munication structure of rank K. Then, T is realizable for A iff there are

equivalences (=g),cj over the states of A such that
NSi: ¢ = d' Ak g W(a)=q=p4q;

NS2: VQ17(]2 S Q (Vk € K7 41 =k q2) = 1 = @25

LA clique of (¥, Jf) is a subset A of ¥ such that Va,b € A, afb.
6
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NS3: Va € ¥, Vq1,¢2 € Q7 ¢ — g N (Vk € R(a),q1 =¢ 2) = 3¢5 : 2 —

Proof. We call co-orientation any family of equivalences (=)

gy Nk € W(a),q; = ¢5.

wex Satisfying

axioms NS, NSy, and NSs.

(1)

Assume that A is an asynchronous automaton of rank K. Then the
family of equivalences (E;c“)ke x defined by

—A
(Qk)keK =j (qllc)keK < q; = q}
over the communication structure 74 of A is a co-orientation. Clearly

(Ek‘A) her is a co-orientation over 7. Moreover, if A; and A, are iso-

morphic and if A; admits a co-orientation over 7 then A, admits a co-
orientation over 7 too.

Let 7 be a communication structure. If 7 admits a co-orientation of A
then A is isomorphic to an asynchronous automaton whose communica-
tion structure is 7.

Let A = (Q, S, X, —, F||) be an independent automaton and (=), x
be a co-orientation of A over 7. For each k € K, we consider ()}, the set of

equivalence classes of states w.r.t. =;. For each a € ¥, we write R(a) =
R7(a), W(a) = W (a) and consider 6, C [[;cpi) @k X [rew @ @r such
that
a. g VE € R(a) : la)k = ak
((Qk)keR(a) ) (q;c)kEW(a)) € 5(1 = Elq — q, 1 .A, , ,
Vk € W(a) : ||k = g,

where |¢]; denotes the equivalence class of ¢ w.r.t. =;. Finally, we
note

St = {(la)#)gex | 2 €S}
and

Ff = {(la)i)ex |0 € FY.
We consider then the asynchronous automaton

AT = (H Qka ST) 27 —>T7FT7 ||)
keK
whose transitions are given by

Vk ¢ W(a) = Gk

> i
((qk)keR(a) ’ (q;c)kEW(a)) € da

T
(@) ker — (@) ex &

We show that the map
p:A = Al

q — (LQJk)keK
is a isomorphism. It is clear that ¢ preserves the initial and final states.
Moreover, if ¢ — ¢' then, by NSy, o(q) LN ©(q'). Hence ¢ is a
7
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automaton Ay

morphism. By NSy, ¢ is one-to-one. On the other hand, if p(¢;) =
ql N (qf)pese in AT then there is a
for each k € R(a), ¢1 =k ¢3 and Vk € W (a):
is ¢» € Q such that ¢y — ¢» and Vk
now, for each k ¢ W(a), ¢, = |q1)x = [g2]k, hence ©(q2) = (q})pex- SO,
¢ is a bijection between the states of A and those of A'; it is even an
isomorphism.

transition g3 — ¢4 in A such that
lga]r = q,- By NS;, there

€ W(a): ¢ =g qu, i.e., @]k = ¢i;

Example 2.4 We consider here the independent automaton As described in
We wonder if As is isomorphic to an asynchronous automaton
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whose communication structure of rank [1,4] is 7 = (R, W) where R7'(1) =
W1) ={a,c}, R°Y2) = W Y2) = {b,d}, R"}(3) = W 1(3) = {b,c}, and
R7'(4) = W=Y(4) = {a,d}. For each process k € [1,4], we use an equiva-
lence =5 which identifies global states that correspond to the same local state.
Therefore, if ¢ — ¢' and k ¢ W (a) then q =, ¢'. In other words, Aziom NS,
leads to the four processes of Fig. 4 where |q|y denotes the equivalence class
of state q w.r.t =, and the transitions of each process are reduced to its write
alphabet. Precisely,

o for Process 1: 0=15,1=16,2=,7,3=,8,4=19 and1 =, 3;
o for Process 2: 0 =91=92,7T=96=25,8=529 and 0 =5 3 =, 4,
e for Process 3: 0=35,1=36,2=37,3=38,4=39 and 0 =3 3;
o for Process 4: 0 =41=42,7T=46=45,8=49 and 1 =4, 3 =, 4.

We observe now that the independent automaton Ajs is deterministic (Fig. 3);
therefore, in order to apply the technique detailed in the proof above and get
a deterministic asynchronous automaton we should identify also the states 5
and 8 in the processes 2 and 4. The point is that in the initial state, both
processes 2 and 4 can execute two transitions d. In that way, we obtain the
asynchronous automaton Ay of Fig. 5 which is isomorphic to the independent
automaton Az of Fig. 3.

2.b  Deterministic Independent Automata

Thus in order to split the states of an independent automaton into local states
of communicating processes, one has simply to choose an adequate family of
equivalences of (global) states and check that Axioms NS;, NSy and NS are
fulfilled. The naive underlying algorithm is clearly non-deterministic; however
we show now that this result leads to a deterministic polynomial algorithm
(in the size of the automaton) when we restrict ourself to deterministic inde-
pendent automata, that is to say such that there is only one initial state and
¢ -5 ¢ Nqg—¢" = ¢ =q". In the end of this section, we consider a fixed
communication structure 7 = (R, W) of rank K and we assume that A is a
deterministic independent automaton. Under these assumptions, the simpler
criterion will rely on a least family of equivalences according to the following
definition.

Definition 2.5 An orientation of A over is a family of equivalences (=) e x
over the states of A such that

DE;: ¢ — ¢ Ak g W(a) = q=i ¢;
2 g A gy -5 g
DE,: o i Ll vk e W(a),q| =k ¢
Vk € R(a), 1 =k ¢



AVLAJALLN

We say that an orientation (=), 5 smaller than an orientation (EL)
if for each k € K, EkQEL.

We remark now that this partial order of orientations admits a least element.

keK

Lemma 2.6 There is a least orientation of A over 7.

Proof. First, 7 admits some orientations, namely the full orientation such
that for each k € K, == Q) x ). We consider for each ky € K the equivalence
ELO defined by: ¢; ELO ¢ if, and only if, for each orientation (=),c, of 7,
q1 =k, q2- It is clear that if ¢ - ¢ and ko & W (a) then ¢ ELO q'; in fact,
for all orientation (=), of 7, Vk & W(a): ¢ = ¢'; in particular, ¢ =4, ¢'.
Hence ¢ E};O ¢'. Assume now that ¢ —— ¢} and ¢, — ¢, in A and that
for each k € R(a),q1 =) q». Let kg € K be such that ky € W(a). For
all orientation (=), of 7, for each k € R(a),q1 = ¢2 hence Yk € W(a):

qy =k ¢5. Consequently ¢} ELO ¢5. Therefore (E;L) is an orientation of 7.
keK

One can easily compute this particular orientation when A and 7 are finite.
Starting with the trivial equivalences (=), for which ¢ = ¢' iff ¢ = ¢’ we
first apply DE; and next repeatedly apply DE, until this second requirement
is fulfilled. This minimal orientation is now used for our first main result.

Theorem 2.7 Let (=;),c be the least orientation of A over 7. The com-
munication structure T is realizable for A iff the two following conditions are
satisfied:

DS,: Vg1, € Q: [Vk € K, q1 =k 2] = @1 = @o;
DSQ.’ Ya € 2, \V/ql,QQ - Q [ql L) AVE € R(a),q1 =L Q2| = Q2 L> .

Proof. If (=), satisfies DS; and DS, then clearly it satisfies NS;, NS, and
NS; so 7 is realizable for A. Conversely, we assume now that A is realizable

for A. Then there are equivalences <EL> satisfying NSy, NS, and NS;.
keK

Because A is deterministic, these equivalences form an orientation of A which

satisfies DS; and DS,. Now, because (=),.x is smaller than (EL) it
keK

satisfies DS; and DS, too. To see this, consider first ¢; and ¢y such that
Vk € K: ¢1 = q2. Then, Vk € K: ¢ EL g2 hence ¢q; = ¢». Consider now two

states g, and ¢, and an action a such that ¢, — and Yk € R(a): q1 =k ¢o;
then Vk € R(a): ¢ =) ¢ hence g, .

We remark here the similarity between conditions DS; and DS, and the
so-called regional separation azrioms used for the synthesis problem of Petri
nets [8,1].

Example 2.8 We consider here again the independent automaton A, of Fig.

1 and the communication structure of rank K = {x,y} for which W(a) =

R(a) = {z}, W(b) = R(b) = {y}, W(c) = {y} and R(c) = {z,y}. Ap-
10
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plying conditions DE, and DEy leads to the following identifications: by DEq,
0=,2=,3and 1 =, 4; by DEy, 4 =, 5 because R(a) = {z} and 0 =, 2. On
the other hand, 0 =, 4, 1 =, 3 and 2 =, 5. We easily check that these equiv-
alences satisfy DSy and DSy; therefore, Ay is isomorphic to an asynchronous
automaton.

We remark finally that the problem of deciding whether a deterministic
independent automaton is isomorphic to an asynchronous automaton is NP:
if A has n states and m actions, we need to find a realizable communication
structure with n?.(m + 1) processes in order to fulfill DS; and DS,. More
precisely, for each pair of distinct states (qi,¢2), there must be a process k
such that =(¢; =, ¢2) in order to fulfill DS;. Furthermore, for each pair of
states (q1,¢2) and each action a such that ¢, —— and —(g, —=), there must
be a process k € R(a) such that =(¢; =, ¢2) in order to fulfill DS,. Thus we
need less than n? + n?.m processes.

3 Classification of Asynchronous Automata

We now come to the core of the paper. As detailed in Section 1, several
variations of the original notion of asynchronous automaton have been intro-
duced in the literature; for instance, 2-asynchronous automata [3], cellular
asynchronous automata [18], or exclusive-read owner-write asynchronous au-
tomata [6] keep the expressive power of classical asynchronous automata: they
correspond to all recognizable trace languages. Yet, these models are not struc-
turally equivalent, as remarked previously by Pighizzini [14]. In this section,
we show how the study of realizable communication structures of Section 2
can be applied to compare these classes of asynchronous automata and leads
to a simple criterion for structurally equivalent models. First, one can naively
associate to each particular model a corresponding communication structure.

Example 3.1 We consider first the communication structure 7¢ = (R,
Weet) of rank K = ¥ over (%,]|) such that for each action a € &, We(a) =
{a} and R*(a) = {b € ¥ | alfp}. Clearly, an independent automaton A
is isomorphic to a cellular asynchronous automaton iff 7¢° is realizable for
A (Theorem 2.7). Thus 7 characterizes the class of cellular asynchronous
automata.

Next, different models will be compared w.r.t. the relation between their as-
sociated communication structure. In that way, we will establish for instance
that any owner-write asynchronous automaton is isomorphic to a cellular asyn-
chronous automaton and that any asynchronous automaton is isomorphic to a
classical asynchronous automaton. The results of this section hold for possibly
non-finite state and non-deterministic asynchronous automata.

11
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We naturally associate to any communication structure the class of indepen-
dent automata for which it is realizable. This leads to the following natural
notion of equivalent communication structures.

Definition 3.2 Two communication structures Tt and 72 are equivalent if for
each independent automaton A, 7' is realizable for A iff 72 is realizable for

A.

In other words, two communications structures are equivalent if they corre-
spond to the same class of independent automata. We give here a simple
axiomatic criterion for equivalent communication structures; this essentially
relies on the following simulation pre-order.

Definition 3.3 A communication structure 7' = (R*, W') of rank K simu-
lates a communication structure 7% = (R?*, W?) of rank J if

VjeJ, Yae: je R(a) = Ik € RYa), (W2) " (j) C (WY (k).
This abstract notion of simulation is justified by our main result below (Th.
3.4): 7! simulates 72 iff any asynchronous automaton with communication

structure 72 is isomorphic to another asynchronous automaton with commu-
nication structure 7.

Theorem 3.4 Let 7! and 72 be two communication structures; the following

conditions are equivalent:

(i) 7' simulates T%;

(i) for each independent automaton A: if 72 is realizable for A then 7' is
also realizable for A;

(ili) for each independent automaton A: if A is isomorphic to an asynchronous

automaton whose communication structure is T2 then A is also isomorphic

to an asynchronous automaton whose communication structure is T°.

Proof. By Definition 2.2, (ii) < (ii). We note 7! = (R, W!) and 72 =
(R?*, W?) two communication structures of rank K and J respectively. First,
(i) = (ii): by Lemma 2.3, we can consider some equivalences (E?)J,EJ satisfying
NS;, NS,, and NS3. We define the family of equivalences (E}f)keK by

a=hd e Ve (WG C ) k) = g =2 o
and check easily that it satisfies NS; and NS,.

NS;: Consider ¢ — ¢’ and k € K such that k ¢ W'(a). For j € J such
that (W?2) " (j) € (WY " (k): we have k & W'(a) hence j & W2(a)
and ¢ =5 ¢'. Hence, ¢ = ¢

NS,: Consider ¢; and g, such that Vk € K: q; =} qo. For each j € J, there
is a process k € K such that (W2) ' (j) € (W) " (k); now ¢ =} ¢
SO qq E? q2. Hence q; = qs.

12
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We observe that it also satisfies NS;: consider a € ¥ and ¢y, ¢}, ¢2 such that
@1 — ¢, and Vk € R'(a), ¢ = q2. We consider first j € J such that
J € R?(a); there is k € K such that (W2)~" (j) € WY~ (k) and k € R(a):
hence q; =; ¢2 and ¢ —] ¢. Therefore, there is ¢, such that ¢, — ¢} and
Vj € W*(a), ¢ =7 ¢3. Consider k € K such that k € W'(a); for each j € J
such that (W2)~' (j) € (WY ™" (k), if j € W2(a) and then ¢| =2 q3; otherw1se
j & W?a): ¢ =5 ¢ and ¢4 =5 qo; now k € Wl( ) € R'(a) so q1 =}, ¢o,
¢ =; ¢z and ¢ =; ¢5. Thus, in any case, ¢; =5 ¢5. Hence ¢{ =; ¢5.Therefore
7! is also realizable for A.

Now, =(i) = =(ii): there are ayp € ¥ and j, € R?(ag) such that Vk €
K, W2 (jo) € WY (k) = k & R'ap). We build the deterministic
automaton A with two states, 0 and 1, such that 0 — 0 if a # ay and
j0§ZW2() 0 -2 1if jo € W2(a), and for all a € 3, 1L>1 Wecheck
that 72 is a realizable communication structure of A but not 7. First, 72 is
realizable for A. We consider the equivalences (52)]E , over the states 0 and

1 such that j # jo & 0 = 2 1. We easily check that it satisfies DE;, DE,,
DSl, and DS,. of A. First, DE1 is satisfied; otherwise there exists an action
a € X such that j, ¢ W2(a) and 0 — 1. Now, DE; is also satisfied; otherwise
there are states qi, ¢}, g2 and ¢}, and an action a € ¥ such that ¢, — ¢,
@& = ¢, Vi € R*(a),q =7 ¢» but jo € W?(a) and ¢} #5 qj; therefore
¢ # 4y 1 # g2 and q =3 gy because jo € W?(a) € R*(a). Clearly, DS, is
fulfilled because =(0 =3, 1). Finally, DS, is fulfilled too because each action is
enabled in each state, except ag which is maybe not enabled in the initial state
0 if jo & W?*(ao); now if DS, is not satisfied then for all j € R*(ao), 0 = 1:
in particular, 0 =5 1. Now, 7' is not realizable for A. Assume that 7' i
realizable for A; then there are equivalences (=}),  over the states 0 and 1
which satisfy NS;, NS;, and NS;. By NSy, there is kg € K such that =(0 =, 1)
s0, by NSy, (W2) ™" (jo) € (W) ™" (ko), ko & R'(ay) and jo & W?(ap). For any
ke K, if =(0 =L 1) then (W2)™" (jo) € (WY~ (k) so k & R'(ay); in other
words Yk € R(ap): 0 =} 1. Now 1 2% 150 0 =% 1 by NS;. Yet, jo & W2(ay).

We finally obtain the following useful criterion.

Corollary 3.5 Two communication structures are equivalent (Def. 3.2) iff
they simulate one another.

Example 3.6 Consider the communication structure 7 = (R, W) of
rank K = {(a,b) | allb} such that (a,b) € W(c) & ¢ =a and (a,b) € R(c) &
c € {a,b}; then, by Theorem 3.4, an independent automaton A is isomorphic
to a Owner-Write asynchronous automaton iff 7° is realizable for A; further-
more TV is equivalent to 7! of Example 3.1. Therefore any Owner-Write
asynchronous automaton s isomorphic to a cellular asynchronous automaton.
Conversely, Theorem 3.4 also enables us to prove easily a result of [6]: any cel-
lular asynchronous automaton is isomorphic to an exclusive-read owner-write
asynchronous automaton.

13



AVLAJALLN

Particular Model Associated Communication Structure(s)

asynchronous automata (a.a.) 7¢e over {A C ¥ | A maximal clique of (, }f)}

classical a.a. such that R'%(a) = W (a) = {k | a € k}

classical 2-asynchronous automata | 7¢@ over {{a,b} C ¥ | alfb} such that

Rt (a) = We(a) = {k | a € k}

Owner-Write a.a. r¢el 7 are equivalent (Examples 3.1 and 3.6)

cellular a.a.

Table 1
Some communication structures and their associated independent automata.

3.b Characterizations and Comparisons of Particular Models

Continuing the preceding example, many classes of asynchronous automata
may be characterized by a specific communication structure with the help of
Th. 3.4. For instance, we establish the characterizations of particular models
detailed in Table 1. First, we obtain the result of [12]: an independent
automaton 4 is isomorphic to a classical asynchronous automaton iff 7¢¢
is realizable w.r.t. A. Next we claim that any communication structure is
simulated by 7¢%; therefore, according to Th. 3.4, an independent automaton
is isomorphic to an asynchronous automaton iff 7¢¢ is realizable w.r.t. A.
Moreover, we obtain the noteworthy following result: none of the extensions
of classical asynchronous automata really extends their expressive power.

Corollary 3.7 Any asynchronous automaton is isomorphic to a classical asyn-
chronous automaton.

Consequently any generalized asynchronous automaton of [5, chap. 7] is also
isomorphic to a classical asynchronous automaton.

Theorem 3.4 enables us to prove easily that an independent automaton A
is isomorphic to a classical 2-asynchronous automaton iff the communication
structure 7¢* defined in Table 1 is realizable for .A. Now, we observe that 7¢¢
simulates 7¢* which simulates 7¢! but none of the converses holds — as soon
as (3, J/) admits a 3-clique. Therefore, we obtain the following strict inclusions
of models (up to isomorphisms):

cellular a.a. C classical 2-asynchronous automata C (classical) a.a.

3.c Implementation of Recognizable Trace Languages

Due to Zielonka’s theorem [18], any recognizable trace language is the language
of a finite cellular asynchronous automaton. Now, according to the inclusion
of models above, it is also the language of a finite classical 2-asynchronous
automaton and of a finite classical automaton, as also previously established
in [3,17]. In fact, Zielonka’s theorem holds for many other communications
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structures.

Corollary 3.8 Let L be a recognizable trace language over (3,||) and 7 =
(R, W) a communication structure such that aljfb = W(a) N R(b) # (. Then
there exists a finite asynchronous automaton whose language is L and whose
communication structure is 7.

Proof. Clearly, 7 simulates 7°; we simply use Zielonka’s construction [18]
and apply Theorem 3.4.

4 Asynchronous Shared Memory Systems

Asynchronous automata can describe many kinds of distributed systems or
parallel machines; in this section, we focus on systems of processes which
communicate through shared memories [10]. In this context, each synchro-
nized action represents a particular process reading or writing the value of a
specific memory; consequently, it involves only two components of the system:
therefore, we will assume that for any synchronized action a, Card(R(a)) = 2.
The other actions are restricted to only one component; they can represent a
local computation or an interaction with the environment: for technical con-
venience, we will assume here that the system admits at least one action d
which is not a synchronization: Card(R(d)) = 1. We will also assume in this
section that the dependence graph (3, ||) is connected; otherwise the system
can be split into several parts which behave independently. Finally, the so-
called “shared-memory” asynchronous automata introduced below satisfy the
Exclusive-Read condition (Def. 1.5); this means that processes can read the
value of a shared memory only one at a time.

Definition 4.1 An asynchronous automaton A is said shared-memory if it
satisfies the Ezxclusive-Read property and the two following conditions:

SM;: Va € ¥: Card(R(a)) < 2;
SMy: 3d € B, Card(R(d)) = 1.

For these asynchronous automata, the actions d which involve only one com-
ponent of the system satisfy the following property: Va,b € ¥, al{d b = alfb;
such an action d will be called an operation of (X, ]|). Moreover, the family of
read alphabets (R™"(k)),.f is a covering by cliques of the dependence graph
(3, )f) and each action appears in less than two read alphabets: we will say
that (R™'(k)),cp is a 2-covering of (X, ||). That is why we will naturally fo-
cus in the end of this section on concurrent alphabets (X, ||) which admit an
operation and a 2-covering.

In order to characterize which independent automata correspond to a
shared-memory asynchronous automaton, we will use the construction of the
“optimal alphabets” introduced in [12].

Definition 4.2 The set of optimal alphabets Q is the least set of subsets of
Y. such that
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O1: for all operation d, {a € ¥ | alld} € 2,

O: VA e, Va,be X, (ac ANbE ANallb) = {cfla| cg AVcQa} € Q,
where aQb means Ve € X : al|c < bl|c.
Note here that € is empty if there is no operation in (X, ||).

Theorem 4.3 Let (X, ||) admit an operation and a 2-covering and T°P* be the
communication structure of rank Q such that Va € ¥, R(a) = W(a) = {A €
Q| a€ A}. An independent automaton A is isomorphic to a shared-memory
asynchronous automaton iff T°P is a realizable communication structure of A.

Opposite to classical or cellular asynchronous automata, finite shared-
memory asynchronous automata do not correspond to all recognizable trace
languages [17,18,6] because their associated concurrent alphabet (3, ||) have
some particular properties: as explained above, they admit an operation and
a 2-covering. Yet, we have the following converse.

Corollary 4.4 Let (3,||) admit an operation and a 2-covering; any recog-
nizable trace language L over (X,]||) is obtained by a finite shared-memory
asynchronous automaton.

Proof. Let A be a finite cellular asynchronous automaton which recognizes

L; then 7°? is a realizable communication structure of A and 7°°* simulates
ow
Tov,

Conclusion

In this paper, we have introduced a correspondence between a natural notion
of communication structure and some particular classes of asynchronous au-
tomata studied in the literature. On one hand, we characterized the structural
properties of these classes up to isomorphisms, which allow to decide which
transition systems can be split as systems of cooperating processes w.r.t. a
given communication structure. On the other hand, we presented a simple
axiomatic criterion for the communication structures associated to the same
class of transition systems. We showed how this study leads to a generalization
of Zielonka’s theorem; however, it is still unclear to us whether it also holds for
some other communication structures which do not satisfy the restriction that
alfb = W(a) N R(b) # 0. Clearly, such an extension would not rely directly
on Zielonka’s construction.

Finally we applied this study to a subclass of asynchronous automata
which corresponds to the widely used model of asynchronous shared memory
[10]. A particular communication structure based on the optimal alphabets of
[12] characterizes this model; moreover, an adaptation of Zielonka’s theorem is
also established. In this direction, and similarly to the work of Darondeau [4],
an interesting problem would be to use the regional technique developed here
to produce automatically protocols satisfying some given safety and liveness
properties.
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