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Abstract

We study a natural notion of communication structure associated with asynchronous

automata� we characterize which transition systems are isomorphic to an asyn�

chronous automaton w�r�t� a given communication structure� For that� we present

an algorithm to split global states into local states of communicating processes�

similar to the regional technique for the synthesis problem of Petri nets� Our main

result is an axiomatic criterion for the communication structures which decompose

the same class of transition systems� this allows us to characterize and compare sev�

eral particular classes of asynchronous automata� An immediate corollary of this

study is a generic extension of Zielonka�s theorem� We �nally apply this method

to asynchronous automata which describe systems of processes that communicate

through shared memories�
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transition system� Mazurkiewicz traces� shared memory�
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Introduction

The study of distributed systems uses several kinds of models such as Petri

nets� asynchronous transition systems� Mazurkiewicz traces or event struc�

tures� The comparison of these models essentially relies on the characterization

of their intrinsic expressive power with the help of semantics between distinct

levels of abstraction �������	
 this allows to study such and such feature in the

most convenient model� For instance� the so�called synthesis problem consists

in deciding which transition systems correspond to the marking graph of par�

ticular classes of Petri nets
 this issue was �rst tackled by Ehrenfeucht and

Rozenberg who introduced the theory of regions ��	 and since then it has been

developed in many ways 
see� e�g�� ����	�� In ���	� we extended this issue to

synchronized products of automata and deterministic classical asynchronous

automata ���	�

In this paper� we �rst address the question of characterizing several other

classes of asynchronous automata studied in the literature� namely the ��

asynchronous automata ��	� the cellular asynchronous automata ���	 or the
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exclusive�read�owner�write asynchronous automata ��	� Each of these partic�

ular subclasses is characterized by some properties of the associated commu�

nication structures which specify read and write alphabets for each process�

In Section �� we show how to decide whether a transition system may be de�

composed as a set of communicating processes w�r�t� a given communication

structure� We obtain a criterion similar to the regional axioms known for

Petri nets� We should recall here that such regional characterizations recently

proved to be useful to synthesize distributed systems from abstract speci�ca�

tions ����	� Similarly� it may be the case that the regional criterion obtained

here could help to build protocols for systems of communicating processes

satisfying some given speci�cations�

Next� we associate to each particular model a single speci�c communication

structure� Therefore� in order to compare the expressive power of particular

classes of asynchronous automata� we simply compare their associated com�

munication structures� For this� we introduce a simulation pre�order over the

set of communication structures� Our main result asserts that two communi�

cation structures decompose the same class of transition systems if and only

if they simulate one another 
Th� �����

As an immediate corollary� we observe that none of the generalizations

of classical asynchronous automata really extends their expressive power in

terms of underlying transition systems
 moreover this study may be related

to Zielonka�s theorem ������	 and lead to the following generalization� any

recognizable trace language is the language of a �nite asynchronous automaton

w�r�t� to 
almost� any communication structure�

Finally� in Section �� we illustrate the generality of our approach and

present a speci�c communication structure for the asynchronous automata

which describe systems of processes communicating with shared memories

���	� This completes the results of ���	 which studies the transition systems

that correspond to distributed systems composed of processes and communi�

cation channels�

� Basic Notions

Zielonka�s asynchronous automata are a useful model for concurrent systems


they give theoretically a �nite distributed implementation of any recogniz�

able trace language ���	 and provide a framework for describing the behavior

of distributed systems or parallel machines ���	� The main aspect of this

model lies in the representation of the system as a set of interacting sequen�

tial components
 therefore� global states appear as sets of local states� this is

the fundamental di�erence from the so�called asynchronous systems ��	� trace

automata ���	 or automata with concurrency relations ��	 which are more ab�

stract representations of concurrent systems�
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� Independent automaton A�

��a Asynchronous Automata

Throughout the paper� we will consider a �xed alphabet � equipped with a

symmetric and irre�exive relation k over �
 this independence relation tells

which actions can occur simultaneously � or in any order � at distinct local�

ities of the network� Now� a very common way to represent the behaviors of a

concurrent system is simply to specify an automaton which describes its pos�

sible sequential executions� the concurrent runs of the system correspond then

to the associated Mazurkiewicz� traces ��	 w�r�t� the independence relation�

De�nition ��� An independent automaton over 
�� k� is a structure A �


Q� S� ����� F� k� where Q is a set of states� S � Q is the non�empty set of

initial states� F � Q is the set of �nal states� and ��� Q���Q is a set of

labeled transitions� As usual� we will write q
a

�� q
� instead of 
q� a� q�� ����

In this paper� we assume that each state q is reachable� i�e� there is an integer

n � IN� some states q������ qn and actions a������ an such that q�
a��� q������

qn��

an�� qn � q and q� � S� As usual we say that two independent automata

over 
�� k� are isomorphic if there is a one�to�one correspondence between

their sets of states which preserves the initial states� the �nal states� and the

labeled transitions� Note that� opposite to �����	� we do not assume here any

link between the underlying transition system of an independent automaton

and its associated independence relation� Also� the independent automata

studied in this paper may be non�deterministic�

Example ��� Figure � describes an independent automaton A� with six states�

represented by circles� and eleven transitions� represented by labeled arrows�

There is no �nal state and only one initial state decorated with a grey arrow�

As explained above� a less abstract useful model for concurrent systems

is provided by asynchronous automata� We adopt here the de�nition intro�

duced by Diekert and M�etivier ��	 which extends both original asynchronous

automata ���	 and cellular asynchronous automata ���	� Essentially� an asyn�

chronous automaton consists of a set K of processes which synchronize on

particular actions according to their respective read and write alphabets�
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Fig� �� Asynchronous automaton A�

De�nition ��� An asynchronous automaton of rank K over 
�� k� is an in�

dependent automaton A � 
Q� S� �� ��� F � k� for which there are

� a family of sets of local states 
Qk�k�K such that Q �
Q
k�K

Qk�

� a read relation R � ��K and and a write relation W � ��K such that

S�� for each action a � �� W 
a� � R
a��

� for each action a � �� a transition function �a �
Q
k�R�a�Qk�

Q
k�W �a�Qk�

such that the transitions of A respect the following synchronization rule


qk�k�K
a
�� 
q�

k
�
k�K

�

�
�
�
�k �� W 
a�� q�

k
� qk�


qk�k�R�a� � 
q
�

k
�
k�W �a�

�
� �a

and the independence relation satis�es the two following conditions�

S�� �a� b � �� akb	 W 
a� 
R
b� � ��
S�� �a� b � �� R
a� 
 R
b� � � 	 akb�

Here� the behavior of the system consists of transitions which synchronize

some particular processes� in order to perform a transition a� the local states

of the processes in its read domain R
a� are read and according to their values

and the transition function �a some local changes of states are enabled for

the processes of its write domain W 
a�� This procedure is atomic� Now�

condition S� indicates that two actions a and b can occur independently �

hence in any order � only if action a cannot change the local states read by

b� Therefore� any asynchronous automaton satis�es the usual forward and

independent diamond properties �����������	�

FD� q�
a
�� q� � q�

b
�� q� � akb	 
q� � Q� q�

b
�� q� � q�

a
�� q��

ID� q�
a
�� q�

b
�� q� � akb	 
q� � Q� q�

b
�� q�

a
�� q��

The second requirement S� for the independence relation insures that when�

ever two actions involve distinct components� they can occur independently


this corresponds to the intuition of concurrency in systems of communicating

processes�

�
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Example ��� Figure � describes an asynchronous automaton A� with two

processes x and y� Process x has two states� it can switch from � to � and

back by performing a transition a� Process y has three states� it can change

its local state from � to � with a transition b� the read domain R
c� of c

contains both x and y� depending on their local states� process y can perform

a transition c�

We remark here that A� and A� of Figures � and � are isomorphic� there is a

bijection between their states which preserves and re�ects labeled transitions

and initial or �nal states� Unfortunately� most independent automata are not

isomorphic to an asynchronous automaton
 that is why the construction of

a �nite asynchronous automaton associated with a given recognizable trace

language is often not easy �����������	�

��b Particular Models

First� in the original model� there is no di�erence between the read domain or

the write domain of any action
 therefore� we will say that an asynchronous

automaton is classical if R � W � In ��	� it is proved that one can restrict

to classical asynchronous automata for which each process can perform only

two actions without loss of expressive power
 the ��asynchronous automata of

rank K are such that �k � K� Card
R��
k�� � �� Next� in ���	� Zielonka

introduced cellular asynchronous automata� here� each process is associated

with one speci�c action which is repeatedly performed according to the local

states of its neighbors
 the network is formalized by the independence relation�

a � kb means that process a executes an action a depending on the local state

of process b� Formally� an asynchronous automaton of rank K is cellular if

K � � and for each action a� W 
a� � fag and R
a� � fb � � j b � kag� Finally�
in ��	� the more general model used in this paper is introduced 
Def� ����

together with the following properties�

De�nition ��� Let A be an asynchronous automaton� A satis�es the Exclusi�

ve�Read property if �a� b � �� akb � R
a� 
 R
b� � �� It satis�es the

Concurrent�Read property if �a� b � �� akb� R
a�
W 
b� � R
b�
W 
a� � ��
Finally� A is Owner�Write if W 
a� 
W 
b� �� � 	 a � b�

The Concurrent�Read property corresponds to the so�called Bernstein condi�

tions whereas the Exclusive�Read property forbids simultaneous readings of

the local state of one process by two other ones� Clearly� any classical asyn�

chronous automaton satis�es the Exclusive�Read and the Concurrent�Read

properties
 furthermore� any cellular asynchronous automaton is Owner�Write

and Concurrent�Read� Note also that the asynchronous automaton of Fig� �

is not classical because R
c� �� W 
c�� We should stress �nally that Zielonka

introduced in ��� chap �	 some generalized asynchronous automata which are

not required to satisfy Axiom S� of Def� ���� However� they are easily shown

to be isomorphic to Concurrent�Read asynchronous automata�

�
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� Synthesis of Asynchronous Automata

In this section� we relate the model of independent automata with the model

of asynchronous automata� Precisely we characterize which independent au�

tomata can be decomposed into sequential communicating processes
 this

study extends to non�deterministic and more general asynchronous automata

the technique sketched in ���	� We show moreover why the underlying algo�

rithm is much simpler when we restrict ourself to deterministic independent

automata�

��a Realizable Communication Structures

The distributed structure and the communication between the processes of

an asynchronous automaton of rank K is based on its read relation R and

its write relation W 
 this constitutes the communication structure of each

asynchronous automaton 
Def� �����

De�nition ��� A communication structure of rank K is a pair � � 
R�W �

of relations over ��K satisfying axioms S�� S� and S� of Def� ��	�

Note that if action a belongs to the write alphabet W��
k� and action b be�

longs to the corresponding read alphabet R��
k� then� by S�� a and b are

dependent
 hence� each write alphabet is a clique � of the dependence graph


�� � k�� Moreover� S� insures that each action appears in at least one read

alphabet�

Thus� in order to decompose an independent automaton A one has to

choose a communication structure � such that A is isomorphic to an asyn�

chronous automaton associated with � � Such a communication structure is

called realizable for A�

De�nition ��� A communication structure � is realizable for an indepen�

dent automaton A if A is isomorphic to an asynchronous automaton whose

communication structure is � �

Now� given a communication structure � � we aim to know which indepen�

dent automata are isomorphic to an asynchronous automaton whose commu�

nication structure is � � Clearly� these independent automata should ful�ll the

classical diamond properties of so�called asynchronous systems �����	� Yet� a

more precise criterion is given by the following result�

Lemma ��� Let A be an independent automaton and � � 
R�W � be a com�

munication structure of rank K� Then� � is realizable for A i
 there are

equivalences 
�k�k�K over the states of A such that

NS�� q
a
�� q� � k �� W 
a�	 q �k q

��

NS�� �q�� q� � Q� 
�k � K� q� �k q��	 q� � q��

� A clique of ��� � k� is a subset � of � such that �a� b � �� a� kb�

�
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NS�� �a � �� �q�� q� � Q� q�
a

�� q
�
� � 
�k � R
a�� q� �k q��	 
q�� � q�

a

��

q
�
� � �k � W 
a�� q�� �k q

�
��

Proof� We call co�orientation any family of equivalences 
�k�k�K satisfying

axioms NS�� NS�� and NS��


i� Assume that A is an asynchronous automaton of rank K� Then the

family of equivalences
�
�A
k

�
k�K

de�ned by


qk�k�K �A

j

q�
k
�
k�K

� qj � q
�

j

over the communication structure �A of A is a co�orientation� Clearly�
�A
k

�
k�K

is a co�orientation over � � Moreover� if A� and A� are iso�

morphic and if A� admits a co�orientation over � then A� admits a co�

orientation over � too�


ii� Let � be a communication structure� If � admits a co�orientation of A

then A is isomorphic to an asynchronous automaton whose communica�

tion structure is � �
LetA � 
Q� S������ F� k� be an independent automaton and 
�k�k�K

be a co�orientation of A over � � For each k � K� we consider Qk the set of
equivalence classes of states w�r�t� �k� For each a � �� we write R
a� �
R
� 
a�� W 
a� � W

� 
a� and consider �a �
Q

k�R�a�Qk �
Q

k�W �a�Qk such

that

�
�qk	k�R�a� �

�
q
�
k

�
k�W �a�

�
� �a � �q

a
�� q

� in A�

��
�
�k � R�a	 � bqck � qk

�k �W �a	 � bq�ck � q
�
k

where bqck denotes the equivalence class of q w�r�t� �k� Finally� we

note

S
y � f
bqck�k�K j q � Sg

and

F
y � f
bqck�k�K j q � Fg�

We consider then the asynchronous automaton

Ay � 

Y
k�K

Qk� S
y
�����y

� F
y
� k�

whose transitions are given by


qk�k�K
a

��
y


q�
k
�
k�K

�

��
�
�k �� W 
a�� q�

k
� qk�


qk�k�R�a� � 
q
�
k
�
k�W �a�

�
� �a

We show that the map

� �A � Ay

q �� 
bqck�k�K

is a isomorphism� It is clear that � preserves the initial and �nal states�

Moreover� if q
a

�� q
� then� by NS�� �
q�

a

��
y

�
q��� Hence � is a

�
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morphism� By NS�� � is one�to�one� On the other hand� if �
q�� �

q
y
�

a

��

y

q�
k
�
k�K in Ay then there is a transition q�

a

�� q� in A such that

for each k � R
a�� q� �k q� and �k � W 
a�� bq�ck � q
�
k
� By NS�� there

is q� � Q such that q�
a

�� q� and �k � W 
a�� q� �k q�� i�e�� bq�ck � q
�
k



now� for each k �� W 
a�� q�
k
� bq�ck � bq�ck� hence �
q�� � 
q�

k
�
k�K� So�

� is a bijection between the states of A and those of Ay
 it is even an

isomorphism�

Example ��� We consider here the independent automaton A� described in

Fig� 	� We wonder if A� is isomorphic to an asynchronous automaton

�
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whose communication structure of rank ��� �	 is � � 
R�W � where R
��
�� �

W
��
�� � fa� cg� R��
�� � W

��
�� � fb� dg� R��
�� � W
��
�� � fb� cg� and

R
��
�� � W

��
�� � fa� dg� For each process k � ��� �	� we use an equiva�

lence �k which identi�es global states that correspond to the same local state�

Therefore� if q
a
�� q

�

and k �� W 
a� then q �k q
�

� In other words� Axiom NS�

leads to the four processes of Fig� � where bqck denotes the equivalence class

of state q w�r�t �k and the transitions of each process are reduced to its write

alphabet� Precisely�

� for Process �� � �� �� � �� �� � �� �� � �� �� � �� � and � �� ��

� for Process �� � �� � �� �� � �� � �� �� � �� � and � �� � �� ��

� for Process �� � �� �� � �� �� � �� �� � �� �� � �� � and � �� ��

� for Process �� � �� � �� �� � �� � �� �� � �� � and � �� � �� ��

We observe now that the independent automaton A� is deterministic �Fig� 	
�

therefore� in order to apply the technique detailed in the proof above and get

a deterministic asynchronous automaton we should identify also the states �

and � in the processes � and �� The point is that in the initial state� both

processes � and � can execute two transitions d� In that way� we obtain the

asynchronous automaton A� of Fig� � which is isomorphic to the independent

automaton A� of Fig� 	�

��b Deterministic Independent Automata

Thus in order to split the states of an independent automaton into local states
of communicating processes� one has simply to choose an adequate family of
equivalences of 
global� states and check that Axioms NS�� NS� and NS� are
ful�lled� The naive underlying algorithm is clearly non�deterministic
 however
we show now that this result leads to a deterministic polynomial algorithm

in the size of the automaton� when we restrict ourself to deterministic inde�
pendent automata� that is to say such that there is only one initial state and
q

a
�� q

� � q

a
�� q

�� 	 q

� � q

��� In the end of this section� we consider a �xed
communication structure � � 
R�W � of rank K and we assume that A is a
deterministic independent automaton� Under these assumptions� the simpler
criterion will rely on a least family of equivalences according to the following
de�nition�

De�nition ��� An orientation of A over � is a family of equivalences 
�k�k�K
over the states of A such that

DE�� q

a
�� q

� � k �� W 
a�	 q �k q
�

�

DE��
q�

a
�� q

�

�
� q�

a
�� q

�

�

�k � R
a�� q� �k q�

�
	

	 �k � W 
a�� q�

�
�k q

�

�
�

�
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We say that an orientation 
�k�k�K is smaller than an orientation

�
�

y

k

�
k�K

if for each k � K� �k��
y

k
�

We remark now that this partial order of orientations admits a least element�

Lemma ��� There is a least orientation of A over � �

Proof� First� � admits some orientations� namely the full orientation such
that for each k � K� �k� Q�Q� We consider for each k� � K the equivalence
�

y

k�
de�ned by� q� �

y

k�
q� if� and only if� for each orientation 
�k�k�K of � �

q� �k�
q�� It is clear that if q

a
�� q� and k� �� W 
a� then q �

y

k�
q�
 in fact�

for all orientation 
�k�k�K of � � �k �� W 
a�� q �k q
�
 in particular� q �k�

q��

Hence q �
y

k�
q�� Assume now that q�

a
�� q�

�
and q�

a
�� q�

�
in A and that

for each k � R
a�� q� �
y

k
q�� Let k� � K be such that k� � W 
a�� For

all orientation 
�k�k�K of � � for each k � R
a�� q� �k q� hence �k � W 
a��

q�
�
�k q

�
�
� Consequently q�

�
�

y

k�
q�
�
� Therefore

�
�

y

k

�
k�K

is an orientation of � �

One can easily compute this particular orientation when A and � are �nite�
Starting with the trivial equivalences 
�k�k�K for which q �k q

� i� q � q� we
�rst apply DE� and next repeatedly apply DE� until this second requirement
is ful�lled� This minimal orientation is now used for our �rst main result�

Theorem ��	 Let 
�k�k�K be the least orientation of A over � � The com�

munication structure � is realizable for A i
 the two following conditions are

satis�ed�

DS�� �q�� q� � Q� ��k � K� q� �k q�		 q� � q�


DS�� �a � �� �q�� q� � Q�

h
q�

a
�� � �k � R
a�� q� �k q�

i
	 q�

a
�� �

Proof� If 
�k�k�K satis�es DS� and DS� then clearly it satis�es NS�� NS� and
NS� so � is realizable for A� Conversely� we assume now that A is realizable

for A� Then there are equivalences
�
�

y

k

�
k�K

satisfying NS�� NS� and NS��

Because A is deterministic� these equivalences form an orientation of A which

satis�es DS� and DS�� Now� because 
�k�k�K is smaller than
�
�

y

k

�
k�K

it

satis�es DS� and DS� too� To see this� consider �rst q� and q� such that
�k � K� q� �k q�� Then� �k � K� q� �

y

k
q� hence q� � q�� Consider now two

states q� and q� and an action a such that q�
a
�� and �k � R
a�� q� �k q�


then �k � R
a�� q� �
y

k
q� hence q�

a
���

We remark here the similarity between conditions DS� and DS� and the
so�called regional separation axioms used for the synthesis problem of Petri
nets ����	�

Example ��
 We consider here again the independent automaton A� of Fig�

� and the communication structure of rank K � fx� yg for which W 
a� �
R
a� � fxg� W 
b� � R
b� � fyg� W 
c� � fyg and R
c� � fx� yg� Ap�

��
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plying conditions DE� and DE� leads to the following identi�cations� by DE��

� �x � �x � and � �x �� by DE�� � �x � because R
a� � fxg and � �x �� On

the other hand� � �y �� � �y � and � �y �� We easily check that these equiv�

alences satisfy DS� and DS�� therefore� A� is isomorphic to an asynchronous

automaton�

We remark �nally that the problem of deciding whether a deterministic

independent automaton is isomorphic to an asynchronous automaton is NP�

if A has n states and m actions� we need to �nd a realizable communication

structure with n��
m � �� processes in order to ful�ll DS� and DS�� More

precisely� for each pair of distinct states 
q�� q��� there must be a process k

such that �
q� �k q�� in order to ful�ll DS�� Furthermore� for each pair of

states 
q�� q�� and each action a such that q�
a

�� and �
q�
a

���� there must

be a process k � R
a� such that �
q� �k q�� in order to ful�ll DS�� Thus we

need less than n� � n��m processes�

� Classi�cation of Asynchronous Automata

We now come to the core of the paper� As detailed in Section �� several

variations of the original notion of asynchronous automaton have been intro�

duced in the literature
 for instance� ��asynchronous automata ��	� cellular

asynchronous automata ���	� or exclusive�read owner�write asynchronous au�

tomata ��	 keep the expressive power of classical asynchronous automata� they

correspond to all recognizable trace languages� Yet� these models are not struc�

turally equivalent� as remarked previously by Pighizzini ���	� In this section�

we show how the study of realizable communication structures of Section �

can be applied to compare these classes of asynchronous automata and leads

to a simple criterion for structurally equivalent models� First� one can naively

associate to each particular model a corresponding communication structure�

Example ��� We consider �rst the communication structure � cel � 
Rcel
�

W cel� of rank K � � over 
�� k� such that for each action a � �� W cel
a� �

fag and Rcel
a� � fb � � j a� kbg� Clearly� an independent automaton A

is isomorphic to a cellular asynchronous automaton i
 � cel is realizable for

A �Theorem ���
� Thus � cel characterizes the class of cellular asynchronous

automata�

Next� di�erent models will be compared w�r�t� the relation between their as�

sociated communication structure� In that way� we will establish for instance

that any owner�write asynchronous automaton is isomorphic to a cellular asyn�

chronous automaton and that any asynchronous automaton is isomorphic to a

classical asynchronous automaton� The results of this section hold for possibly

non��nite state and non�deterministic asynchronous automata�

��
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	�a Equivalent Communication Structures

We naturally associate to any communication structure the class of indepen�

dent automata for which it is realizable� This leads to the following natural

notion of equivalent communication structures�

De�nition ��� Two communication structures � � and � � are equivalent if for

each independent automaton A� � � is realizable for A i
 �
� is realizable for

A�

In other words� two communications structures are equivalent if they corre�

spond to the same class of independent automata� We give here a simple

axiomatic criterion for equivalent communication structures
 this essentially

relies on the following simulation pre�order�

De�nition ��� A communication structure �
� � 
R�

�W
�� of rank K simu�

lates a communication structure � � � 
R�
�W

�� of rank J if

�j � J � �a � �� j � R
�
a� 	 
k � R

�
a�� 
W ��
��


j� � 
W ��
��


k��

This abstract notion of simulation is justi�ed by our main result below 
Th�

����� �
� simulates � � i� any asynchronous automaton with communication

structure � � is isomorphic to another asynchronous automaton with commu�

nication structure � ��

Theorem ��� Let � � and �
� be two communication structures� the following

conditions are equivalent�

�i� �
� simulates � ��

�ii� for each independent automaton A� if � � is realizable for A then �
� is

also realizable for A�

�iii� for each independent automaton A� if A is isomorphic to an asynchronous

automaton whose communication structure is � � then A is also isomorphic

to an asynchronous automaton whose communication structure is � ��

Proof� By De�nition ���� 
ii� � 
iii�� We note �
� � 
R�

�W
�� and �

� �


R�
�W

�� two communication structures of rank K and J respectively� First�


i�	 
ii�� by Lemma ���� we can consider some equivalences
�
��

j

�
j�J

satisfying

NS�� NS�� and NS�� We de�ne the family of equivalences 
��

k�k�K by

q ��

k q
� �

h
�j � J � 
W ��

��

j� � 
W ��

��

k�	 q ��

j q
�

i

and check easily that it satis�es NS� and NS��

NS�� Consider q
a
�� q

� and k � K such that k �� W
�
a�� For j � J such

that 
W ��
��


j� � 
W ��
��


k�� we have k �� W
�
a� hence j �� W

�
a�

and q ��

j q
�� Hence� q ��

k q
��

NS�� Consider q� and q� such that �k � K� q� �
�

k q�� For each j � J � there

is a process k � K such that 
W ��
��


j� � 
W ��
��


k�
 now q� �
�

k q�

so q� �
�

j q�� Hence q� � q��

��
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We observe that it also satis�es NS�� consider a � � and q�� q
�

�
� q� such that

q�
a

�� q
�

�
and �k � R

�
a�� q� �
�

k
q�� We consider �rst j � J such that

j � R
�
a�
 there is k � K such that 
W ��

��

j� � 
W ��

��

k� and k � R

�
a��

hence q� �
�

k
q� and q� �

�

j
q�� Therefore� there is q�

�
such that q�

a

�� q
�

�
and

�j � W
�
a�� q�

�
��

j
q
�

�
� Consider k � K such that k � W

�
a�
 for each j � J

such that 
W ��
��


j� � 
W ��
��


k�� if j � W
�
a� and then q

�

�
��

j
q
�

�

 otherwise

j �� W
�
a�� q

�

�
��

j
q� and q

�

�
��

j
q�
 now k � W

�
a� � R
�
a� so q� �

�

k
q��

q� �
�

j
q� and q

�

�
��

j
q
�

�
� Thus� in any case� q�

�
��

j
q
�

�
� Hence q

�

�
��

k
q
�

�
�Therefore

�
� is also realizable for A�

Now� �
i� 	 �
ii�� there are a� � � and j� � R
�
a�� such that �k �

K� 
W ��
��


j�� � 
W ��
��


k� 	 k �� R
�
a��� We build the deterministic

automaton A with two states� � and �� such that �
a

�� � if a �� a� and

j� �� W
�
a�� �

a

�� � if j� � W
�
a�� and for all a � �� �

a

�� �
 we check

that � � is a realizable communication structure of A but not � �� First� � � is

realizable for A� We consider the equivalences
�
��

j

�
j�J

over the states � and

� such that j �� j� � � ��

j
�� We easily check that it satis�es DE�� DE��

DS�� and DS�� of A� First� DE� is satis�ed
 otherwise there exists an action

a � � such that j� �� W
�
a� and �

a

�� �� Now� DE� is also satis�ed
 otherwise

there are states q�� q
�

�
� q� and q

�

�
� and an action a � � such that q�

a

�� q
�

�
�

q�
a

�� q
�

�
� �j � R

�
a�� q� �
�

j
q� but j� � W

�
a� and q
�

�
���

j�
q
�

�

 therefore

q
�

�
�� q

�

�
� q� �� q� and q� �

�

j�
q� because j� � W

�
a� � R
�
a�� Clearly� DS� is

ful�lled because �
� ��

j�
��� Finally� DS� is ful�lled too because each action is

enabled in each state� except a� which is maybe not enabled in the initial state

� if j� �� W
�
a��
 now if DS� is not satis�ed then for all j � R

�
a��� � �
�

j
��

in particular� � ��

j�
�� Now� � � is not realizable for A� Assume that �

� is

realizable for A
 then there are equivalences 
��

k
�
k�K

over the states � and �

which satisfy NS�� NS�� and NS�� By NS�� there is k� � K such that �
� ��

k�
��

so� by NS�� 
W
��
��


j�� � 
W ��
��


k��� k� �� R
�
a�� and j� �� W

�
a��� For any

k � K� if �
� ��

k
�� then 
W ��

��

j�� � 
W ��

��

k� so k �� R

�
a��
 in other

words �k � R
�
a��� � �

�

k
�� Now �

a�
�� � so �

a�
�� � by NS�� Yet� j� �� W

�
a���

We �nally obtain the following useful criterion�

Corollary ��� Two communication structures are equivalent �Def� 	��
 i


they simulate one another�

Example ��� Consider the communication structure �
ow � 
Row

�W
ow� of

rank K � f
a� b� j a � kbg such that 
a� b� � W 
c�� c � a and 
a� b� � R
c��

c � fa� bg� then� by Theorem 	��� an independent automaton A is isomorphic

to a Owner�Write asynchronous automaton i
 �
ow is realizable for A� further�

more �
ow is equivalent to �

cel of Example 	��� Therefore any Owner�Write

asynchronous automaton is isomorphic to a cellular asynchronous automaton�

Conversely� Theorem 	�� also enables us to prove easily a result of ���� any cel�

lular asynchronous automaton is isomorphic to an exclusive�read owner�write

asynchronous automaton�

��
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Particular Model Associated Communication Structure�s�

asynchronous automata �a�a�� �
cla over f� � � j � maximal clique of ��� � k�g

classical a�a� such that Rcla�a� �W
cla�a� � fk j a � kg

classical ��asynchronous automata �
cta over ffa� bg � � j a � kbg such that

R
cta�a� � W

cta�a� � fk j a � kg

Owner�Write a�a� �
cel	 �ow are equivalent �Examples 
�� and 
���

cellular a�a�

Table 


Some communication structures and their associated independent automata�

	�b Characterizations and Comparisons of Particular Models

Continuing the preceding example� many classes of asynchronous automata

may be characterized by a speci�c communication structure with the help of

Th� ���� For instance� we establish the characterizations of particular models

detailed in Table �� First� we obtain the result of ���	� an independent

automaton A is isomorphic to a classical asynchronous automaton i� �
cla

is realizable w�r�t� A� Next we claim that any communication structure is

simulated by �
cla
 therefore� according to Th� ���� an independent automaton

is isomorphic to an asynchronous automaton i� �
cla is realizable w�r�t� A�

Moreover� we obtain the noteworthy following result� none of the extensions

of classical asynchronous automata really extends their expressive power�

Corollary ��	 Any asynchronous automaton is isomorphic to a classical asyn�

chronous automaton�

Consequently any generalized asynchronous automaton of ��� chap� �	 is also

isomorphic to a classical asynchronous automaton�

Theorem ��� enables us to prove easily that an independent automaton A
is isomorphic to a classical ��asynchronous automaton i� the communication

structure �
cta de�ned in Table � is realizable for A� Now� we observe that �

cla

simulates �
cta which simulates �

cel but none of the converses holds � as soon

as 
�� � k� admits a ��clique� Therefore� we obtain the following strict inclusions

of models 
up to isomorphisms��

cellular a�a� � classical ��asynchronous automata � 
classical� a�a�

	�c Implementation of Recognizable Trace Languages

Due to Zielonka�s theorem ���	� any recognizable trace language is the language

of a �nite cellular asynchronous automaton� Now� according to the inclusion

of models above� it is also the language of a �nite classical ��asynchronous

automaton and of a �nite classical automaton� as also previously established

in �����	� In fact� Zielonka�s theorem holds for many other communications

��
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structures�

Corollary ��
 Let L be a recognizable trace language over 
�� k� and � �


R�W � a communication structure such that a� kb 	 W 
a� 
 R
b� �� �� Then

there exists a �nite asynchronous automaton whose language is L and whose

communication structure is � �

Proof� Clearly� � simulates � ow
 we simply use Zielonka�s construction ���	

and apply Theorem ����

� Asynchronous Shared Memory Systems

Asynchronous automata can describe many kinds of distributed systems or

parallel machines
 in this section� we focus on systems of processes which

communicate through shared memories ���	� In this context� each synchro�

nized action represents a particular process reading or writing the value of a

speci�c memory
 consequently� it involves only two components of the system�

therefore� we will assume that for any synchronized action a� Card
R
a�� � ��

The other actions are restricted to only one component
 they can represent a

local computation or an interaction with the environment� for technical con�

venience� we will assume here that the system admits at least one action d

which is not a synchronization� Card
R
d�� � �� We will also assume in this

section that the dependence graph 
�� � k� is connected
 otherwise the system

can be split into several parts which behave independently� Finally� the so�

called �shared�memory� asynchronous automata introduced below satisfy the

Exclusive�Read condition 
Def� ����
 this means that processes can read the

value of a shared memory only one at a time�

De�nition ��� An asynchronous automaton A is said shared�memory if it

satis�es the Exclusive�Read property and the two following conditions�

SM�� �a � �� Card
R
a�� � ��

SM�� 
d � �� Card
R
d�� � ��

For these asynchronous automata� the actions d which involve only one com�

ponent of the system satisfy the following property� �a� b � �� a � kd � kb 	 a � kb

such an action d will be called an operation of 
�� k�� Moreover� the family of

read alphabets 
R��
k��
k�K

is a covering by cliques of the dependence graph


�� � k� and each action appears in less than two read alphabets� we will say

that 
R��
k��
k�K

is a ��covering of 
�� k�� That is why we will naturally fo�

cus in the end of this section on concurrent alphabets 
�� k� which admit an

operation and a ��covering�

In order to characterize which independent automata correspond to a

shared�memory asynchronous automaton� we will use the construction of the

�optimal alphabets� introduced in ���	�

De�nition ��� The set of optimal alphabets � is the least set of subsets of

� such that

��
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O�� for all operation d� fa � � j a � kdg � ��

O�� � � �� �a� b � �� �a �  �b ��  �a � kb
 	 fc� ka j c ��  �c�ag � ��

where a�b means �c � � � akc� bkc�

Note here that � is empty if there is no operation in 
�� k��

Theorem ��� Let 
�� k� admit an operation and a ��covering and � opt be the

communication structure of rank � such that �a � �� R
a� � W 
a� � f �
� j a �  g� An independent automaton A is isomorphic to a shared�memory

asynchronous automaton i
 � opt is a realizable communication structure of A�

Opposite to classical or cellular asynchronous automata� �nite shared�

memory asynchronous automata do not correspond to all recognizable trace

languages ��������	 because their associated concurrent alphabet 
�� k� have
some particular properties� as explained above� they admit an operation and

a ��covering� Yet� we have the following converse�

Corollary ��� Let 
�� k� admit an operation and a ��covering� any recog�

nizable trace language L over 
�� k� is obtained by a �nite shared�memory

asynchronous automaton�

Proof� Let A be a �nite cellular asynchronous automaton which recognizes
L
 then � ow is a realizable communication structure of A and � opt simulates

� ow�

Conclusion

In this paper� we have introduced a correspondence between a natural notion

of communication structure and some particular classes of asynchronous au�

tomata studied in the literature� On one hand� we characterized the structural

properties of these classes up to isomorphisms� which allow to decide which

transition systems can be split as systems of cooperating processes w�r�t� a

given communication structure� On the other hand� we presented a simple

axiomatic criterion for the communication structures associated to the same

class of transition systems� We showed how this study leads to a generalization

of Zielonka�s theorem
 however� it is still unclear to us whether it also holds for

some other communication structures which do not satisfy the restriction that

a� kb 	 W 
a� 
 R
b� �� �� Clearly� such an extension would not rely directly
on Zielonka�s construction�

Finally we applied this study to a subclass of asynchronous automata

which corresponds to the widely used model of asynchronous shared memory

���	� A particular communication structure based on the optimal alphabets of

���	 characterizes this model
 moreover� an adaptation of Zielonka�s theorem is

also established� In this direction� and similarly to the work of Darondeau ��	�

an interesting problem would be to use the regional technique developed here

to produce automatically protocols satisfying some given safety and liveness

properties�

��
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