
 Procedia Computer Science 10 (2012) 30 – 37

1877-0509 © 2012 Published by Elsevier Ltd.
doi: 10.1016/j.procs.2012.06.008

The 3rd International Conference on Ambient Systems, Networks and Technologies
(ANT)

S-CLAIM: An Agent-based Programming Language for AmI,
A Smart-Room Case Study�

Valentina Baljakb, Marius Tudor Beneaa, Amal El Fallah Seghrouchnia, Cédric
Herpsona,∗, Shinichi Honidenb, Thi Thuy Nga Nguyena, Andrei Olaruc, Ryo

Shimizub, Kenji Teib, Susumu Toriumib

aLIP6 - University Pierre and Marie Curie, France
bNII - University of Tokyo, Japan

cUniversity Politehnica of Bucharest, Romania

Abstract

This paper introduces a declarative agent-oriented language for Ambient Intelligence – S-CLAIM – that allows program-

ming reactive or cognitive mobile agents in a simple, easy-to-use manner while meeting AmI requirements. Based on a

hierarchical representation of the agents, the language offers a natural solution to achieve context-sensitivity. S-CLAIM

is light-weight and, being transparently underpinned by the JADE framework, allows deployment on mobile devices

and easy interoperation with other components by means of web services. The usefulness of the proposed language for

AmI is illustrated through a scenario and a demo featuring an AmI application in a Smart Room.

c© 2011 Published by Elsevier Ltd.

Keywords: Ambient Intelligence, Programming Languages, Multi-Agent Systems

1. Introduction

Ambient Intelligence (AmI) applications are characterized by the intrinsic distribution of their architec-

ture, the dynamic of their topologies and the frequent changes in their execution context. At a behavioral

level, the need for context-sensitivity is a key element, allowing AmI applications to adapt to the various situ-

ations and users they may encounter. It is therefore natural that Multi-Agent Systems and the Agent-Oriented

Paradigm (AOP) have emerged as a well suited approach for the implementation of AmI applications [1, 2].

Thus, different architectures have been used for organizing agents in AmI systems. However, existing

agent-oriented languages rely on various underlying frameworks for the effective implementation and exe-

cution of the agents. Most of these platforms do not natively offer a way to represent and manipulate the

behaviors of the agents as web services [3, 4]. That restricts the use of agent-oriented approaches in the

�This work has been realised under a MoU between UPMC and NII.
∗Corresponding author.

Available online at www.sciencedirect.com

Open access under CC BY-NC-ND license.

Open access under CC BY-NC-ND license.

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

31 Valentina Baljak et al. / Procedia Computer Science 10 (2012) 30 – 37

context of AmI. Indeed, AmI applications require to support and connect different devices, from computers

to sensors, which is usually done by representing them as web-services.

In order to allow the representation of cognitive skills such as beliefs, goals and knowledge (like the

current execution context), while meeting the requirements of mobile computation and execution in smart

environments, we present in this paper a high-level declarative AOP language: S-CLAIM.

Using the hierarchical representation of the agents inherited from CLAIM combined with new features,

S-CLAIM goes beyond the limitations of current languages. Thus, S-CLAIM allows programmers to use the

agent-oriented paradigm during the whole process of designing and implementing an AmI application, as

S-CLAIM specifies only agent-related components and operations, leaving algorithmic processes aside, and

also due to the fact that S-CLAIM agents are – transparently to the programmer – interpreted and executed

on top of the JADE [5] framework, which handles communication, mobility, and agent management. This

latter choice, combined with the expressiveness of S-CLAIM, offers lightweight agents, cross-platform

deployment and mobile device compatibility, currently implemented for the Android platform.

This paper is structured as follows. Section 2 presents some related works. Section 3 introduces the

general structure of S-CLAIM and details the syntax and the semantics of the primitives necessary in a

smart environment context. We then illustrate the usefulness of S-CLAIM through the Smart Room case

study in Section 4, going from scenario description to its actual execution. Finally, we draw the conclusions

and we present the current limitations of our work and some perspectives to extend it, in Section 5.

2. Related Work

As with any programming paradigm, several languages have been proposed for the implementation

of agents, ranging from purely imperative to purely declarative, including various hybrid approaches [6].

Depending on the language considered, the modelling of the agents, behaviors, and knowledge (such as the

current context) varies.

On one hand, the agent-oriented programming (AOP) languages, such as AgentSpeak [7], or 3APL allow

to represent the mental state of the agents, but do not support the agents’ mobility. Moreover, in the manner

of AgentSpeak, most of the existing languages represent the current context of the agents as a set of facts

[8]. If this representation is well suited for most of commonly used agent applications, this is not the case

in the context of AmI. Indeed, this representation does not allow to represent the dependency relationships

between the different elements that form the context, or between agents when they are perceived as an

integral part of the environment.

On the other hand, concurrent languages such as the ambient calculus [9] have been proposed to for-

malize concurrent and mobile processes in distributed environments. They have a well defined operational

semantics, but it is impossible to represent intelligent agents using them.

The CLAIM language [10] combines in a unified framework the main advantages of AOP languages,

for representing the mental state of the agents, with those of the concurrent languages for representing the

concurrence and mobility of the agents. However, some of the aspects of CLAIM restrict its usability in

real-life AmI situations. Indeed, the weight of the CLAIM agents and of the application layer necessary

to deploy them does not allow to use it on networks composed of devices with low memory or low com-

putational capabilities. Moreover, as the behaviors of the CLAIM agents were not conceived with a web

services perspective in mind, there is currently no possibility to deploy or use them on a network combining

heterogeneous devices and platforms.

S-CLAIM (Smart Computational Language for Autonomous, Intelligent and Mobile Agents) is the spir-

itual descendant of the CLAIM language and tries to go beyond these limitations.

3. S-CLAIM

In order to fulfill the previously introduced requirements of a language for AmI, S-CLAIM uses an

evolution of the operational semantics of CLAIM to describe the behavior of the multi-agent system. S-

CLAIM allows various representations of the knowledge base, as long as they can be addressed by relations

32 Valentina Baljak et al. / Procedia Computer Science 10 (2012) 30 – 37

or association patterns. This flexibility facilitates the design and implementation of proactive agents and

goal-oriented behaviors. To allow cross-platform deployment and mobile device compatibility, S-CLAIM

agents are – transparently to the S-CLAIM programmer – interpreted and executed on top of the JADE

[5] Framework. To allow the users to keep themselves away from the algorithmic complexity, S-CLAIM

agents are programmed using a high-level language, based on a Lisp-like syntax. To facilitate cross plat-

form mobility, the knowledge and the description of the scenarios are stored in XML files. Moreover, the

hierarchical organization of the agents makes them more flexible and adaptive. Thus, each agent belongs to

a hierarchy of agents. Its parent and children depend of its current role and execution context. Every agent

can move within its hierarchy or to a remote one depending on the evolution of the services it provides and

on the achievement of its goals. As illustrated in Figure 1, when an agent moves, it moves as a whole, with

all its components (intelligent elements, running processes and sub-agents) maintaining, thus, the agents’

dependency relationships.

Fig. 1. Migration of agent b and his subtree.

Some of the most important parts of an agent are its behaviors. They define what an agent can do in

certain situations. There are three types of behaviors in S-CLAIM. Initial behaviors are run immediately

after the agent was created, handling all needed initializations. Reactive behaviors are triggered by the

reception of messages that respect certain templates. Proactive behaviors are cognitive and goal-oriented.

In order to define these behaviors, the S-CLAIM language uses the primitives shown in Table 1. Their

syntax and semantics will be detailed in the following sections.

Table 1. The primitives of S-CLAIM.

Messaging primitives

send sending message

receive receiving message
Mobility primitives

in migrating to a hierarchy

out exiting its parent hierarchy
Knowledge management primitives

addK adding a new knowledge record

removeK removing a knowledge record

readK accessing a knowledge record

forAllK extracting knowledge from kb

Agent management primitives

open ordering agent to dissolve

acid dissolving itself

new creating a new agent
Control primitives

condition triggering condition of a behavior

if condition control inside the behavior

wait waiting for a certain amount of time
Goal-oriented primitives

aGoal state wanted to be achieved

pGoal activities to be performed

mGoal state wanted to be maintained

3.1. Syntax
S-CLAIM was designed to have a very simple syntax. We chose, accordingly, to adapt to the purposes

of our language a fully parenthesized Lisp-like syntax, that is presented in this section.

Each construct contains two limiting parenthesis, an identifier (either a keyword or a function name) and

a list of arguments. The production rule of an agent class specification has the following form:

agent_class_specification -> ’(’ "agent" class_name agent_args_list behaviors ’)’

We have, in the above production rule, the keyword agent, followed by the list of arguments (the first

one being the name of the agent class) and a list of behaviors.

33 Valentina Baljak et al. / Procedia Computer Science 10 (2012) 30 – 37

The variables of the language are strings that start with the character ?, followed by a number of letters

or digits. The constants are strings of any character except ?, (,), or separators (spaces, tabs, new lines).

The syntax for comments is similar to the syntax in Java or C++.

Below, an example of a reactive behavior that registers a room and its associated agent is shown.

(reactive registerRoom

(receive managesRoom ?agentName ?roomName)

(addK (struct knowledge roomAgent ?roomName ?agentName))

)

This behavior, registerRoom, contains two statements. The first one specifies that the behavior should

be triggered when receiving a message composed by the constant managesRoom followed by two variables.

When triggered, the knowledge record (struct knowledge roomAgent ?roomName ?agentName) is stored in

the knowledge base of the agent, using the addK statement.

The receive and condition constructs are constrained to appear only at the beginning of the behavior. We

imposed this restriction for code readability reasons. It is the only restriction of this type.

For most of the constructs of S-CLAIM, the list of arguments can contain variables, constants, structures

or function calls. The syntax of the function calls is similar to the one of the other constructs, with the

difference that the identifier of the statement is not a keyword. Functions contain algorithmic processings and

are implemented in other, more adequate, languages than S-CLAIM (Java is currently supported). Functions

calls handle only processings that does imply any components of the agent (communication, knowledge,

etc).

Structures may represent knowledge, messages, or any other group of values. The fields of the structures

could be composed of variables, constants or other structures. An example showing the syntax of a structure

is presented below:

(struct knowledge userAgent ?userName ?agentName)

This example represents a knowledge record that specifies the association of type userAgent between the

user’s name and the name of the agent that assists him.

In general, the arguments are variables, constants, structures or function calls. However, some primitives,

like if, condition and forAllK, could also take other S-CLAIM constructs as arguments.

3.2. Semantics
S-CLAIM uses a semantic inspired by ambient calculus and by π-calculus to cover the important aspects

of an intelligent agent such as reasoning, asynchronous communication, concurrence and mobility. In the

following, all the primitives used in S-CLAIM (see Table 1) are briefly presented.

Messaging primitives. The send primitive takes at least 2 parameters: the receiver(s) of the message and

its content, represented by a message structure. The interoperability with web services has been integrated

seamlessly in the language and platform, using the existing primitives. All S-CLAIM behaviors are, thus,

exposed as web services, and all S-CLAIM agents are able to invoke web services using a modified send
primitive, that uses the address of the destination, and a receiving structure for the response (if expected):

(send ?Ag (struct message echo) http://localhost/wsig/ws/ (struct message ?back))

The receive primitive will check if any received message matches the message pattern present in the defini-

tion. If they match, and any subsequent condition constructs are satisfied, the agent will activate the behavior

and will bind the variables in the receive primitive to their values, received by the message. In S-CLAIM

the communication between the agents is asynchronous.

Mobility and agent management primitives. The primitive in moves an agent to a new ambient, i.e. a

new hierarchy. The agent will become a child of the agent given as argument. When an agent moves, all its

34 Valentina Baljak et al. / Procedia Computer Science 10 (2012) 30 – 37

children in the hierarchy are notified and – depending on their dependency relationships – instructed to fol-

low and to move to the new hierarchy. The primitive out is used to quit the current hierarchy. The agent (and

its subtree) will no longer be the child of its old parent, but of its parent’s parent. The open primitive can be

used by an agent to absorb one of its children, and the agent will recover all the components (knowledge,

children, behaviors) of this child. The acid primitive is used to dissolve the agent itself; all its components

will become the components of its parent. Finally, the new primitive creates a new child agent.

Knowledge management primitives. The addK primitive is used to add knowledge to the knowledge

base while the removeK primitive does the opposite. The readK primitive searches the knowledge base

for the existence of knowledge entries that match a given pattern and extracts the first matching knowledge

record. Unlike readK, the forAllK primitive is used to extract all the knowledge entries in the knowledge

base that match a given pattern. See how these primitives are used in the example code in Figure 2.

Control primitives. Always placed at the beginning of the behaviors, the condition primitives can ver-

ify if it is possible to execute a triggered behavior. The if-else statement executes, based on a condition,

the block of statements corrensponding to the selected branch. Both condition and if-else are used in con-

junction with function calls that return Boolean values, or with the readK primitive, that returns true if any

knowledge entry matching the given pattern has been found. The wait primitive is used to suspend the cur-

rent behavior for a certain amount of time.

Goal-oriented primitives. Associated with the manipulation of the mental states of the agents, they

were implemented in S-CLAIM based on the three goal types proposed by Braubach et al.: Perform, Achieve
and Maintain [11]. The life cycle of the goals comprises three main states, New, Adopted (with the substates

Option, Active and Suspended) and Finished (inspired by Dastani et al. [12]). Additionally, a model to

express the priorities of the goals and a way to represent, hierarchically, the graph structure of the goal base

were proposed. All these were packed inside the S-CLAIM’s proactive behavior type.

3.3. Example of an S-CLAIM agent definition

Consider an example in which, in a certain scenario, the user has to display some opinions, from his/her

PDA, on a screen. The agent that assists the user, running on the PDA, has the class PDAagent. In S-

CLAIM, a program is composed of a scenario (described in an XML file) and of some agent class definition

files. Figure 2 presents the description file of the agent class for this example.

The initial behavior register informs the agent’s parent, at creation, that it assists the user denoted by the

variable ?userName. The parent’s name, as well as the name of the user to assist, are received as arguments,

after they were read from the scenario’s XML file (not presented here).

The reactive behavior assignScreen is triggered when receiving a message of type screenAssigned, con-

taining a variable. When triggered, it is verified if the agent already has a screen assigned. If true, it is

verified if the old screen and the new one are different. If positive, the agent managing the old screen is in-

formed to remove the rights of the user to display information on the screen. The old screen is also removed

from the knowledge base of the agent. Then it moves to the sub-hierarchy of the agent managing the new

screen. It also stores the information about the new screen in the knowledge base. All the opinions, together

with their types, are sent to the agent managing the new screen and they will be displayed. If no screen was

previously assigned, a sequence of code identical with the one from the lines 15-20 is executed.

Note that in S-CLAIM, once variables are bound inside a context (agent, behavior, block), they keep

their value until the end of their context. Any further test on the variable will consider it as bound, therefore

as a restriction to a pattern.

The isDifferent function, that is used at line 11, is a Java function from an external library.

4. Case study: Smart Room

In this section, we illustrate the use of S-CLAIM for AmI, from scenario description to actual execution.

35 Valentina Baljak et al. / Procedia Computer Science 10 (2012) 30 – 37

1 (a g e n t PDAagent ? userName ? p a r e n t

2 (b e h a v i o r

3 (i n i t i a l r e g i s t e r

4 (send ? p a r e n t (s t r u c t message a s s i s t s U s e r t h i s ? userName))

5)

6

7 (r e a c t i v e a s s i g n S c r e e n

8 (r e c e i v e s c r e e n A s s i g n e d ? screenAgentName)

9 (i f (readK (s t r u c t knowledge u s e S c r e e n ? oldscreenAgentName))

10 t h e n

11 (i f (i s D i f f e r e n t ? o ldscreenAgentName ? screenAgentName)

12 t h e n

13 (send ? oldscreenAgentName (s t r u c t message removeUser ? userName))

14 (removeK (s t r u c t knowledge u s e S c r e e n ? oldScreenAgentName))

15 (i n ? screenAgentName)

16 (addK (s t r u c t knowledge u s e S c r e e n ? screenAgentName))

17 (readK (s t r u c t knowledge op in ionType ? t y p e))

18 (f o r A l l K (s t r u c t knowledge o p i n i o n ? o p i n i o n)

19 (send ? screenAgentName (s t r u c t message o p i n i o n L i s t ? t y p e ? userName ? o p i n i o n))

20)

21)

22 e l s e

23 ∗ t h e c o n t e n t from t h e l i n e s 15−20 , r e p e a t e d ∗
24)

25)

26)

27)

Fig. 2. Example of an agent definition

4.1. Scenario description
The following scenario aims to highlight the two intrinsic characteristics of an AmI system: context-

awareness and anticipation [13, 14].

Scenario. Alice is a student at the university. Today, the Multi-Agent Systems (MAS) course is held in

a room other than usual. All the students of this class are notified automatically via their smartphones about

this change and receive an indication on how to get to the new room. Alice is the first one who arrives. While

she enters, the lights are automatically turned on and the main screen shows a welcome message. When it is

time to start the course, observing that the professor and all the students are in the room, the lights dim and

the main screen shows the first slide of the presentation. When the professor indicates that the presentation

has finished, the lights turn on again to start the second section of the course: brainstorming. The class is

divided into several groups. Each group has a large smart screen to display their opinions. Students write

their opinions on their smartphone or laptop. The opinions appear right away on the screen associated to the

group, so that the others could see them. When Alice moves to another group to discuss, her opinions are

automatically displayed on the screen of the new group, and removed from the other one.

4.2. Modeling the scenario
The scenario is modeled according to the AOP paradigm. Thus, each entity has an associated agent, that

represents it. A graphical representation of the agentification of the scenario can be seen in Figure 3.

According to the S-CLAIM approach, all the agents are part of one hierarchy (that can be read from

left to right in Figure 3, starting with the highest level). Thus, the root agent in the hierarchy is University.

It manages high level information about the university, like the campuses and their locations. Further, the

agents associated to the campuses store information about the rooms, whose associated agents keep track

of all the devices inside them and the managing agents, and so on. All the information needed about the

university is stored in this hierarchy of agents, so, if one agent needs to know something that is not stored in

its knowledge base, it will ask his parent for that information. This process is recursive.

As specified in the legend, the agents belong to four different classes of roles. In Figure 3, each class has

a different color. The edges are labeled with the relations between the involved agents and belong, too, to

36 Valentina Baljak et al. / Procedia Computer Science 10 (2012) 30 – 37

Fig. 3. Scenario agentification example

one such class, according to their color. For example, the Feedback agent is part-of the activity represented

by the Course agent. Such a graph describes the structure of the system in only one particular moment.

The rectangles indicate the computing devices on which the agents included in them run. Note that the

FrontScreen agent is only presented out of the Room for readability reason.

4.3. Experiment

S-CLAIM is part of the AoDai framework [13]. In order to study S-CLAIM’s efficiency for real-life AmI

applications, we have deployed the system in the Smart Room located at National Institute of Informatics in

Tokyo. The Smart Room has ten projectors, two LCDs, 2 speakers, and a dozens of lights. These devices

are connected to a network, and can be controlled through a RESTful web service interface. In addition, a

wireless sensor network consisting of a dozen of Oracle’s SunSPOT sensor nodes are installed in the Smart

Room. The SunSPOT nodes contain radio sensors and can detect radio signal propagated from a beaconing

device that each student has. By using RSSI-based localization, the systems can detect the presence and

location of students. These devices and the wireless sensor network are managed by S-CLAIM agents

which communicate with the components using the WSIG and WSDC web services add-ons for Jade.

Figure 4 (a) shows a picture of the Smart Room of the National Institute of Informatics, and Figure 4

(b) shows a screenshot of the Android device of Bob, running its assistant agent. The screenshot was taken

right after the creation of the agent – Bob’s agent has just registered with its parent, CourseCSAgent. A

more detailed example can be seen through a video available on our website1.

5. Conclusion and perspective

In this paper we have presented the S-CLAIM agent-oriented programming language, that allows a

designer of AmI applications to program agents in a simple and intuitive manner. Whithout dealing with

low-level considerations and using only a small number of primitives focused on agent-specific features, the

programmer can focus on communication, mobility, knowledge and agent management.

The platform that underpins the S-CLAIM agents handles agent operations, function calls, web service

integration and deployment on mobile devices. The effectiveness and the usefulness of the language and

of the platform in an AmI context have been already proven - both in term of number of lines of code and

development time - in a first application implemented using the Smart Room.

1http://webia.lip6.fr/~aodai/videos/aodai.wmv

37 Valentina Baljak et al. / Procedia Computer Science 10 (2012) 30 – 37

(a) (b)

Fig. 4. (a) Smart room in National Institute of Informatics. (b) Screen capture of S-CLAIM for Android.

However, a number of points have to be studied in-depth. First, the language and the platform need to

be used for the implementation of more complex scenarios and AmI applications in order to fully test and

validate their usability in real situations. Also, the number of primitives of S-CLAIM has been deliberately

limited to the necessary ones. In order to improve the flexibility of S-CLAIM, an important feature will be

to allow the AmI application programmers to easily extend the language by defining their own primitives.

References

[1] F. Sadri, Ambient intelligence: A survey, ACM Comput. Surv. 43 (4) (2011) 36:1–36:66.

[2] C. Ramos, J. C. Augusto, D. Shapiro, Ambient intelligence - the next step for artificial intelligence, IEEE Intelligent Systems

23 (2) (2008) 15–18.

[3] M. Lyell, L. Rosen, M. Casagni-Simkins, D. Norris, On software agents and web services: Usage and design concepts and issues,

in: Proc. of the 1st International Workshop on Web Services and Agent Based Engineering, Sydney, Australia, 2003.

[4] M. Shafiq, Y. Ding, D. Fensel, Bridging multi agent systems and web services: towards interoperability between software agents

and semantic web services, in: Enterprise Distributed Object Computing Conference, 2006. EDOC’06. 10th IEEE International,

IEEE, 2006, pp. 85–96.

[5] F. Bellifemine, A. Poggi, G. Rimassa, Developing multi-agent systems with JADE, Intelligent Agents VII Agent Theories Archi-

tectures and Languages (2001) 42–47.

[6] R. Bordini, L. Braubach, M. Dastani, A. El FSeghrouchni, J. Gomez-Sanz, J. Leite, G. O Hare, A. Pokahr, A. Ricci, A survey of

programming languages and platforms for multi-agent systems, INFORMATICA-LJUBLJANA- 30 (1) (2006) 33.

[7] A. Rao, Agentspeak (l): Bdi agents speak out in a logical computable language, Agents Breaking Away (1996) 42–55.

[8] I. Ayala, M. Pinilla, L. Fuentes, Modeling context-awareness in agents for ambient intelligence: an aspect-oriented approach,

Progress in Artificial Intelligence (2011) 29–43.

[9] L. Cardelli, A. D. Gordon, Mobile ambients, Theor. Comput. Sci. 240 (1) (2000) 177–213.

[10] A. Suna, A. El Fallah Seghrouchni, Programming mobile intelligent agents: An operational semantics, Web Intelligence and

Agent Systems 5 (1) (2004) 47–67.

[11] L. Braubach, A. Pokahr, D. Moldt, W. Lamersdorf, Goal representation for bdi agent systems, in: R. Bordini, et al. (Eds.),

Programming Multi-Agent Systems, Vol. 3346 of Lecture Notes in Computer Science, Springer Berlin / Heidelberg, 2005, pp.

44–65.

[12] M. Dastani, M. B. van Riemsdijk, J.-J. C. Meyer, Goal types in agent programming, in: Proceedings of the fifth international joint

conference on Autonomous agents and multiagent systems, AAMAS ’06, ACM, New York, NY, USA, 2006, pp. 1285–1287.

[13] A. El Fallah Seghrouchni, A. Olaru, T. T. N. Nguyen, D. Salomone, Ao Dai: Agent oriented design for ambient intelligence, in:

N. Desai, A. Liu, M. Winikoff (Eds.), Principles and Practice of Multi-Agent Systems, 13th International Conference, PRIMA

2010, Kolkata, India, November 12-15, 2010, Revised Selected Papers, Vol. 7057 of Lecture Notes in Computer Science, Springer

Berlin / Heidelberg, 2011, pp. 259–269.

[14] A. Olaru, A. El Fallah Seghrouchni, A. M. Florea, Ambient intelligence: From scenario analysis towards a bottom-up design, in:

M. Essaaidi, M. Malgeri, C. Badica (Eds.), Intelligent Distributed Computing IV, Proceedings of the 4th International Symposium

on Intelligent Distributed Computing - IDC 2010, Tangier, Morocco, September 16-18 2010, Vol. 315 of Studies in Computational

Intelligence, Springer Berlin / Heidelberg, 2010, pp. 165–170.

