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DECOMPOSITIONS 
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1. INTRODUCTION 

THIS PAPER is a study of a special class of toroidal decompositions of 3-manifolds called 

Bing-Whitehead decompositions. It is well known that a Bing-Whitehead decomposition 

of a 3-manifold is shrinkable if all successive stages are Bing nested; but it is not shrinkable if 

all successive stages are Whitehead nested. (See Figs 1 and 2.) Consider a Bing-Whitehead 

decomposition of a 3-manifold which is defined by h, successive Bing nested stages. 

followed by 1 Whitehead nested stage, followed by h, successive Bing nested stages, 

followed by 1 Whitehead nested stage, . . The principal result of this paper is that this 

decomposition is shrinkable if and only if 

This result clarifies an issue raised in the proof of M. H. Freedman’s Disk Theorem for Four 

Dimensional Manifolds ([4], p. 652). 

We recall the relevant definitions. A decomposition G of a 3-manifold M is a collection of 

pairwise disjoint non-empty subsets of M whose union is M. G is upper semicontinuous if 

each element of G is compact and if the quotient map M -+ M/G is a closed map. A d&iny 

sequence for G is a sequence {Xi: i 20 ) of compact 3-manifolds in int( M) such that 

Xi c int ( Xi _ t ) for i L: 1 and such that the non-singleton elements of G coincide with the 

non-singleton components of n {Xi: i 2 0 ). A defining sequence f Xi > is toroidal if each 

component of each Xi is a solid torus. If G has a toroidal defining sequence then G is called a 

toroidal decomposition. G is cell-like if for each element C of G, the inclusion of C into each 

of its neighborhoods in M is null-homotopic. Toroidal decompositions need not be cell-like; 

however. the special class of toroidal decompositions of concern here--the Bing-Whitehead 

decompositions-are, in fact, cell-like. 

Let T be a solid torus. A ram(ficution of T is a finite family { T, , . . . , T, } of solid tori in 

T such that the (k + I)-tuple ( T. T,, . . . , TI) is homeomorphic to the (k + I)-tuple 

(S’ x B,S’ x B,, . . , S’ x Bk) where S’ is a circle and {Br,. . , I&) is a pairwise 

disjoint family of disks in the interior of the disk B. 

Suppose G is a toroidal decomposition of a 3-manifold M, and {Xi) is a toroidal 

defining sequence for G. Let i 2 1, Xi is Bing nested in Xi _ 1 if for each component T of 

Xi _ 1, there is a ramification ( T,, . . , T,}ofTsuchthatTnXicu{int(q):l<j<k} 

and for eachj, 1 <j I k, the pair (T,. Tin Xi) is homeomorphic to the pair (U, Vu W) 

t Partially supported by the National Science Foundation. 
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where U, [‘and Ware as in Fig. 1. Xi is Whitehead nested in Xi _ I if for each component T 

of xi- 17 there is a ramification (T,,...,T,j of T such that 

TnXicu{int(T,):l ~j<k).andforeachj,l <jIk,thepair(Tj,TjnXi)ishomeo- 

morphic to the pai: ( U. V) where U and I/ are as in Fig. 2. 

Again suppose G is a toroidal decomposition of a 3-manifold M, and { Xi) is a toroidal 

defining sequence for G. If for each i 2 1, either Xi is Bing nested in Xi _ 1. or Xi is 

Whitehead nested in Xi _ , , then ( Xi} is called a Bing- Whitehead defining sequence, and G 

is caled a Bing- Whitehead decomposition. 

Now suppose G is a Bing-Whitehead decomposition of a 3-manifold M. and i Xi ) is a 

Bing-Whitehead defining sequence for G. If Xi is Bing nested in Xi _ 1 for each i 2 1, then 

{ Xi 1 is called a pure Bing defining sequence, and G is called a pure Bing decomposition. If 

Xi is Whitehead nested in Xi _ 1 for each i 2 1, then [ Xi) is called a pure Whitehead defining 

sequence, and G is called a pure Whitehead decomposition. If for each i 2 1, Xi is Bing 

nested in Xi _ 1 when i is odd, and Xi is Whitehead nested in Xi _ 1 when i is even, then i Xi ) 

is called a strictly alternating Bing-Whitehead defining sequence, and G is caled a strictly 
alternating Bing-Whitehead decomposition. 

Again let G be a Bing-Whitehead decomposition of a 3-manifold M, and let { Xi ) be a 

Bing-Whitehead defining sequence for 6. A sequence { bi} of positive integer is called an 

index of {Xi} and of G if it has the following two properties: 

(1) Xj is Bing nested in Xj_ 1 for 1 <j < b,, b, <j < b, + h,, b, + bz <j < b, + 
b, + b,, . . . . 

(2) Xj is Whitehead nested in Xj_ 1 for j = b,, j = b, + b,, j = b, + bz + b,, . . . . 

Thus, (Xi} begins with (bi- 1) Bing nestings; and for i> 1, there are ( bi - 1) Bing nestings 

between the (i - 1)th and ith Whitehead nestings. Observe that {Xi) is pure Bing if and 

Bing nestmg 

Fig. I 

WhItehead nesting 

Fig. 2. 
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only if h, = xc; {Xi: is pure Whitehead if and only if each hi = 1; and ( Xi1 is strictly 

alternating Bing-Whitehead if and only if each bi = 2. 

A decomposition G of a 3-manifold M is shrinkable if the quotient map 4: M -+ M/G can 

be approximated by homeomorphisms. Thus, G is shrinkable if and only if for every open 

cover + of M/G, there is a homeomorphism h: M/G such that ({q(x). h(x),‘: XE M) 

refines #. 

R. H. Bing proved in [l] that each pure Bing decomposition of a 3-manifold is 

shrinkable. If follows indirectly from J. H. C. Whitehead’s results in [S] that no pure 

Whitehead decomposition is shrinkable. These results suggest the question: Is a strictly 

alternating Bing-Whitehead decomposition shrinkable? More generally one can ask: 

Which Bing-Whitehead decompositions are shrinkable? These questions are settled by the 

principal result of this paper, which we now state. 

THEOREM. A Biplg- Whitehead decomposition of a 3-man(foid with index { bi ) is shrinkable 
if and only lf 

COROLLARY. No strictly alternating Bing- Whitehead decomposition of a 3-manifold is 

shrinkable. 

The Corollary follows from the Theorem because a strictly alternating Bing-Whitehead 

decomposition has index (2,2,2. . . ) and 

J-,; = 2 < x. 

We briefly describe the contents of the rest of this paper. In section 2, we state a 

shrinking criterion for toroidal decompositions which plays a central role in both directions 

of the proof of -the Theorem. The proof of the Theorem occupies sections 3 and 4. In 

section 3, we show that the divergence of xb;,/2’ implies the shrinkability of a 

Bing-Whitehead decomposition with index [ hi i. Section 4 contains the proof of the 

converse: convergence implies non-shrinkability. The proof in section 4 relies on a Techni- 

cal Lemma concerning the way in which a solid torus in R” can intersect a family of parallel 

planes. The proof of this Technical Lemma is the subject of section 5. We end this 

introductory section with an account of the source of the questions which led to these 

results. 

M. H. Freedman’s proof of the 4-dimensional Poincarl conjecture [3] relies on an 

analysis of the structure of Cusson handles. A Casson handle is the 4-dimensional thickening 

of an infinite tower of immersed disks. The frontier of a Casson handle is the quotient space 

of a pure Whitehead decomposition of a solid torus. Thus. the frontier of a Casson handle is 

never a manifold, a fact which injects technical complications into the analysis of Casson 

handles. 

Freedman’s Disk Theorem for 4-Manifolds [4] extends the results of [3] to certain non- 

simply connected situations. In the proof of the Disk Theorem, Casson handles are replaced 

by objects which have come to be called Freedman handles. The virtue of Freedman handles 

is that they can be constructed to have manifold frontiers. This makes one aspect of the 

proof of [4] simpler than [3]. (Any such simplification is welcome, because other aspects of 

the proof in [4] are significantly more complicated than in [3].) 

A Freedman handle is the 4-dimensional thickening of a cope. A cope is an infinite tower 

of embedded surfaces and immersed disks. The frontier of a Freedman handle is the 
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quotient space of a Bing-Whitehead decomposition of a solid torus. Each Bing nested stage 

in the Bing-Whitehead decomposition corresponds to a layer of embedded surfaces in the 

cope, and each Whitehead nested stage corresponds to a layer of immersed disks. To insure 

that the Freedman handle has the desired property that its frontier is a manifold, one must 

arrange that the associated Bing-Whitehead decomposition is shrinkable. According to the 

Theorem stated above, this can be achieved by having sufficiently long sequences of Bing 

nestings between successive Whitehead nestings. This corresponds to having long sequences 

of embedded surface layers in the cope between successive immersed disk layers. Fortu- 

nately, the process of constructing the cope is sufficiently flexible to accommodate the 

insertion of arbitrarily long sequences of embedded surface layers between successive 

immersed disk layers. Thus, Freedman handles with manifold frontiers are available when 

needed. 

At the Santa Barbara 4-Manifolds Conference in August, 1983. Freedman described the 

results of [4], and the question arose as to which Freedman handles have manifold frontiers 

(or equivalently, which Bing-Whitehead decompositions are shrinkable). At that time, it 

was conjectured that a strictly alternating Bing-Whitehead decomposition is shrinkable. 

During the course of the conference, Ancel outlined an argument which showed this 

conjecture to be false. However, that argument was not completed until Starbird contribu- 

ted the idea for the proof of the Technical Lemma which appears in section 5 of this paper. 

Also, at the time of the conference, it was recognized that a Bing-Whitehead decomposition 

is shrinkable if the number of Bing nested stages between successive Whitehead nested 

stages grows sufficiently rapidly; e.g.. on page 652 of [4], Freedman remarks that hi = 4’ 

suffices. However, the precise formula of the above stated Theorem was not known at that 

time; it was discovered by Ancel only in 1985. 

The issue of the shrinkability of a strictly alternating Bing-Whitehead decomposition 

independently occurred to R. J. Daverman (also in connection with some 4-dimensional 

topology problems). Daverman and D. G. Wright have independently given proofs of the 

above Corollary by a somewhat different method. 

2. A SHRINKING CRITERION FOR TOROIDAL DECOMPOSITIONS 

In this section. we state a shrinking criterion for toroidal decompositions. This criterion 

plays a central role in both directions of the proof of the Theorem, which is given in 

sections 3 and 4. 

TOROIDAL SHRINKING THEOREM. A toroidal decomposition G of a 3-manifold M with a 

toroidal d@ning sequence { Xi : is shrinkable If‘ and only If’ it satisjies the following toroidal 

shrinking criterion. For ecerj* E > 0 and jbr ever!’ i 2 0. there is a homeomorphism h of M 

w&c/z restricts to the identity on M - Xi such that diam h( C) < ~for each C E G. 

Remurks about the proof: It is easy to establish that for toroidal decompositions, the 

toroidal shrinking criterion is equivalent to the Bing shrinking criterion. The Bing shrinking 

criterion is a well known necessary and sufficient condition for the shrinkability of a 

decomposition. It was originally introduced in [It]. A succinct formulation and proof can be 

found on page 120 of [2]. 0 
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3. DIVERGENCE IMPLIES SHRINliABILIT~ 

In this section, we prove that C bJ2’ = cc is a sufficient condition for the shrinkability of 

a Bing-Whitehead decomposition with index {bi). 

Suppose that G is a Bing-Whitehead decomposition of a 3-manifold M. iXi) is a 

Bing-Whitehead defining sequence for G, { bi} is the index of {Xi ), and xhi.‘2’ = y_. We 

shall now prove that G is shrinkable by verifying the toroidal shrinking criterion. 

Throughout the proof, we shall reposition subsets of some Xi by homeomorphisms of M 

which restrict to the identity on M -Xi. To minimize notation, we shall not name the 

repositioning homeomorphisms, and we shall use the same name for a set and for its 

repositioned image. 

Lemmas 1 and 2 below record the progress toward satisfying the toroidal shrinking 

criterion that can be made by simple repositioning moves. The following terminology helps 

us to describe this progress. Let S’ denote the unit circle and B’ the unit disk in R2. Define 

the covering max exp: R+S’ by exp(t) = ezair. Suppose T is a solid torus in the 3-manifold 

M. Let E > 0, and let n be a positive integer. If there is a homeomorphism h: S’ x B’ -+ T 

such that diam h( (p} x B2) < E for every p E S’, then we say that T is E-thin. If there is a 

homeomorphism h: S’ x B2 + T such that 

diamh(exp[$!,:]xB’)<E 

for 1 I i I n, then we say that the &-length of T is I n; and, for 1 _< i I n, we call each set 

an &-compartment of T. Observe that if T is E-thin, then its E-length is <n for some ,I 2 1. 

Conversely, if the a-length of T is <n, then T is s-thin. 

LEMMA 1. Suppose Xi is Bing nested in Xi_, Suppose that E > 0 and n is a positive integer 

such that each component of Xi_ 1 has .+length I 2n. Then there is a homeomorphism of M 

which restricts to the identity on M - Xi_ 1 and which repositions the components of Xi so that 

each has E-length I max { 2n - 2, 1). 

Proof Let T be a component of Xi_ 1. There is a ramification { Ti, . . .,T,)ofTsothat 

TnX, c u{int(Tj): 1 lj<k}, and so that for each j, 1 <j< k, the pair (q, TnX,) is 

homeomorphic to the pair (U, Vu IV) where ZJ, V and W are as in Fig. 1. We position 

T, v T, v . . . u T,, by a homeomorphism of M which restricts to the identity on M - T, so 

that the e-length of each 7;. is I 2n. Now, for each, j, 1 I j I k, there is a homeomorphism of 

M which restricts to the identity on M - q, and which positions Tj n Xi so that the E-length 

of each component of Tj n Xi is I max { 2n - 2, I ) . The correct positioning of the com- 

ponents of 7;. n Xi is shown in Fig. 3. When n 2 2, each component of Tj n Xi has 207 - 2) 

straight E-compartments and two U-shaped &-compartments at top and bottom, giving a 

total of 2(n - 2) + 2 = 2n - 2 &-compartments. c 

We remark that Lemma 1 alone is adequate to verify the toroidal shrinking criterion for 

a pure Bing decomposition. We sketch this argument as a warm-up for the more compli- 

cated general case which appears below. This proof is close in spirit to Bing’s archetypal 

shrinking argument in [l]. Suppose {Xi) is a pure Bing defining sequence for the 

decomposition G. Let E > 0 and let i 2 1. We squeeze the components of Xi+ 1 toward their 

cores, by a homeomorphism of M which restricts to the identity on M - Xi, so that each 
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Tment 

Fig. 3. 

component of Xi+ 1 becomes s-thin. Then there is a positive integer n such that the s-length 

of each component of Xi+ 1 is I 2n. We now apply Lemma 1 repeatedly: first to Xi + 2, then 

to xi+33 then to Xi+4, . . . , and finally to Xi+“+ t. This will produce a homeomorphism of 

M which restricts to the identity on M - Xi, and which repositions the components of Xi+ 2, 

Xi+jr. “1 Xi+n+l so that the each component of Xi+2 has s-length s 2n - 2, each 

component of Xi+ 3 has s-length I 2n - 4, . . . , each component of Xi+” has s-length I 2, 

and each component of Xi+“+ 1 has s-length I 1. Consequently, the homeomorphism 

shrinks each element of G to a set of diameter < E, thereby verifying the toroidal shrinking 

criterion, 

LEMMA 2. Suppose Xi is Whitehead nested in Xi_ 1. Suppose that E > 0 and n is a positioe 

integer such that each component of Xi_ 1 has E-length < n. Then there is a homeomorphism qf 

M which restricts to the identity on M - Xi_ 1 and which repositions the components qf Xi so 

that each has E-length Imax (2n - 2,1>. 

Proof: Let T be a component of Xi_ t. There is a ramification { T, , . . . , T,) of T so that 

T n Xi c u {ht(Tj): 1 I j I k}, and SO that for each j, 1 < j 5 k, the pair (Tj, q n Xi) is 

homeomorphic to the pair (U, V) where U and V are as in Fig. 2. We position 

T, v Tz v . . . . u T,, by a homeomorphism of M which restricts to the identity on M - T, 

so that the s-length of each Tj is < n. Now, for each j, 1 <j I k, there is a homeo- 

morphism of M which restricts to the identity on M - Tj, and which positions Tj n Xi so 

that the s-length of each component of Tj n Xi is I max (2n - 2, I}. The correct positioning 

of the components of Tj n Xi is shown in Fig. 4. When n 2 2, each component of Tj n Xi 

has 201 - 2) straight s-compartments and two U-shaped c-compartments at the top, giving a 

total of 2(n - 2) + 2 = 2n - 2 s-compartments. 0 

We are now ready to verify the toroidal shrinking criterion under the hypothesis 

1 h,/2’ = a. Let E > 0 and let i 2 1. Our first step is to squeeze the components of 

TJ -._ 

Fig. 4. 
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Xi+ r toward their cores, by a homeomorphism of M which restricts to the identity on 
M - Xi. so that each component of Xi+ 1 becomes s-thin. Then there is a positive integer 
n such that the E-length of each component of Xi+ I is I 211. 

Forj20, set yi=Xi+I+j. Then ( Yj} is a Bing-Whitehead defining sequence for G. 
and each component of Y, has s-length < 2n. Let (cj 1 be the index of ( Yj ). Then Ihi 1 and 
{cj) have identical tails. So 2 cj/2j = cc. Hence, there is a positive integer r such that 

jir Cj/2’ > Il. 

We now apply Lemma 1 cr - 1 times in succession to Y,, Y,, . . . , Y,, _ 1; and then we 
apply Lemma 2 once to YC, . This produces a homeomorphism of M which restricts to the 
identity on M - Xi, and which repositions the components of Y,, Y,, . Y,, , so that each 
component of Y,, has s-length s 

max(2(2n-(c, - I))-2, 1) =max{4n-2c,, 11. 

Next, we apply Lemma 1 c2 - 1 times in succession to Y,, + 1, K, + 2,. . . , U,, + c2 _ 1, 

followed by a single application of Lemma 2 to q, + cI. This results in a homeomorphism of 

M which restricts to the identity on M - Xi, and which repositions the components of 

Y c, + 17 Yc,+zr.. . 9 K,.,, so that each component of Y,, +_ has s-length I 

max(2(4n-2c,-(c,-1))-2,1}=max{8n-4c,-2c,,1). 

We repeat this procedure r times. In the final run, Lemma 1 is applied c, - 1 times in 
succession, followed by a single application of Lemma 2. This yields a homeomorphism of 
M which restricts to the identity on M - Xi, and which repositions the components of Y,, 
c,+ . . . +c,_,+15jIc,+ . . . + c,-r + c,, so that if k = c1 + c2 + . . . + c,, then 
each component of Y, has s-length I 

max{2 r+1n-2’c, -2r-1c2-. . . -2c,, l} =max 2’+r 
i ( 

n- i cj/2j ,l =l 
j=l >I 

The net result is a homeomorphism of M which restricts to the identity on M-Xi, and 
which shrinks each element of G to a set of diameter < E. We have now verified the toroidal 
shrinking criterion. It follows that G is shrinkable. q 

4. CONVERGENCE IMPLIES NON-SHRINKABILITY 

In this section, we prove that if 1 bi/2’ < co, then no Bing-Whitehead decomposition 
with index {b,} is shrinkable. 

We shall need the following terminogy. Let X be a compact 3-manifold each component 
of which is a solid torus. A meridian of X is a simple closed curve in dX which bounds a disk 
in X but not in ax. A meridianal disk of X is a disk D in X such that D n 8X = (1D is a 
meridian of X. A finite sequence D, , D,, . . . , D, of pairwise disjoint meridianal disks of X is 
in cyclic order on X if D,, D,, . . . . D, lie in a single component T of X and if 
1 _ci<jtk<l<n implies that Di and D, lie in different components of T-(DjuD,), and 
Dj and D, lie in different components of T-(DiU Dk). 

For the remainder of this section, we suppose that G is a Bing-Whitehead decompo- 
sition of a 3-manifold M, {Xi} is a Bing-Whitehead defining sequence for G, {hi} is the 
index of {Xi} and 1 bi/2’ < x. 
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We shall prove that G is not shrinkable by demonstrating the failure of the toroidal 

shrinking criterion. Let us assume that the toroidal shrinking criterion is valid. We shall 

obtain a contradiction. 

Let I: be a positive integer so large that n/2 1 c bi;2’. This choice of n insures that for 

each integer I’ 2 0, the following inequality holds: 

2’n-2’h,-2’-‘h,-...-2h,>h,,, . . (*) 

Now, let D,, E,, D,, E2, . . , II,, E, be a sequence of 2n pairwise disjoint meridianal 

disks of X, in cyclic order on X,. Set D = D, u D, u . . . u D, and E = E, v El u . . u E,. 

Let E denote the distance from D to E. Then the toroidal shrinking criterion provides a 

homeomorphism h of M which restricts to the identity on M - X, such that diam h(C) < E 

for each C E G. It follows that for some integer i 2 1, each component of II is of diameter 

< c. Thus, no component of h(X,) intersects both D and E. Consequently, no component of 

Xi intersects both h-‘(D) and h-‘(E). We observe that h-‘(D;), Iz-‘(E,), h- ‘(D2), 

II-‘(E . , K ’ (D,), h- ’ (E,) is a sequence of pairwise disjoint meridianal disks of X, in 

cyclic order on X,. Hence, Lemma 3, below, implies that some component of Xi must 

intersect both h- ’ (D) and h-‘(E). We have reached a contradiction. 9 

LEMMA 3. Suppose G is a Bing- Whitehead decomposition of a 3-manifold M, {Xi} is a 

Bing- Whitehead dqfining sequence jbr G, i bi} is the index qj f Xi), and c bi 12’ < cc. Let II 

he LI positive integer so large that n/2 > c bii2’. Suppose D,, E,, D,, E,, . . . , D,, E, 

is (I seyuewe of pairwise disjoint meridianal disks of X, in cyclic order on X,. Set 

D=D,uD2u...uD,andE=E,uEzu... u E,. Then.for each i 2 0, some component 
of’Xj intersects both D and E. 

Proof We begin by modifying D u E so that it intersects each dX, nicely. Specifically, 

we adjust D u E by ambient isotopy, keeping it away from any component of any Xi which 

it already misses, to achieve two objectives. First, we make D u E transverse to each ?Xi. 

Second, for each i 2 I, we remove the components of (D u E) A (?Xi) that are not meridians 

of Xi. To attain the second objective. we consider a component T of Xi. We remove the 

components of ( D u E ) n (? T) which bound disks in ? T by “cutting off” D u E on d T. Then 

we consider a component J of (D u E) n ((?T) which is innermost in D u E. Since J bounds 

a disk in X, whose interior is disjoint from c?T, then either J is a meridian of T or J is 

“parallel” to a spine of T. In the latter case, T can be isotoped to a “thin” solid torus near J 

but disjoint from D u E. The inverse of this isotopy moves D u E off T. This leaves the case 

in which .I is a meridian of T. Since all the other components of (D u E) n (8T) are simple 

closed curves in CT which are disjoint from J and which don’t bound disks in (7T, then they 

must all be meridians as well. and our objective is achieved. We repeat this process for each 

component of each Xi. Now we may assume that for each i 2 1, D u E is transverse to iiXi 

and each component of (D u E) n (?X,) is a meridian of Xi. 

To prove that each Xi intersects both D and E. we shall actually prove that a stronger 

relationship than just intersection with D and E is preserved as we descend through the Xi’S. 

An interlacimg of order m on Xi shall mean a sequence D’, , El, D;, E;, . . . , Ok, Ek of 

pairwise disjoint meridianal disks of Xi in cyclic order on Xi such that D’, u 0; u . . 

u D;,, c D and E’, u E\ u . u EL c E. The following two lemmas allow us to find 

interlacings of positive order as we descend through the Xi’s, 

LEMMA 4. Suppose Xi is Bing nested in Xi_ 1. !f m > 1 and there is an interlacing of order 

1)1 011 X, _ , , then there is an interlucing of’ order m - I on Xi. 
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LEMMA 5. Suppose Xi is Whitehead nested in Xi_, If m 2 1 and there is an interlacing of 

order m on Xi _ 1 , then there is an interlacing of order 2m - 1 on Xi. 

We postpone the proofs of Lemmas 4 and 5 until we finish the proof of Lemma 3. 

Continuing with the proof of Lemma 3: we are given an interlacing of order II on X,. 

Inequality (*) implies that n > b,. So we can apply Lemma 4 b, - 1 times in succession to 

find an interlacing of order n - i on Xi, for 1 I i < b, . In particular, there is an interlacing 

of order n - (b, - 1) on X,, _ 1. We then apply Lemma 5 to find an interlacing of order 

2(n - (b, - 1)) - 1 on X,, Since 2(n - (b, - 1)) - 1 > 2n - 2b,, then there is an interlacing 

of order 2n - 2b, on X,, 

We repeat the procedure of the previous paragraph infinitely often. In the general step. I 

is a non-negative integer, set j = b, + b, + . . . + b,, and assume there is an interlacing of 

order2’n-2’b,-2’~‘b,-...-2b’onXj.Setk=b,+b,+...+b,+b,+,.Thein- 

equality (*) insures that we can apply Lemma 4 b,+l - 1 times in succession to find an 

interlacing of order 2’n - 2’b, - 2’-‘b, - . . -2b’-i on Xj+i, for 1 si<b’+,. In 

particular, since j + (b,, 1 - I) = k - 1, then there is an interlacing of order 2’11 - 2’b, - 

2’-lb,- . -2br-(br., - 1) on X,_ 1. We then apply Lemma 5 to find an interlacing of 

order 2(2’n - 2’6, - 2’- ’ b, - . . - 2b’ - (b’, 1 - 1)) - 1 on X,. Since 

2(2’n-2’b, -2’-lb,-. . -2b’-(b’., - I))-1 

>2’+ln-2’+l b, -2’b,-. . - 22b’-2b’+l, 

then there is an interlacing of order 2’+‘n-2’+‘b, -2’b,- . . -22b’-2b’+l on X,. 

It follows inductively that the procedure of the previous paragraph can be repeated ad 

infinitum. Hence, each Xi has an interlacing of positive order. We conclude that each Xi 

intersects both D and E. -i 
-. 

We now give proofs of Lemmas 4 and 5. In these arguments, a crucial role is played by 

the Technical Lemma which is the subject of Section 5 of this paper. 

Proof of Lemma 4. Suppose D;, E;, D;, E;, . . . , Dk, Ei is an interlacing of order ))I on 

Xi_,.SetD’=D;uD;u...,D:,andE’=E;uE;u...uE:.LetTbethecomponent 

of Xi_ I which contains D’u E’. There is a ramification {Tl, T,, . . . , Tk} of T such that 

TnXicT,uT2u..., u Tk and for each j, 1 I j < k, the pair (Tj, Tjn Xi) is homeomor- 

phic to the pair (U, Vu W) where U, V and Ware as in Fig. 1. Let R and S denote the two 

solid torus components of Tl n Xi. Since the pair (T, Tl) is homeomorphic to the pair (S’ 

x B, S’ x B,) where S’ is a circle and B, is a disk in the interior of the disk B, it follows that 

the pair (T, R US) is homeomorphic to the pair (U, Vu W) where U, V and W are as in 

Fig. I. 

Each 03 and each E; must intersect either R or S. Indeed, the link consisting of a spine of 

R, a spine of S, and c?D~ (or SE>) as a copy of the Borromean rings; and no component of this 

well known link bounds a disk in the complement of the other two components. Thus, one 

of R and S, say R, intersects at least m of the 2m disks D;, E;, 0;. E;, . . , D;, EL. 

There is a covering map n:R3 -+ int(T) such that Cl(D’u E’) = u { Pj:jEZ] where 

{P,:jeZ) is a discrete family of parallel planes in R3 such that Pk separates Pj from P, 
wheneverj < k < 1, P, c x- ‘(D’) when j is odd, and Pi c TI- ‘(E’) when j is even. Let l? be a 

component of z-‘(R). Then l? is a solid torus, cYR is transverse to z- ‘(D’ u E’), each 

component of (dE) n xL- ‘(D’ u E’) is a meridian of R’, xlK: l? -’ R is a homeomorphism, and 

l? must intersect at least m distinct Pis. Thus there is a kE7 such that i intersects Pk+ 1, 
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P bc+2> . 3 P k+m. We now invoke the Technical Lemma of section 5 to obtain disk 

components A,, A,, . . . , A,, of l?n(P,+, u Pli+z u . . . u Pk+m) which are meridianal 

disks of l? in cyclic order on R’ such that Aj u A,, + 1 _ j c P, + j for 1 I j I m. (See Fig. 5.) 

Hence n(A,), ~c(A~), . . , n(A,,) is a sequence of meridianal disks of R in cyclic order on R 

such that n(Aj) u x(A2,,, + 1 _ j ) c D’ when k + j is odd, and rr(Aj) u z(A2,,,+ 1 _ j) c E’ when 

k + j is even. To complete the proof of Lemma 4, we observe that in the case that k is even, 

the sequence z(A,), TC(A~), . . ,_~I(A,_~), n(A,+,), ?I(A,+~), . . . , n(A,,_,) is an inter- 

lacing of order m - 1 on Xi: and in the case that k is odd, the sequence x(A,), 

NA,), . . , ~(A,,,), 44,+,). 44,+~), . . ‘3 dA,m) is an interlacing of order m - 1 

on Xi. c 

Proof of Lemma 5. This proof is very similar to the previous one. Again suppose D’, , E’, , 

D;, E;, . . ., D&, EL is an interlacing of order m on Xi_ 1. Set D’ = D’, v 0; u . . . , 0; and 

E’=E;uE;u . . . u Ek. Let T be the component of Xi _ I which contains D’ u E’. There is 

a ramification (T,, T,, . . . , T,)ofTsuchthatTnXicT,uT,u...uT,andforeachj, 

1 5 j I k, the pair ( Tj, Tj n Xi) is homeomorphic to the pair (U, V) where U and V are as in 

Fig. 2. Let R denote the solid torus T, n Xi. Since the pair (T, Tl) is homeomorphic to the 

pair (S’ x B, S’ x B,) where S’ is a circle and B, is a disk in the interior of the disk B, it 

follows that the pair (T,R) is homeomorphic to the pair (V, V) where U and V are as in 

Fig. 2. 

Each D) and each EJ must intersect R. Indeed, the link consisting of a spine of R and SD) 

(or 8.E;) is a copy of the Whitehead link; and no component of this well known link bounds a 

disk in the complement of the other component. Thus, R intersects each of the 2m disks 0;. 

E;, D;, E;, . . . , Da, Ea. 
Again, there is a covering map rr: lQ3 -+ int(T) such that n-‘(D’u E’) = u { P,:jEZ) 

where (Pj:j E h} is a discrete family of parallel planes in lR3 such that Pk separates Pi from P, 

whenever j < k < I, Pj c n- '(D') when j is odd, and Pj c n- ‘(E’) when j is even, Let R’ be a 

component of n-‘(R). Proceeding as in Lemma 4, we invoke the Technical Lemma of 

section 5 to obtain 4m disk components A,, A,, . . . , A,, of I?n(P,+ 1 u P,, 2,u 

. . . u Pk+2m) such that either the sequence n(A,), n(A,), . . . , $A,,_ 1), z(A2,,,+ 1), 

NAzm+z), . . ., 6%,-,) or the sequence ~c@,), 703), . . . , W2,,,), 4L,+2)~ NA2m+3), 
. . .) n(Adm) is an interlacing of order 2m - 1 on Xi. @ 

5. THE TECHNICAL LEMMA 

We recall the following terminology. Let T be a solid torus. A meridian of T is a simple 

closed curve in ?T which bounds a disk in T but not in aT. A meridianal disk of T is a disk D 

in T such that D n ? T = ?D is a meridian of T. A finite sequence D 1, D,, . . . , D, of pairwise 

Fig. 5 
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disjoint meridianal disks of Tis in cyclic order on Tif 1 < i <j < k -C 11 n implies that Di and 

D, lie in different components of T-(Dju 0,) and Dj and D, lie different components of 

T- (Di u Dk). We extend this terminology slightly by declaring a pairwise disjoint sequence 

J,, J2,. . , J, of meridians of T to be in cyclic order on aT if 1 I i <j c k < 1 I n implies 

that Ji and J, lie in different components of ZT-(Jju J,) and Jj and J, lie in different 

components of aT- (Ji u Jk). 

THE TECHNICAL LEMMA. Suppose P,, Pz, . . . , P, is a sequence of parallel planes in R3 

such that if 1 5 i <j < k 2 m, then Pj separates Pi and Pk. Set P = P, u Pz u . . u P,. 

Suppose T is a solid torus in R3 such that dT is transverse to P, each component of (c^T) n P is a 

meridian of T, and Tn Pi # Qr for 1 < i I m. Then there is a sequence A,, A,, . . , AZ,,, of 

pairwise disjoint meridianal disks of T in cyclic order on T such that Ai u A,, + 1 _ i c Pi for 

1 lilm. 

The technical Lemma may strike the reader as an obvious fact, in which case he will find 

the proof surprisingly complicated. To convince the reader that the proof requires some 

subtlety, we present the following example. This example shows that the Technical Lemma 

becomes false if, in its hypothesis, parallel planes are replaced by concentric 2-spheres. In 

Fig. 6 below, S,, S, and S, are topologically concentric 2-spheres (i.e., there is a homeo- 

morphism of R3 which carries S,, S, and S, to geometrically concentric round 2-spheres) 

and S2 separates S, from S,. T is a solid torus which intersects each Si, and ST intersects 

each Si transversely in meridians of T. However, there is no sequence A,, A,, . . , A, of 

pairwise disjoint meridianal disks of T in cyclic order on T such that Ai u Aim+, _ i c Si 

for 1 I i I 3. 

Proof of the Technical Lemma. If J is a simple closed curve in P, let D(J) denote the disk 

in P bounded by J. Define the height of a component J of (c?T) n P to be the maximum of all 

positive integers k such that there is a sequence J,, J,, . . . , J, = J of k components of 

(aT)n P such that D(Jj) c int(D(Jj+ 1)) for 1 rj < k. 
Observe that if J is a component of (27’) A P of height 1, then D(J) c T. Indeed, if J is 

height 1, then either D(J) c Tor int(D( J)) n T= 0. However, the latter alternative is ruled 

out by the fact that J links each spine of T. 

We shall induct on the number c(T) of components of (aT) n P of height > 1. 

We first consider the case c(T) = 0. Here all the components of T n P are disks. Let J be 

a simple closed curve in BT which meets each component of (aT) n P transversely in a single 

Fig. 6. 
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point. Choose points p, 4 E J so that P, separates p from P, and I’,,, separates q from P, _ 1. J 

is the union of two arcs K and L such that dK = dL = {p,q}. Orient both K and L from p to 

q. For 1 I i I m, let Ai be the component of T n Pi which K meets first, and let A,, + 1 _ i be 

the component of Tn Pi which L meets first. Then A 1, A,, . . . A,, satisfies the conclusion 

of the Technical Lemma. 

Now let c > 0 and inductively assume that the conclusion of the Technical Lemma holds 

whenever c(T) < c. Suppose c(T) = c. 

Case 1. One of the components of Tn P is an annulus. 

Let E be an annulus component of TnP. There is a meridianal disk D of T which is 

disjoint from E. (See Fig. 7.) D is obtained by simplifying the intersection of an arbitrary 

meridianal disk of T with E. Either one produces D directly, or one obtains a disk D' in 

int(T) such that D'n E = c?D' is essential in E. Then D' is transformed to D by sliding ?D' 
along E, across dE, and into iiT. Let N(E) be a thin regular neighborhood of E in T which is 

disjoint from D u (( Tn P) - E). Let U be the component of cl( T- N(E)) which contains D. 
Then U is a solid torus, and D is a meridianal disk of U. Clearly, aU is transverse to P and 

each component of (dU)nP is a meridian of U. U has a spine .I which intersects D 
transversely in a single point. J must also be a spine of T. Hence, J intersects each Pi. So, U 
intersects each Pi. 

Apparently, c(U) I c(T) - 2 because U n E = 0. So by inductive hypothesis, there is a 

sequence A,, A,, . . , A,, of pairwise disjoint meridianal disks of U in cyclic order on U 

such that AiuA2m+l-i c Pi for 1 5 i I m. Clearly A,, A,, , . , A,, are also meridianal 

disks of T in cyclic order on T. 

Case 2. No component of Tn P is an annulus. 

Since c(T) > 0, there must be a component J, of (i?T) n P of height 2. .I, bounds a 

meridianal disk E, of T. We adjust E, to make it transverse to P and disjoint from the disk 

components of Tn P. Then E, u D( J,) is a 2-sphere which bounds a 3-ball C, in R”. We 

now assume that J, and E, have been chosen to minimize the number of components of 

(ZT) n P in int(C,). 

We assert that J, is the only height 2 component of (8T)nP that intersects C,. For 

suppose there is a height 2 component J, of (c?T)nP which intersects C, and is distinct 

from J,. Then J, c int(C,), and D(J1) is the union of a punctured disk whose interior lies 

outside T and some disk components of Tn P. It follows that D( J1) is disjoint from both 

D(J,) and E,. Hence, D(J,) c int(C,). J, bounds a meridianal disk E, of T which can be 

adjusted to be transverse to P and disjoint from the disk components of Tn P and from E,. 

This implies E, c int(C,). Now E, u D(J1) is a 2-sphere which bounds a 3-ball C, which 

Fig. 7 
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must lie in int(C,). (See Fig. 8). Since .I, lies in int(C,) but is disjoint from int(C,). then 

int(C,) contains fewer components of (?T)n P than does int(C,). This contradicts the 

choice of J, and E,, and proves our assertion. 

Since int(E,) c int(T), then there is a homeomorphism. which is supported on a 3-ball 

that is slightly larger than C,, and which spreads out a neighborhood of int(E,) that 

initially lies in int(T) to engulf C,. More precisely, there is a 3-ball Cb and a homeo- 

morphism h:R3 -+ R3 such that 

(1) C, c int(Cb), 

(2) Cb n ((ST) n P) = C, n ((dT) n P), 

(3) h is supported on CL. and 

(4) h(int(T)) I C, and h((?T)n Cb)n P = 0. (See Fig. 9.) 

It follows that h(2T) n P = ((8T) n P) - Cb, and on this set h is the identity. Therefore, 

h(ZT) is transverse to P, and each component of h(c’T)n P is a meridian of h(T). 

Furthermore, h(T)n Pi # 0 for 1 I i I tn. To see the last assertion, let 1 < i I IPI and let J 

be a component of (ST)n Pi. If J intersects C,, then .I c h(T); whereas if J is disjoint from 

C,, then h(J) = J c Pi. Thus, in either case, J c h(T) n Pi. 

Since h(dT)n P = ((ZT) n P) - Cb and since J, c h(int(T)), then c(h(T)) < c(T). So, by 

inductive hypothesis, there is a sequence A,, A,, . . , A,, of pairwise disjoint meridianal 

disks of h(T) in cyclic order on h(T) such that Ai u A,,, 1 -i c Pi for 1 5 i I m According 

to the next paragraph, each Ai is also a disk component of TnP. We must show that the 

Ai’s are meridianal disks of T in cyclic order on T. To do this, we observe that ?A 1, 

c’A 2r . . . , ?A,, is a sequence of disjoint meridians of h(T) which is in cyclic order on h(?T). 

Since h- ’ doesn’t move the points of h(ST) n P = ((?T) n P) - Cb, we conclude that ?A,. 

h 

Fig. 9 
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Fig. 10. 

dA,, . . , aA,,,, is a sequence of disjoint meridians of T which is in cyclic order on ST. It 

follows that A,, A,, . . ., A,, is a sequence of pairwise disjoint meridianal disks of T in 
cyclic order on T. 

It remains to verify the following assertion: if A is a disk component of h( T) n P, then A 

is a disk component of Tn P. We proceed by contradiction. Suppose A is a disk component 
of h(T)n P but not of TnP. Then dA is a component of h(dT)nP. Since h(dT)n P c 

(aT) n P, we conclude that dA is a component of Tn P. Let F denote the component of 
Tn P which contains aA. F must be a proper subset of A, because A is not contained in 
TnP. Thus, F is not a disk. Also, the hypothesis of Case 2 prevents F from being an 
annulus. (This is the only point at which this hypothesis is used.) Hence, (aF) n (int(A)) has 
at least two components. Suppose J is a component of (L?F) n(int(A)). Then D(J) is not 
contained in T, but int(D(J)) must intersect T because J, being a meridian of T, links a spine 
of T. Hence, J is of height 2 2. Thus, either D( J,) c D(J), or D(J,)nD(J)= 0. Since 
(ZF) n (int(A)) has more than one component, we can assume D(J) n II = 0. As J is of 
height 2 2, then D(J) contains a component K of (dT) n P of height exactly equal to 2. Our 
choice of J insures that K # J,. (See Fig. 10.) In an earlier paragraph, we argued that Jo is 
the only height 2 component of (dT) n P that intersects Co. So K n C, = 0. Therefore, 
K n CL = 0. Hence, K c ((?T) n P) - Cb = h(dT) n P. But K c int(A) c h(int(T)). We 
have reached the desired contradiction. c1 
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