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SUMMARY

Exposure to low-dose irradiation causes transiently
elevated expression of the long ncRNA PARTICLE
(gene PARTICLE, promoter of MAT2A-antisense
radiation-induced circulating lncRNA). PARTICLE af-
fords both a cytosolic scaffold for the tumor suppres-
sor methionine adenosyltransferase (MAT2A) and a
nuclear genetic platform for transcriptional repres-
sion. In situ hybridization discloses that PARTICLE
and MAT2A associate together following irradiation.
Bromouridine tracing and presence in exosomes
indicate intercellular transport, and this is supported
by ex vivo data from radiotherapy-treated patients.
Surfaceplasmon resonance indicates thatPARTICLE
forms a DNA-lncRNA triplex upstream of a MAT2A
promoter CpG island. We show that PARTICLE
represses MAT2A via methylation and demonstrate
that the radiation-induced PARTICLE interacts
with the transcription-repressive complex proteins
G9a and SUZ12 (subunit of PRC2). The interplay of
PARTICLE with MAT2A implicates this lncRNA in
intercellular communication and as a recruitment
platform for gene-silencing machineries through
triplex formation in response to irradiation.
INTRODUCTION

The abundance of long non-coding RNAs (lncRNAs) in the ge-

nomes of higher organisms contributed to their initial relegation
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as irrelevant transcriptional noise emanating from RNA polymer-

ase II infidelity (Struhl, 2007). Defined as RNA transcripts ranging

in length from 200 up to �100,000 bp lacking a significant open

reading frame (Bertone et al., 2004), thousands of lncRNAs

have been identified by computational transcriptome prediction

(Amaral et al., 2011). Recognition of their functional importance

arose from the demonstration of their participation in genomic

transcriptional control, with influence ranging from a single locus

(Wan et al., 2013) to entire chromosomal regions (Chaumeil et al.,

2006; Zhang et al., 2007). Regulationmay be through association

with chromatin complexes in cis (Azzalin et al., 2007; Schoeftner

and Blasco, 2008) or trans (Gupta et al., 2010; Rinn et al., 2007;

Tsai et al., 2010). However, for most lncRNAs, their physiological

function remains elusive, with some indications of involvement in

disease (Huarte and Rinn, 2010) or as responders to genotoxic

insults (Özgür et al., 2013).

Ionizing radiation instigates direct macromolecular damage as

well as indirect (non-targeted) cellular and tissue stress (Morgan

and Sowa, 2015; Pluder et al., 2011). While the DNA damage

response is linear with the applied dose, ancillary effects may

deviate significantly from linearity (Kadhim et al., 2013). Crucially,

these non-targeted reactions to radiation may be more promi-

nent than the direct damage responses at low doses, i.e.,

milligray range exposure typically encountered in the workplace,

during medical imaging, and from natural sources. Thus, low

doses may evoke alternative biological responses compared to

those emanating frommedium- or high-dose exposure (Mullend-

ers et al., 2009; Waldren et al., 2004).

The molecular players known to be involved in the radiation

response include lncRNAs and the polycomb repressor complex

2 (PRC2), as mediators coordinating cellular repair (Campbell

et al., 2013; Wang et al., 2008). While the mechanistic role of

PRC2 itself in DNA damage signaling must be elucidated,
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lncRNAs are becoming recognized as important participants

in PRC2 recruitment with their tertiary structure key to specific

target gene recognition (Margueron and Reinberg, 2011).

LncRNAs such as lincRNA-p21 and PANDA are upregulated

by DNA damage as direct targets of p53 (Hung et al., 2011).

Regulation of Cyclin D1 (CCND1) following ionizing radiation

has been demonstrated as a target for promoter-derived

lncRNAs, e.g., ncRNA- CCND1s (Wang et al., 2008).ANRIL (anti-

sense non-coding RNA in the INK4 locus) is overexpressed

following high-dose irradiation (5 Gy exposure), which may be

related to suppression of senescence by p16 (Özgür et al.,

2013). However, limited knowledge exists on the mechanistic

response of lncRNAs to ionizing radiation and, in particular, the

influence of dose and cellular context (Özgür et al., 2013).

Here we introduce the lncRNA PARTICLE (HUGO gene

nomenclature PARTICLE, promoter of MAT2A-antisense radia-

tion-induced circulating lncRNA, NCBI reference sequence

NR_038942.1), which demonstrates a substantial increase in

expression after low-dose radiation. PARTICLE is located within

the MAT2A gene that encodes the catalytic subunit of methio-

nine adenosyltrasferase (MAT), the enzyme responsible for the

production of s-adenosylmethionine (SAM), which is the prin-

cipal methyl donor of the cell (Mato et al., 1997). Co-localiza-

tion of PARTICLE and MAT2A cytosolic transcripts potentially

destined for export via exosomes in response to irradiation is

demonstrated. We provide evidence that nuclear PARTICLE is

a suppressor of MAT2A through triple helix formation and pro-

vides a methyltransferase and polycomb repressor complex

recruitment platform. Broadly, our work identifies a potential

mammalian riboswitch previously discovered in bacteria, and it

suggests that lncRNAs subsequently have been exploited for

roles in metabolomic regulation.

RESULTS

PARTICLE Expression Is Modulated by Exposure to
Low-Dose Irradiation
Microarray analysis provided an initial platform for target discov-

ery. While �50 radiation-regulated candidates were identified

(Table S1), four lncRNAs (NR_027405, BC036914, BX647881,

and PARTICLE [NR_038942.1]) associated with genes (MTHFD2,

GNAII, TFDP2 andMAT2A, respectively) were selected for further

verification by Taqman QPCR assays (see Table S2 for primers

and probes). Fold differences in the relative expression of these

lncRNAs as well as PANDA (NR_109836.1, serving as a positive

indicator of radiation exposure [Hunget al., 2011])were initially as-

sessed inT47D,amammarycancercell line (due toprevious inclu-

sion of this cell line in the high-throughput microarray analysis), at

4 and 24 hr after exposure to 2.5 Gy and in sham-irradiated con-

trols (Figure 1A). No significant changes in expression were found

for any of these lncRNAs at 4 hr after 2.5 Gy exposure (Figure 1A;

p > 0.05). However, at 24 hr, significant increases were noted for

the lncRNAs BX647881 and PARTICLE. BX647881, associated

with TFDP2, increased by 3.48 ± 0.11 relative to sham-irradiated

controls (p = 0.001). There was a more substantial increase of

PARTICLE, associated withMAT2A, at 24 hr after 2.5 Gy irradia-

tion (12.8 ± 2.6-fold compared to controls, p = 0.02, as tested in

three independent experiments).
These lncRNA expression findings in the relatively radiation-

resistant T47D cell line (Anastasov et al., 2012) prompted their

further assessment in MDA-MB-361, a radiation-sensitive

mammary cancer cell line (Anastasov et al., 2012; Figure 1B).

This analysis highlighted different transcriptional responses

for these lncRNAs between T47D and MDA-MB-361 and also

may reflect alternative RNA steady-state levels. LncRNAs

BC036914, PANDA, BX647881, and PARTICLE showed signifi-

cantly enhanced transcription following irradiation (Figure 1B).

A robust elevation in PARTICLE (27 ± 0.64-fold increase versus

control values normalized to unity) was noted, especially 24 hr

after 0.25 Gy low-dose irradiation exposure in MDA-MB-361

(p = 0.00028; Figure 1B). Increased levels for PARTICLE at 4 hr

(12 ± 0.1-fold, p = 0.00056; Figure 1B) also were noted. While

unchanged PARTICLE levels were found in sham-irradiated

and 2.5 Gy-irradiated samples when analyzed at 4 hr, increased

transcription occurred by 24 hr after 2.5 Gy in both T47D and

MDA-MB-361 (p < 0.05; Figures 1A and 1B). To determine

whether the increase in PARTICLE transcription due to irradia-

tion was solely restricted to cancer cells, its expression also

was assessed in three non-cancerous human cell lines

(MCF10A, HUVEC, and HEK293). Enhanced levels of PARTICLE

following low-dose irradiation were found in all three additional

cell lines examined (Figures S1A–S1C), confirming PARTICLE

to be a ubiquitous tissue responder to low-dose irradiation

exposure, irrespective of malignant status or lineage.

A Relationship of PARTICLE with the MAT2A Gene Is
Revealed by the Time Course of the Transcript
Expression Pattern following Low-Dose Irradiation
Real-time qPCR analysis of PARTICLE,MAT2A, andGGCX tran-

scription was undertaken at 4, 24, 48, and 72 hr after an acute

exposure to 0.25 Gy or 2.5 Gy in MDA-MB-361 cells (Figures

1C–1E). Following 0.25 Gy irradiation, results showed increased

PARTICLE transcript presence at 4 hr (8.79 ± 0.5-fold increase)

in comparison with sham-irradiated experimental controls

(p = 0.004). PARTICLE transcription continued to rise, peaking

at 24 hr (20.17 ± 1.6-fold greater than controls, p = 0.006; Fig-

ure 1C). By 48 hr, PARTICLE transcript levels decreased back

down toward control cell levels. Of note was the slightly different

PARTICLE expression profile after the higher (2.5 Gy) dose of ra-

diation. Levels were comparable to controls at 4 hr (p > 0.05),

with a peak increase of 8.9 ± 1.2-fold at 24 hr (p = 0.03) that

diminished 5 ± 0.38-fold by 48 hr (p = 0.018). The transcriptional

decrease continued to 72 hr, reaching non-significance by that

time (p = 0.2; Figure 1C).

The expression ofMAT2A transcripts was analyzed due to the

genomic co-localization of the PARTICLE and MAT2A genes.

Dramatic elevation of MAT2A levels was determined at 4 hr

post-irradiation (Figure 1D), while from 24 hr onward to 72 hr

MAT2A transcripts in 0.25- and 2.5 Gy-irradiated samples

showed levels comparable to sham-irradiated controls. There

was a significant 6.2 ± 0.9 or 6.9 ± 2.3-fold increase over

controls in MAT2A transcription following exposure to 0.25 Gy

or 2.5 Gy irradiation (p = 0.001, p = 0.03, respectively) at

this time point (Figure 1D). The proximity of GGCX to the

PARTICLE/MAT2A locus prompted the assessment of potential

variation in GGCX transcription during the radiation response.
Cell Reports 11, 474–485, April 21, 2015 ª2015 The Authors 475



Figure 1. Characterization of lncRNA Transcripts following Low-Dose Irradiation

(A) Histogram shows lncRNAs (NR_027405, BC036914, PANDA, BX647881, and PARTICLE) expression in T47D, 4 and 24 hr after exposure to 2.5 Gy. Genes

associated with each lncRNA are indicated.

(B) Histogram shows lncRNAs (NR_027405, BC036914, PANDA, BX647881, and PARTICLE) expression plus associated genes (as above) in MDA-MB-361

(radiation-sensitive cell line) 4 and 24 hr after exposure to 0.25 or 2.5 Gy irradiation.

(C–E) Schematic diagram (top) and time course (bottom) of the relative expression of PARTICLE (red, C), MAT2A (red, D), and GGCX (red, E) 4–72 hr following

either 0.25 or 2.5 Gy irradiation in MDA-MB-361 with values at 0 Gy taken as a value = 1 (dashed line) for comparative purposes. Data are represented as mean ±

SEM with significance represented by asterisks (p < 0.05) where appropriate. See also Figure S1 and Tables S1 and S2.
Modest fluctuations in GGCX transcription were found after

0.25 Gy exposure (Figure 1E). As there was only a modest rela-

tionship with exposure or PARTICLE, GGCX was not followed

further in this study.

Increased PARTICLE Expression in Both the Nucleus
and Cytoplasm Is Associated with MAT2A

In situ hybridization utilizing fluorescently labeled FAM probes

complementary to PARTICLE in MDA-MB-361 confirmed that

low-dose irradiation induced elevated PARTICLE levels (Figures

2A–2C). Substantially increased intensity of PARTICLE staining

was noted in both the nucleus and cytoplasm 24 hr following

0.25 Gy irradiation (Figures 2A–2C, middle). At the same time

point, elevated levels of PARTICLE also were noted in these cells

after 2.5 Gy exposure compared to controls (Figures 2A–2C,

top), although transcripts appeared to be mainly restricted to

the cytoplasm with levels not reaching those seen following the

lower dose of irradiation. In sham-irradiated cells, PARTICLE
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(green fluorescence) was spatially discreet from MAT2A (red

fluorescence) transcripts, with both the nucleus and cytoplasm

havingminimum co-localization (yellow) (Figures 2D–2F). Intrigu-

ingly, PARTICLE andMAT2A transcripts were seen to associate

together as early as 4 hr after low-dose irradiation. Regions-

of-interest analysis highlighted the increase in the co-localization

coefficient in both nuclear and cytoplasmic zones (Figures

2D–2F).

Bromouridine RNA Tracing, Exosomes, and
Radiotherapy Patient Plasma Analysis Support the
Intercellular Transport of PARTICLE following
Irradiation
Following transwell relocation, extraction, and north-western

detection, RNA labeled with 5-bromouridine (BruU) was noted

in recipient MDA-MB-361 exposed for 4 or 24 hr to BruU-labeled

irradiated (0.25 Gy) donor cells (Figures 3A and 3B). An increase

in the size range of Bru-labeled RNA with time was noted.



Figure 2. Increased Expression of PARTICLE

and Co-localization with MAT2A following 0.25 Gy

Irradiation

(A) Representative confocal microscopic images of MDA-MB-

361 24 hr after 2.5 Gy (left, upper), 0.25 Gy (left, middle), or

sham irradiation (left, lower) labeled with RNA in situ hybridi-

zation probes specific for PARTICLE (fluorophore FAM, green,

left). Nuclei are stained with DAPI (blue, center). Merged im-

ages are shown for PARTICLE (green, FAM) and nuclei (blue,

DAPI) (right). Representative arrows indicate the position of

the transept selected for cross-sectional analysis. Mean

fluorescence intensity analysis was determined from regions

of interest (ROIs) indicated by circular dashed lines. Scale bar,

20 mm.

(B) Plots of arbitrary units (AUs) of fluorescence profiles of

DNA (DAPI, blue line) and PARTICLE (FAM, green line) after

2.5 Gy (top), 0.25 Gy (middle), or sham irradiation (bottom).

Note, the intracellular localization of PARTICLE within the

nucleus and cytoplasm as well as it’s increased expression

following 0.25 Gy compared to 2.5 Gy exposure or sham

irradiation.

(C) Summary plots illustrate average fluorescence intensities

pooled from the selected ROIs from the various experimental

groups.

(D) Representative confocal images of MAT2A (red, left) and

PARTICLE (green, middle) transcripts detected with specific

RNA in situ hybridization probes labeled with Quasar570 or

FAM, respectively, in MDA-MB-361, 4 hr after 0.25 Gy irra-

diation (top) or sham irradiation (bottom). Cells were coun-

terstained with DAPI (blue). Merged images of MAT2A and

PARTICLE show co-localization (yellow, right). Scale bar,

50 mm.

(E) Plots of AUs of fluorescence profile of DAPI (blue line), FAM (green line), and Quasar570 (red line) representing nuclei, PARTICLE, and MAT2A, respectively,

4 hr after 0.25 Gy (top) irradiation or sham irradiation (bottom) are shown.

(F) Summary plots for Quasar570 (ChR, red channel)/FAM (ChG, green channel) and ChG/ChR co-localization in ROI (circular dashed lines in D). Data are

represented as mean ± SEM.
PARTICLE was detected by northern blotting of Bru-labeled

RNA in recipient cells (Figure 3B).

PARTICLE levels were significantly elevated in exosomes iso-

lated from the media of MDA-MB-361 exposed to 0.25 Gy (1.8 ±

0.05-fold over sham-irradiated controls = 1, p = 0.0008) and to a

lesser extent following 2.5 Gy exposure (0.6 ± 0.07-fold versus

controls, p = 0.005; Figure 3C). A concomitant enhancement of

MAT2A transcripts also was noted in extracellular exosomes af-

ter the low-dose (0.25 Gy) exposure (1.7 ± 0.2-fold, p = 0.012)

with non-significant levels reached after 2.5 Gy irradiation for

this gene (0.47 ± 0.28-fold, p = 0.23; Figure 3C). Substantial up-

regulation of PARTICLE expression in T47D following exposure

to exosomes isolated from irradiated MDA-MB-361 (24 hr after

0.25 Gy) was noted (35 ± 3.2-fold, p = 0.006; Figure 3D), but

was not evident forMAT2A (Figure 3E). In vitro exposure of whole

blood to 2 Gy with exosomal isolation revealed that, although

PARTICLE levels varied among individuals, increases ranged

from 4.4 ± 0.38- to 22.3 ± 1.8-fold over control levels (p <

0.005; Figure 3F). Likewise, MAT2A mRNA also was detected

in these exosomes with significantly elevated levels, ranging

from 3 ± 0.09- to 4.3 ± 0.6-fold over controls for all exosomal ex-

tracts (n = 3; p < 0.05; Figure 3F). Increases in PARTICLE also

were noted in plasma samples obtained from three of four

post-radiation therapy patients (Patients A–C, p < 0.05; Fig-

ure 3G). Concomitant increases in MAT2A over controls also
were revealed (A, 5 ± 0.9-fold, p = 0.014; B, 1.85 ± 0.11-fold,

p = 0.002; C, 2.2 ± 0.5-fold, p = 0.01; D, 1.3 ± 0.23-fold,

p = 0.01; Figure 3G).

PARTICLE Silencing Enhances MAT2A Transcription
Knockdown of PARTICLE (Figure S3) caused overexpression

of MAT2A in sham-irradiated MDA-MB-361 cells (Figure 4A).

PARTICLE expression was decreased (86.3%, p = 0.002) when

MDA-MB-361 were transduced with lentivirus encoding the

silencing small hairpin RNA (shRNA)_A compared to empty vec-

tor alone (similar to the effects of Cisplatin exposure, Figure S4).

At the same time, a reverse trend toward a 2.2-fold elevation was

detected in MAT2A (p = 0.06). In cells transfected with lentivirus

encoding shRNA_B, PARTICLE expression was again strongly

decreased (94.2%, p = 0.00001) and again coincided with a

concomitant 3.3-fold increase in MAT2A transcript expression

(p = 0.001; Figure 4A).

Expression of MAT2A Is Enhanced in PARTICLE

Knockdown Cells following Low-Dose Radiation
Exposure
Knockdown of PARTICLE with lentivirus encoding shRNA_B

resulted in an overshoot ofMAT2A expression (7.7-fold increase,

p = 0.0038) following low-dose (0.25 Gy) irradiation in MDA-MB-

361 cells (Figure 4B). Essentially similar results were seen with
Cell Reports 11, 474–485, April 21, 2015 ª2015 The Authors 477



Figure 3. Extracellular Transport of

PARTICLE

(A) Schematic of experimental overview. After 4 or

24 hr, RNA motility (mot.) was tested in recipient

cells.

(B) (Left) North-western blot shows RNA isolated

from recipient cells exposed to bromouridine (Bru)

RNA labeled and irradiated (4 or 24 hr after 0.25

Gy) donor cells. (Lane 1) RNA size ladder (LD,

Ambion); (lane 2) RNA from control (C); (lanes 3

and 4) Bru-labeled RNA isolated from recipient

cells (300 and 3,000 bp lower and upper arrow-

heads). (Right) Northern blot shows PARTICLE

detected in isolated Bru-labeled RNA in recipient

cells exposed to Bru RNA labeled and irradiated

(24 hr after 0.25 Gy) donor cells. (Lane 1) RNA

ladder (as above); (lane 2) band showing

PARTICLE (size 1,432 bp, arrowhead).

(C) Plots show fold change in PARTICLE and

MAT2A transcripts in exosomes isolated from

tissue culture supernatant 24 hr after 0.25 Gy

or 2.5 Gy exposure. Dotted line represents

sham-irradiated control values. Note significantly

enhanced presence of PARTICLE and MAT2A

after 0.25 Gy (asterisks).

(D and E) Expression of PARTICLE (D) andMAT2A

(E) in T47D following exposure to exosomes

isolated from irradiated MDA-MB-361 (24 hr after

0.25 Gy) is shown.

(F) Plots show fold change in PARTICLE and

MAT2A transcripts 5 hr after in vitro irradiation

(2 Gy) of blood taken from healthy donors (1–3).

(G) PARTICLE and MAT2A transcript analysis of

plasma taken from head and neck cancer patients

(A–D) 24 hr after receiving the second 2 Gy frac-

tion of localized therapeutic irradiation. Dotted line

normalized to one represents the control value for

each patient before irradiation treatment. Data are

represented as mean ± SEM and the asterisks

represent significant values (p < 0.05). See also

Figure S2.
shRNA_A, resulting in MAT2A elevation (5-fold, p = 0.017; Fig-

ure 4B, right). Cells exposed to 2.5 Gy showed similar effects

to sham-irradiated cells for PARTICLE and MAT2A transcription

response (Figure 4C). PARTICLE expression decreased (62.4%,

p = 0.017) inMDA-MB-361 cells infectedwith lentivirus encoding

shRNA_A. This again correlated with a 0.5-fold significant in-

crease inMAT2A (p < 0.05; Figure 4C, right). Slight improvement

in PARTICLE knockdown was seen (71.6%, p = 0.0004) in cells

infected with lentivirus encoding shRNA_B, coinciding with

a greater, 2.5-fold, significant increase in MAT2A (p = 0.0029;

Figure 4C, right). The increase in MAT2A expression was far

greater following 0.25 Gy low-dose irradiation compared

to 2.5 Gy exposure (5.2-fold higher, p < 0.005). These find-

ings highlight the different transcriptional response profiles

emanating from exposure to either low or medium irradiation

dosage, and they emphasize the homeostatic repressive influ-

ence of PARTICLE on MAT2A expression.

PARTICLE Represses MAT2A Promoter Activity
Enhanced MAT2A promoter activity was noted in MDA-MB-361

with PARTICLE knockdown (Figure 4D, left). While non-trans-
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fected (NT) cells showed expectedly negligible luciferase re-

porter expression, the transcriptional activity was significantly

elevated in sham-irradiated cells and following 4 or 24 hr irradi-

ation (0.25 or 2.5 Gy) in the absence of PARTICLE, when

compared to normal MDA-MB-361 (p < 0.005). The highest

levels were noted at 24 hr after 0.25 Gy irradiation compared

to sham-irradiated PARTICLE knockdown cells (p = 0.0027).

These results again suggest the negative regulation of MAT2A

promoter activation by PARTICLE, coinciding with the time

point when MAT2A levels decrease (24 hr post-irradiation) and

PARTICLE levels increase.

Low-Dose Irradiation Promotes the Expression of the
Catalytic Subunit of MAT and SAM Production
As previous results revealed elevated MAT2A transcription

within 4 hr of low-dose irradiation exposure, an investigation

was undertaken to determine whether this would have an influ-

ence on MAT2A and SAM (Figure 5A). MAT2A in irradiated

and sham-irradiated MDA-MB-361 was monitored over time

(4–48 hr), revealing an increased concentration of the cata-

lytic subunit of MAT 4 hr post-exposure to 0.25 Gy irradiation



Figure 4. PARTICLE Knockdown through Stable Lentiviral Trans-

fection Causes MAT2A Overexpression and Promoter Over-activity

(A–C) Plots show fold change in PARTICLE (black histograms) and MAT2A

(white histograms) expression relative to NT (non-Trans.) control levels

(dotted line) in MDA-MB-361 that were sham irradiated (A) or exposed

to 0.25 Gy (B) or 2.5 Gy (C). PARTICLE and MAT2A levels in MDA-MB-

361 infected with lentivirus expressing non-specific (scrambled) control

sequence (slight irradiation effect noted following 2.5 Gy) designed

from shRNA_B region (red arrow [Figure S2], Scr. ctl.), pGP vector control

(pGP ctl.), shRNA_A (lenti_shRNA_A), or shRNA_B (lenti-shRNA_B) are

shown. Data are represented as mean ± SEM with significant levels (p <

0.05) indicated where appropriate (asterisks). Note the presence of puro-

mycin in the media did not have an effect on PARTICLE or MAT2A

expression.
(p < 0.05; Figure 5B). The rapid decrease in MAT2A protein levels

by 24 hr post-irradiation exposure (p < 0.05; Figure 5B) also re-

flects the transcriptional expression profile (Figures 1 and 2).

Such effects were not evident after exposure to 2.5 Gy, although

a trend toward a decrease was apparent at the 24 hr time point,

consistent with RNA levels. No alteration inMAT2Awas found af-

ter 48 hr (Figure 5B), indicative of the transient response of this

catalytic subunit specifically to low-dose irradiation exposure.

Intracellular levels of SAM varied from 12 ± 0.15 to 6.5 ±

1.5 nM/106 MDA-MB-361 when measured between 4 and

24 hr after sham irradiation (Figure 5C, left). While no effects

were noted in MDA-MB-361 up to 48 hr after the 2.5 Gy dose

of irradiation, SAM concentrations were twice as high at 4 hr after

the low-dose (0.25 Gy) exposure, with levels returning to normal

values by 24 hr (Figure 5C).

PARTICLE Knockdown and Irradiation Have an Additive
Effect on Intracellular andExtracellular SAMProduction
PARTICLE knockdown and concomitant elevation of MAT2A

affected intracellular SAM levels in sham-irradiated cells. Signif-

icantly elevated SAM levels were noted for both the 4- and 24-hr

time points, with concentrations 4- to 5-fold higher than trans-

duced control cells (p < 0.005; Figure 5D, left). Following low-

dose irradiation, a further substantial increase in intracellular

SAM (80 ± 2.76 nM/106 cells) was noted in PARTICLE knock-

down MDA-MB-361 (4-fold SAM increase over NT cells, p <

0.0005; Figure 5D, middle). This was only noticeable by 4 hr

post-irradiation, particularly following low-dose exposure.

The concentration of extracellular SAM was assessed in

the tissue culture medium conditioned by non-transduced or

PARTICLE knockdown MDA-MB-361 plus or minus irradiation

exposure. SAM concentrations in growth medium obtained

from sham-irradiated cells varied from 9 ± 0.5 to 7 ±

0.12 nmol/l when collected at 4 to 48 hr after sham irradiation

(Figure 5E, left). Significantly increased extracellular SAM levels

were identified in themedia of MDA-MB-361 exposed 4 hr earlier

to low-dose (0.25 Gy) irradiation (p < 0.05; Figure 5E, middle).

No significant alteration in extracellular SAM levels was found

in media taken from cells 4–48 hr previously exposed to 2.5 Gy

(Figure 5E, right).

SAM concentrations also were examined in the growth media

of MDA-MB-361 in which PARTICLE had been depleted by len-

tiviral shRNA expression (Figure 5F). While no significant differ-

ence was found for extracellular SAM levels in sham-irradiated

cells (Figure 5F, left), dramatically elevated SAM concentrations

(24.7 ± 3 nmol/l) were identified in media from MDA-MB-361

(with PARTICLE knockdown) exposed 4 hr earlier to 0.25 Gy.

SAM levels subsequently declined to values close to the normal

range (6 ± 0.2 nmol/l) by 24 hr, remaining relatively unchanged

up to 48 hr post-exposure (5 ± 0.7 nmol/l; Figure 5F, middle).

A comparable trend was noted following 2.5 Gy exposure under

similar culture conditions. Elevated SAM (13 ± 2.6 nmol/l,
(D) Histogram shows Gaussia luciferase (GLuc) secretion normalized to

secreted alkaline phosphatase (SEAP) indicative ofMAT2A promoter activity in

MDA-MB-361 (±PARTICLE knockdown [KD]). Tissue culture media were

analyzed 4 and 24 hr following 0.25 Gy or 2.5 Gy cellular irradiation or sham

irradiation. Data are represented as mean ± SEM. See also Figures S3 and S4.
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Figure 5. PARTICLE Knockdown Enhances

Expression of the Catalytic Subunit of MAT

and Increases Intracellular andExtracellular

SAM Availability

(A) Diagram represents MAT2A (red) and its pro-

moter (white) (top). Schematic diagram depicts an

overview of the role of MAT2A in the methylation

cycle. Structural model of MAT (González et al.,

2012) indicates the catalytic region encoded by

MAT2A (brown, middle). Overview of the cyclical

methylation and folate pathways (bottom) is

shown. MAT catalyzes the production of SAM

frommethionine (Met.) (ATP andwater not shown).

SAM as universal methyl donor enables protein,

lipids (not shown), and DNA methyltransfereases

to methylate their respective substrates.

(B) Representative western blots show MAT2A

catalytic subunit expression in MDA-MB-361 at 4,

24, and 48 hr after 0.25 Gy, 2.5 Gy, or sham irra-

diation exposure (top) with GAPDH endogenous

loading control (bottom). The samples derive from

the same experiment and gels/blots were pro-

cessed in parallel. Plots of MAT2A expression

(AUs, n = 3) show a significant increase 4 hr

following 0.25 Gy low-dose irradiation.

(C and D) Intracellular human SAM levels in MDA-

MB-361 (NT controls [Wild-type, WT], C) or

PARTICLE KD (D, per 106 cells) at 4, 24, and 48 hr

after sham irradiation (left), 0.25 Gy (middle), or

2.5 Gy (right). Note the significant increase in

intracellular SAM in PARTICLE KD cells and 4 hr

following 0.25 Gy exposure (asterisks).

(E and F) Extracellular human SAM in tissue culture

media at 4, 24, and 48 hr after sham irradiation

(left), 0.25 Gy (middle), or 2.5 Gy (right) in NT

controls (WT, E) or PARTICLE KD (F) MDA-MB-

361. Data are represented as mean ± SEM. Note

the increased extracellular SAM levels 4 hr

following 0.25 Gy exposure (asterisks).
p % 0.05) was found only at the 4 hr time point. These find-

ings highlight the consequences of PARTICLE suppression of

MAT2A on SAM availability and the buffering of the radiation

effect by control of SAM over-production.

PARTICLE Controls the Methylation Status of the
MAT2A Promoter CpG Island
TheMAT2A promoter contains a CpG island (annotated 108368)

of 1,288 bp located on chromosome 2: 85765695–85766983

(NCBI Homo sapiens build number 37 version 2). The transcrip-

tion initiation site forMAT2A resides within this region at position

chromosome 2: 85766100 orientated in a forward direction

(NCBI refseq NM_005911). The sequence for PARTICLE

also overlaps this CpG island from position chromosome 2:

85765818 for 123 bp, orientated in the antisense complementary

direction (Figure 6A, top).

CpG island108368wasalmost totally un-methylated (>99.7%±

0.2%) in sham-irradiated MDA-MB-361 cells (Figure 6A, bottom

left). Following exposure to 0.25 or 2.5 Gy irradiation, the CpG

island 108368 became progressively methylated over the next
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48 hr. Differing levels of methylation were revealed following the

two irradiation doses. After low-dose exposure, CpG island

108368 remained unmethylated up to 4 hr (>99.9% ± 0.01%),

but became methylated by 24 hr (62% ± 3%) increasing to 85 ±

4% by 48 hr (Figure 6A, bottommiddle). Following 2.5 Gy irradia-

tion, methylation occurred earlier (16% ± 2%), appearing by 4 hr

(Figure 6A, bottom right). While methylation status increased to

49% ± 2% and 59% ± 3% for 24 and 48 hr, respectively, these

levels were lower than those evoked after low-dose (0.25 Gy) irra-

diation exposure (Figure 6A, bottom right).

In MDA-MB-361 with PARTICLE knockdown (Figure 6B, top),

the CpG island 108368 remained unmethylated under sham-

irradiated conditions, similar to that described for cells with

normal PARTICLE expression (Figure 6B, bottom left). However,

following low-dose (0.25 Gy) irradiation, the CpG island 108368

stayed un-methylated (>99.5%) in the absence of PARTICLE up

to 4 hr, similar to non-transduced cells, and remained un-meth-

ylated up to 24 hr (>99%); methylation began only at 48 hr,

reaching 57% ± 3% (28% ± 2% lower level than in non-trans-

duced cells; Figure 6B, bottom middle). After 2.5 Gy exposure,



Figure 6. PARTICLE Influences the Methyl-

ation Status of a CpG Island and Undergoes

Triplex Formationwith theMAT2APromoter

(A and B) (A) (Top) Schematic diagram shows

position of the CpG island within the MAT2A

promoter (blue posts). (A and B) (Top) MAT2A

(gray) and its promoter (white) where PARTICLE

is transcribed in an antisense direction (red arrow

pointing left) are shown. Triplex formation point

is upstream of the CpG island (green triangle).

(A and B) (Bottom) Composite histograms show

percentage unmethylation (gray) and/or methyl-

ation (white) of the CpG island within the

MAT2A promoter after sham irradiation (left) or

4, 24, and 48 hr following exposure to

0.25 Gy (middle) or 2.5 Gy (right). Experiments

(n = 3) were conducted using genomic DNA

extracted from MDA-MB-361 or MDA-MB-361

with PARTICLE KD (B).

(C) Sequence and predicted triplex target site

in the MAT2A locus. Triplex-forming oligonucle-

otide (TFO) purine-motif within PARTICLE (tfo_

PART.) was identified using Triplexator software

to target the unique triplex target site (TTS)

in MAT2A (tts_MAT2A) to form a triple helix.

Superscript base indicates a mismatch in the

sequence.

(D) Schematic diagram depicting the in vitro

demonstration of DNA:RNA triplex structure be-

tweenMAT2A and PARTICLE. Various RNA oligos

covering the predicted triplex-forming motif

(TFO-RNA, green comb) and its context within

PARTICLE (Table S3) were tested for triplex

interaction with the MAT2A duplex monolayer (W-MAT2A, blue and brown combs) previously formed on the gold SPR chip.

(E) Representative sensorgram showing the specificity of triplex detection by virtue of the differential between the signal of the TFO-RNA (red line) versus the

signal provided by the other RNAs tested within the context of the PARTICLE sequence. This TFO-RNA signal is also specific in that it requires prior formation of

the duplex. Thus, only a minimal spectral shift is generated by the TFO-RNA oligonucleotide injected over the receptor without previous formation of the duplex

DNA (dashed red line in sensorgram). All experiments were performed in triplicate. See also Table S3.
profiles similar to non-transduced MDA-MB-361 were revealed,

although the percentage values were consistently higher (22%–

30%) for all time points tested (Figure 6B, bottom right). The

dose correlation between methylation and PARTICLE expression

suggests the lncRNAmaybe influencing themethylation status of

the MAT2A CpG island 24 hr after low-dose irradiation, a time

whenPARTICLE expression is elevated andMAT2A transcription

is suppressed.

PARTICLE and MAT2A Form a Triplex Structure
A region (chromosome 2: 85765239–85765251) 456 bp up-

stream of the CpG island 108368 (described above) was identi-

fied in silico, where triplex-forming oligonucleotides within

PARTICLE were predicted to bind upstream of a CpG island

that is located in the promoter of MAT2A (Figures 6A [green tri-

angle] and 6C). Computational modeling indicated that triplex

formation between PARTICLE and this site was highly probable

(score rate = 12, error rate = 0.007) (Buske et al., 2012). Surface

plasmon resonance (SPR) was used to confirm that PARTICLE

indeed interacts with MAT2A via a triplex mechanism. A panel

of RNA oligonucleotides covering the predicted triplex-forming

motif (TFO-RNA) within PARTICLE was tested (Table S3). A sig-

nificant spectral shift occurred only with the TFO-RNA (i.e., 1.1 ±

0.05 nm, p = 0.0000377, t stat. = 115.2) (Figure 6E). Moreover,
addition of the TFO-RNA to the receptor MAT2A without prior

formation of the DNA duplex (Figure 6E) provided negligible

signal (i.e., 0.09 ± 0.05 nm, p > 0.05). The resulting RNA-DNA

triplex may govern the CpG island methylation to instigate tran-

scriptional suppression of MAT2A.

PARTICLE Associates with Myb, G9a Lysine
Methyltransferase, and the Polycomb Repressor
Complex Subunit SUZ12
Chromatin immunoprecipitation (ChIP) of protein interaction

partners with PARTICLE was performed using cross-linked

chromatin isolated from irradiated MDA-MB-361 (24 hr after

0.25 Gy). Differential occupancy analysis of qPCR data revealed

that the increase of PARTICLE at the Myb-, G9a lysine methyl-

transferase-, and SUZ12-binding sites was 1.3 ± 0.1, 4.1 ± 0.3,

and 9.2 ± 0.7-fold, respectively (Figure 7A). Pull-down of in

vitro transcribed biotinylated PARTICLE confirmed the associa-

tion with these nuclear proteins (isolated from MDA-MB-361

24 hr after 0.25 Gy irradiation) (Figure 7B). An electrophoretic

mobility shift was identified in the presence of PARTICLE

(±biotinylation) and the polycomb repressor complex subunit

SUZ12 peptide. Binding specificity was demonstrated by

increasing concentrations of unlabeled PARTICLE (up to

1,000-fold molar excess) that significantly diminished the
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Figure 7. PARTICLE Associates with Myb, Lysine Methyltransferase

G9a, and the Polycomb Repressor Complex Subunit SUZ12

(A) Histograms show fold increase in PARTICLE from qPCR expression anal-

ysis of chromatin immunoprecipitated with various antibodies, including anti-

Myb, anti-G9a, and anti-SUZ12 (see Supplemental Experimental Procedures

for details).

(B) Representative western blots of eluted fractions (streptavidin bead purified)

probed with anti-Myb, anti-G9a, and anti-SUZ12. Biotinylated in vitro tran-

scribed PARTICLE was used to pull down Myb, G9a, and SUZ12 from MDA-

MB-361 (24 hr after 0.25 Gy irradiated) nuclear extracts. (Lane 1) Protein

detection in nuclear lysate input; (lane 2) absence of signal in the absence of

biotinylated PARTICLE; (lane 3) Myb, G9a, and SUZ12 detected in nuclear

extracts following in vitro transcribed biotinylated PARTICLE pull-down and

streptavidin bead elution.

(C) Representative nucleotide retardation gel (6%) of electrophoretic mobility

shift assay involving binding reactions containing biotinylated PARTICLE

(b-PART., 10 nM), ± SUZ12 peptide (2.5 mM), and increasing concentrations of

unlabeled PARTICLE (20 nM to 20 mM) in the presence of 6.25 mM KCl is

shown.

(D) Hill slope depicts the percentage of biotinylated PARTICLE (b-PARTICLE)

bound to the SUZ12 peptide in the presence of molar excess of unlabeled

PARTICLE. Data are represented as mean ± SEM.
amount of SUZ12-bound biotinylated PARTICLE (Figures 7C

and 7D). These data show that PARTICLE interacts directly

with PRC2 via the SUZ12 subunit. It suggests that PARTICLE

functions, in part with epigenetic silencing complexes, to curb

possible overexpression of MAT2A (and hence over-production

of SAM and DNA methylation) following exposure to ionizing

radiation.

DISCUSSION

This study introduces PARTICLE, an lncRNA tuner of cellular

methylation following radiation exposure. An active silencing

mechanism of MAT2A transcription by nuclear PARTICLE is

observed, consisting of a physical crosstalk between chromo-

somal DNA and lncRNA leading to DNA duplex-lncRNA triplex

formation, gene-silencing complex interaction, and promoter
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CpG island methylation. Moreover, cytosolic PARTICLE levels

become dramatically increased following cellular irradiation

amid juxtaposition with MAT2A transcripts, which most likely

precedes their extracellular export.

MAT is a critical cellular enzyme that catalyzes the formation of

SAM, the principal methyl donor, withMAT2A encoding the cat-

alytic (a2) subunit of the widely distributed MAT isozyme (MATII)

(Alvarez et al., 1993; Kotb et al., 1997). PARTICLE is transcribed

in an antisense orientation to the forward plus strand from the

MAT2A promoter. Our findings show that MAT2A transcription

is activated much earlier than PARTICLE, within 4 hr following

low-dose radiation exposure. This is accompanied by concomi-

tant increases in translation and production of both intracellular

and extracellular SAM. In the artificial absence of PARTICLE,

transcriptional repression of MAT2A becomes diminished, re-

sulting in elevated intracellular SAM levels, including an over-

shoot in irradiated PARTICLE-deficient cells. These results imply

that PARTICLE directly influences the methylation cycle respon-

sible for the conversion of methionine via SAM and s-adenosyl-

homocysteine (SAH) into homocysteine. As SAM is the methyl

donor for multiple detoxifying methylation reactions, it is not sur-

prising that it becomes elevated following genotoxic exposure,

such as irradiation, and that it must be removed once the radia-

tion response is completed.

Accumulating evidence suggests that long antisense ncRNAs

function as epigenetic regulators of balanced transcription

(Morris, 2009). This may be the principal pathway evoked by

PARTICLE for modulating MAT2A expression according to se-

lective pressures, i.e., irradiation, placed on the cell. PARTICLE

might serve to keep in check excess availability of methyl groups

required for increased DNA damage repair activity following ra-

diation exposure. This response is most likely instigated by the

upregulation of PARTICLE operating as a silencer through triplex

(RNA:DNA:DNA) formation within the CpG island shore region

(456 bp upstream of the CpG island) of the MAT2A promoter.

While a similar triplex riboswitch has been identified upstream

of MAT2A across a taxonomically wide range of bacteria, no

mammalian evidence exists to date (Conrad, 2014). It can be in-

ferred that human PARTICLE offers such a platform for control-

ling SAM production.

PARTICLE serves as a protein-binding platform, thereby

enabling cis regulation ofMAT2A transcription. PARTICLE inter-

acts with themyeloblastosis (Myb) proto-oncogene transcription

factor that previously has been implicated in MAT2A upregula-

tion in human hepatocellular carcinomas and tumorigenesis

(Yang et al., 2001). The lysine DNA methyltransferase (G9a)

methylates H3K9 and H3K27 to silence transcription (Tachibana

et al., 2001), and we also found G9a associating with PARTICLE

in this study. The PRC2 complex catalyzes trimethylation of

H3K27 and mediates transcriptional repression (Surface et al.,

2010). A number of lncRNAs have been shown to interact with

PRC2 to regulate target gene expression (Wang and Chang,

2011). Moreover, this report shows direct interaction with

PRC2 and a radiation-responsive triplex-forming lncRNA,

PARTICLE. Interestingly, a recent report demonstrated that

G9a and PRC2 interact and co-localize genome-wide (Mozzetta

et al., 2014). It could be proposed that PARTICLE binds

SUZ12 and competes for PRC2 binding at target sites following



irradiation exposure. Alternatively, PARTICLE may aid in the

recruitment of PRC2 to repress MAT2A, as loss of PARTICLE

might fail to silence overactive MAT2A transcription in response

to irradiation insult. Further studies will be necessary to fully

elucidate this function, although our work suggests that

PARTICLE mediates MAT2A suppression via potential epige-

netic regulatory mechanisms.

It is recognized that location within the cell is an important

determinant in understanding the functional roles of lncRNAs

(van Heesch et al., 2014), suggesting they may play different

roles depending on their sub-cellular compartment context.

We have identified such a process as a possible second

role for PARTICLE in response to low-dose irradiation. While nu-

clear PARTICLE actively repressesMAT2A, cytosolic PARTICLE

becomes enriched and appears to associate with cytosolic

MAT2A transcripts, predominantly after irradiation exposure

(4 hr). This could serve as an additional mechanism of

MAT2A repression, with PARTICLE regulating its availability for

translation.

While it is generally accepted that microRNA and mRNA can

be transferred between mammalian cells by an exosome-based

transport mechanism (Lässer et al., 2011), this study has identi-

fied an lncRNA in exosomes generated from in vitro, ex vivo, and

in vivo irradiation. It is tempting to speculate that the detection of

PARTICLE in plasma exosomes indicates that they serve as vec-

tors for genetic communication between cells in distant organs.

Although this suggest that PARTICLE may have the capacity to

affect the phenotype of recipient cells, to date no mechanistic

basis is known (Kadhim et al., 2013).

The roles of lncRNA in the DNA-damage/repair response are

only beginning to be unraveled. Importantly, the inverse dose

response exhibited by PARTICLE to radiation challenges the

perception that all events following exposure show a linear esca-

lation with increased doses. While their crucial existence is now

un-disputed, no doubt the long non-coding genomewill continue

to surprise and reveal unexpected layers of cellular regulatory

complexity.

EXPERIMENTAL PROCEDURES

Human lncRNA Microarray Analysis

Differentially expressed lncRNAs were identified through fold change and

volcano plot filtering between samples. Genomic location was used to select

for regulated intragenic lncRNAs.

Propagation and Maintenance of Cell Lines

MDA-MB-361, HEK293, U2OS, T47D, and HUVEC were propagated as

described in the Supplemental Experimental Procedures. All cells were geno-

typed to confirm identity.

Irradiation

All irradiations were performed using a closed HWM-D 2000 unit (Siemens,

10-cm height and 33-cm circumference) delivering Cesium 137 gamma rays

at a dose rate of 0.0082 Gy/s. Calibration was performed by the Research

Unit of Medical Radiation Physics and Diagnostics (Helmholtz Zentrum

Munich).

Ethical Approval

Samples from human subjects were obtained with informed consent. The

Ethikkommission der Medizinischen Fakultat der Ludwig-Maximilian-Universi-

tät München, Germany, approved the study.
Isolation of Exosomes from Human Blood Plasma

Exosomes were isolated from human plasma of healthy donors by differential

centrifugation as described in the Supplemental Experimental Procedures and

as previously reported (Théry et al., 2006).

Head and Neck Squamous Cell Carcinoma Patients

The details of patient treatment and plasma isolation have been reported pre-

viously (Summerer et al., 2013).

Triplex SPR Assay

All SPR experiments were performed using a previously reported (Carrascosa

et al., 2014; Sina et al., 2014) custom-made SPR platform.

ChIP

Experiments were performed using an EpiTect ChIP kit (QIAGEN, 334471) per

the manufacturer’s instructions. Immunoprecipitation involved the following

ChIP-grade antibodies: anti-Myb, anti-KMT1C/G9a, anti-NF-kB p105/p50,

anti-p53, anti-SUZ12, anti-histone H2B (positive control), and normal IgG

(negative control). See the Supplemental Experimental Procedures for further

details.

RNA Pull-Down

See the Supplemental Experimental Procedures for experimental details.

Electrophoretic Mobility Shift Assay

Experiments were carried out per the manufacturer’s instructions (Thermo

Scientific, 20158) with the inclusion of 6.25 mM KCl in the binding reactions

and electrophoresis through a 6% pre-cast nucleotide retardation gel.

Statistical Analysis

Values in the text are expressed as themean ± SEM and n refers to the number

of independent data. Triplex t statistic was tested using hypothesis parame-

ters (HA: mT–mC > 0) and Origin 7 software. Differences between means

were tested using the Student’s t test with p values < 0.05 taken to indicate sta-

tistical significance.

ACCESSION NUMBERS

The Gene Expression Omnibus (GEO) accession number for the human

lncRNA microarray data reported in this paper is GSE67008.
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