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For a positive integer k, the rank-k numerical range Λk(A) of an operator A acting on
a Hilbert space H of dimension at least k is the set of scalars λ such that P A P = λP
for some rank k orthogonal projection P . In this paper, a close connection between
low rank perturbation of an operator A and Λk(A) is established. In particular, for
1 � r < k it is shown that Λk(A) ⊆ Λk−r(A + F ) for any operator F with rank(F ) � r.
In quantum computing, this result implies that a quantum channel with a k-dimensional
error correcting code under a perturbation of rank at most r will still have a (k − r)-
dimensional error correcting code. Moreover, it is shown that if A is normal or if the
dimension of A is finite, then Λk(A) can be obtained as the intersection of Λk−r(A + F )

for a collection of rank r operators F . Examples are given to show that the result fails if A
is a general operator. The closure and the interior of the convex set Λk(A) are completely
determined. Analogous results are obtained for Λ∞(A) defined as the set of scalars λ such
that P A P = λP for an infinite rank orthogonal projection P . It is shown that Λ∞(A) is the
intersection of all Λk(A) for k = 1,2, . . . . If A − μI is not compact for all μ ∈ C, then the
closure and the interior of Λ∞(A) coincide with those of the essential numerical range
of A. The situation for the special case when A − μI is compact for some μ ∈ C is also
studied.

Published by Elsevier Inc.

1. Introduction

Let B(H) be the algebra of bounded linear operators acting on a Hilbert space H. We identify B(H) with Mn if H has
dimension n. For k � dimH, define the rank-k numerical range of A ∈ B(H) by

Λk(A) = {
λ ∈ C: P A P = λP for some rank-k orthogonal projection P ∈ B(H)

}
.

Note that we allow k = ∞ if dim H = ∞. Evidently, λ ∈ Λk(A) if and only if there is an orthogonal basis of H such that λIk
is the leading principal submatrix of the operator matrix of A with respect to the basis; equivalently, there is an isometry
X : C

k → H such that X∗ A X = λIk . (For k = ∞, we take X : �2 → H.) When k = 1, this concept reduces to the classical
numerical range of A defined by

W (A) = {〈Ax, x〉: x ∈H, 〈x, x〉 = 1
}
,

which is useful in studying operators and matrices; for example see [10].
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The higher rank numerical range was introduced in connection to the construction of quantum error correction code in
the study of quantum information theory; see [7]. In quantum computing, information is stored in qubits (quantum bits).
Mathematically, the state of a qubit is represented by a 2 × 2 rank one Hermitian matrix Q satisfying Q 2 = Q . A state of
N-qubits Q 1, . . . , Q N is represented by their tensor products in Mn with n = 2N . A quantum channel for states of N-qubits
corresponds to trace preserving completely positive linear map Φ : Mn → Mn . By the structure theory of completely positive
linear map [3], there are T1, . . . , Tm ∈ Mn with

∑m
j=1 T ∗

j T j = In such that

Φ(X) =
m∑

j=1

T j X T ∗
j . (1.1)

Let V be a subspace of C
n and PV the orthogonal projection of C

n onto V. Then V is a quantum error correction code for Φ

if there exists a trace preserving completely positive linear map Ψ : Mn → Mn such that Ψ ◦ Φ(A) = A for all A ∈ PVMn PV .
This happens if and only if there are scalars γi j with 1 � i, j � m such that

PVT ∗
i T j PV = γi j PV, 1 � i, j � m;

see [7,11]. It turns out that even for a single matrix A, determining Λk(A) is highly non-trivial, and the results are use-
ful in quantum computing, say, in constructing binary unitary channels; see [5]. In a sequence of papers [4–7,9,12,13,16],
researchers studied the set Λk(A) for A ∈ B(H). Many interesting results (see (P1)–(P8) below) were obtained.

In the study of operator theory and applications, it is often useful to study the properties of an operator which are
stable under different kinds of perturbation. For example, the essential numerical range of an infinite dimensional operator
A ∈ B(H) can be defined as

We(A) =
⋂{

Cl
(
W (A + F )

)
: F ∈ B(H) has finite rank

}
, (1.2)

which captures many important properties of A (see [1,8,15,17]). Here Cl(S) denotes the closure of the set S . In fact, one
can include all compact operators F in B(H) on the right-hand side of (1.2). If K is the algebra of compact operators in
B(H) and if ψ : B(H) 
→ B(H)/K is the canonical homomorphism of B(H) onto the Calkin algebra B(H)/K, then We(A)

is the closure of the numerical range of ψ(A). In [1, Theorem 4], it was also proven that

Λ∞(A) =
⋂{

W (A + F ): F ∈ B(H) has finite rank
}
. (1.3)

In this paper, we study the change of the higher rank numerical range of an operator under low rank perturbation. For
instance, we show in Theorem 3.1 that for 1 � r < k < ∞, if A, F ∈ B(H) with rank(F ) � r, then

Λk(A) ⊆ Λk−r(A + F ). (1.4)

In Theorem 5.1, we refine the set equalities (1.2) and (1.3) by using smaller sets of operators F for the intersection on the
right-hand side of the equalities.

It is worth noting that the inclusion (1.4) has the following implication in the theory of quantum computing. Suppose
A ∈ Mn corresponds to a quantum channel with a k-dimensional error correcting code (realized as a subspace of C

n), then
for any perturbation of the channel A by an operator F of rank bounded by r, the resulting channel A + F will have a
(k − r)-dimensional error correcting code. More generally, if the matrices T1, . . . , Tm correspond to quantum channel (1.1)
with a k-dimensional error correcting code, and if T j is changed to T j + F j such that the sum of the range spaces of

(Ti + Fi)
∗(T j + F j) − T ∗

i T j = T ∗
i F j + Fi T

∗
j + Fi F ∗

j , 1 � i, j � n,

has dimension bounded by r, then the resulting quantum channel will still have a (k − r)-dimensional error correcting code.
Our paper is organized as follows. First, we study Λk(A) for A ∈ B(H) when k is finite in Sections 2–4. In Section 2, we

give a complete description of the closure and interior of Λk(A). In Section 3, we establish inclusion (1.4) for any operators
A, F ∈ B(H) with rank(F ) � r, where 1 � r < k < ∞. It follows that

Λk(A) ⊆
⋂{

Λk−r(A + F ): F ∈ B(H) has rank � r
}
. (1.5)

In particular, taking r = k − 1, we have

Λk(A) ⊆
⋂{

W (A + F ): F ∈ B(H) has rank < k
}
. (1.6)

We show that the inclusions in (1.5) and (1.6) become inequalities if dimH is finite. Examples are given to show that
these are not true for infinite dimensional operators. Nevertheless, we show that equalities also hold in (1.5) and (1.6) for
infinite dimensional normal operators in Section 4. The set equalities in (1.5) and (1.6) can be viewed as refinements of
(1.3). Similar set equality results are given in Corollary 3.3, which can be viewed as refinements of (1.2). In Section 5, we
extend the results in Sections 2–4 to Λ∞(A). In particular, we show in Theorem 5.1 and 5.2 that

Λ∞(A) =
⋂

Λk(A) =
⋂{

W (A + F ): F ∈ B(H) has finite rank
}
, (1.7)
k�1
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and Λ∞(A) �= ∅ if and only if the closure of Λ∞(A) is the essential numerical range of A. Then we determine the condition
under which Λ∞(A) is non-empty. The first equality in (1.7) gives an affirmative answer to a question of Martinez-
Avendano [14].

We close this section by listing some basic properties for the higher rank numerical range; see [4–7,9,12,13,16].

(P1) For any a,b ∈ C, Λk(aA + bI) = aΛk(A) + b.
(P2) For any unitary U ∈ B(H), Λk(U∗ AU ) = Λk(A).
(P3) If A0 is a compression of A on a subspace H0 of H such that dimH0 � k, then Λk(A0) ⊆ Λk(A).
(P4) Suppose dimH < 2k. The set Λk(A) has at most one element.
(P5) If dimH � 3k − 2, then Λk(A) is non-empty. Otherwise, there is B ∈ B(H) such that Λk(B) = ∅.
(P6) Λk(A) is always convex.
(P7) If A ∈ Mn , then Λk(A) = Ωk(A) with

Ωk(A) =
⋂

ξ∈[0,2π)

{
μ ∈ C: eiξμ + e−iξ μ̄ � λk

(
eiξ A + e−iξ A∗)},

where λk(H) denotes the kth largest eigenvalue of the Hermitian matrix H ∈ Mn .
(P8) If A ∈ Mn is a normal matrix with eigenvalues λ1, . . . , λn , then

Λk(A) =
⋂

1� j1<···< jn−k+1�n

conv{λ j1 , . . . , λ jn−k+1 }.

2. The interior and closure of Λk(A)

First, we extend the definition of Ωk(A) to infinite dimensional operators. For a self-adjoint operator H , let

λk(H) = sup
{
λk

(
X∗H X

)
: X is an isometry from C

k to H so that X∗ X = Ik
}
.

For A ∈ B(H), let Re(A) = (A + A∗)/2 be the real part of A and

Ωk(A) =
⋂

ξ∈[0,2π)

{
μ ∈ C: Re

(
eiξμ

)
� λk

(
Re

(
eiξ A

))}
.

By definition, Ωk(A) is a compact convex set. It may be empty if dimH � 3k − 3; see [5, Theorem 4.7]. In the finite
dimensional case, we have Λk(A) = Ωk(A) as noted in property (P7). Let A = Ik ⊕ diag(1,1/2, . . .). One easily checks that
Ωk(A) = [0,1] and Λk(A) = (0,1]. (See also Example 3.5.) Hence, property (P7) may not hold for infinite dimensional
operator A.

We continue to use Cl(S) to denote the closure of a set S in C. Let Int(S) denote the relative interior of S . We have the
following.

Theorem 2.1. Let A ∈ B(H) be an infinite dimensional operator, and let k be a positive integer. Then

Int
(
Ωk(A)

) ⊆ Λk(A) ⊆ Ωk(A) = Cl
(
Λk(A)

)
.

Proof. First, we establish the inclusion Λk(A) ⊆ Ωk(A). By [12, Corollary 4], Λk(A) is always non-empty. Suppose μ ∈ Λk(A).
Then there is an isometry X : C

k →H such that X∗ X = Ik and X∗ A X = μIk . As a result, for any t ∈ [0,2π) we have

Re
(
eitμ

)
� λk

(
Re

(
eit A

))
.

Thus, μ ∈ Ωk(A).
Next, we turn to the equality Ωk(A) = Cl(Λk(A)) and the inclusion Int(Ωk(A)) ⊆ Λk(A). By Corollary 4 in [12], Λk(A) is

non-empty. We consider three cases.

Case 1. Suppose Ωk(A) is a singleton. Then Λk(A) = Ωk(A) because Λk(A) is non-empty, and Int(Λk(A)) = Int(Ωk(A)) = ∅.

Case 2. Suppose Ωk(A) has non-empty interior in C. Let μ be an interior point of Ωk(A). We may replace A by A −μI and
assume that μ = 0, i.e., 0 ∈ Int(Ωk(A)). Therefore, there exists d > 0 such that{

μ ∈ C: |μ| � d
} ⊆ Ωk(A).

Thus, for all t ∈ [0,2π), μ = deit ∈ Ωk(A). Write A = H + iG where H and G are self-adjoint. Then

e−it A + eit A∗ = 2(cos t H + sin tG).

Hence,

λk
(
e−it A + eit A∗) � e−itμ + eitμ̄ ⇒ λk(cos t H + sin tG) � d.
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Then, for each t ∈ [0,2π) there is Xt : C
k → H with X∗

t Xt = Ik such that λk(cos t X∗
t H Xt + sin t X∗

t G Xt) > d/2. Furthermore,
there is δt > 0 such that for each s ∈ (t − δt , t + δt),∥∥(

cos t X∗
t H Xt + sin t X∗

t G Xt
) − (

cos sX∗
t H Xt + sin sX∗

t G Xt
)∥∥ < d/4.

Note that |λk(R) − λk(S)| � ‖R − S‖ for any two Hermitian matrices R and S by the Weyl’s inequality; for example, see
[2, III.2]. It follows that∣∣λk

(
cos t X∗

t H Xt + sin t X∗
t G Xt

) − λk
(
cos sX∗

t H Xt + sin sX∗
t G Xt

)∣∣ < d/4.

Consequently,

λk
(
cos sX∗

t H Xt + sin sX∗
t G Xt

)
> λk

(
cos t X∗

t H Xt + sin t X∗
t G Xt

) − d/4 > d/4.

Since [0,2π ] is compact, there exists a finite sequence 0 � t1 < · · · < tm < 2π so that

[0,2π ] ⊆
m⋃

j=1

(t j − δt j , t j + δt j ).

Let A0 = H0 + iG0 be a compression of A onto a subspace spanned by the range spaces of Xt1 , . . . , Xtm . Then λk(cos t H0 +
sin tG0) > d/4 for all t ∈ [0,2π) and so 0 ∈ Ωk(A0). Thus, 0 ∈ Λk(A0) ⊆ Λk(A) by Theorem 2.2 in [13]. Hence, Int(Ωk(A)) ⊆
Λk(A) and thus Cl(Λk(A)) = Ωk(A).

Case 3. Suppose Ωk(A) is not a singleton and has no interior in C. Since Ωk(A) is a compact convex set in C, if it is not
a singleton and has no interior in C, then it is a non-degenerate line segment. We will show that Λk(A) contains all the
relative interior points of Ωk(A). The result will then follow.

Assume γ is a (relative) interior point of the line segment. By property (P1), we may assume that [−1,1] ⊆ Ωk(A) ⊆ R

and γ = 0. Write A = H + iG where H and G are self-adjoint. Since −1,1 ∈ Ωk(A), we have λk(cos t H + sin tG) � | cos t|
for all t ∈ [0,2π ]. We claim that λk(G) = 0. If it is not true, then there exist ε, δ > 0 such that λk(cos t H + sin tG) � ε > 0
for each t ∈ [π/2 − δ,π/2 + δ]. By decreasing ε, if necessary, we may assume that | cos(π/2 + δ)| = | cos(π/2 − δ)| � ε.
Therefore, we have λk(cos t H + sin tG) � ε for all t ∈ [0,π ]. Let μ = iε. Then, we have

Re
(
μe−it) �

{
ε � λk(cos t H + sin tG) if t ∈ [0,π ],
0 � λk(cos t H + sin tG) if t ∈ [π,2π ].

Therefore, iε ∈ Ωk(A). This contradicts that Ωk(A) is a line segment in R. Similarly, we can show that λk(−G) = 0. So, we
may assume that G has operator matrix D ⊕ 0 with

D = diag(d1, . . . ,dp+q)

such that d1, . . . ,dp > 0 and dp+1, . . . ,dp+q < 0, where p < k and q < k. Let H0 and A0 be the compressions of H and A to
the kernel of G , respectively.

Suppose λk(H0) > 0 and λk(−H0) > 0. Then H0 has a compression H̃0 ∈ M2k such that H̃0 has k positive eigenvalues and
k negative eigenvalues. Clearly, 0 ∈ Λk(H̃0) and H̃0 is also a compression of A. Then 0 ∈ Λk(H0) ⊆ Λk(A). So, we assume
that λk(H0) � 0 without loss of generality.

Suppose the kernel of H0 has dimension at least k. Then again we have 0 ∈ Λk(H0) = Λk(A0) ⊆ Λk(A). Thus, we may
assume that the kernel of H0 has dimension less than k. Then H0 has operator matrix of the form

H22 ⊕ H33

so that H22 ∈ Mr , with r < 2k − 1 is positive semi-definite and H33 is negative definite such that the kernel of H33 is the
zero space. Clearly, there is a negative real number in Λk(H33) ⊆ Λk(A0) ⊆ Λk(A). We will show that Λk(A) also contains
a positive real number. By the convexity of Λk(A), it will then follow that 0 ∈ Λk(A).

Note that 0 is an interior point, and H22 is finite dimensional. We may find a small ε > 0 such that ε ∈ Ωk(A) and
H0 − ε I = Ĥ22 ⊕ Ĥ33 so that Ĥ22 is positive semi-definite and Ĥ33 is negative definite bounded above by −ε < 0. Thus, Ĥ33
is invertible, and there is an orthonormal basis of B(H) so that the operator matrices of G and Ĥ = H − ε I equal

D ⊕ 0 and

[ Ĥ11 Ĥ12 Ĥ13
Ĥ21 Ĥ22 0
Ĥ31 0 Ĥ33

]
,

for Ĥ22 ∈ Mr′ with r′ � r. For notational simplicity, we rename r′ as r. Suppose S ∈ B(H) has operator matrix[ I p+q 0 −Ĥ13 Ĥ−1
33

0 Ir 0
0 0 I

]
.

Then SG S∗ and S Ĥ S∗ have operator matrices

D ⊕ 0 and

[
Ĥ11 − Ĥ13 Ĥ−1

33 Ĥ31 Ĥ12
ˆ ˆ

]
⊕ Ĥ33.
H21 H22
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Since 0 ∈ Ωk(A − ε I), we see that for each t ∈ [0,2π), we have λk(cos t Ĥ + sin tG) � 0 and hence λk(cos t S Ĥ S∗ +
sin t SG S∗) � 0. Consequently, if we let H̃33 be the leading k × k submatrix of Ĥ33 and let Ã = H̃ + iG̃ ∈ M p+q+r+k with

H̃ =
[

Ĥ11 − Ĥ13 Ĥ−1
33 Ĥ31 Ĥ12

Ĥ21 Ĥ22

]
⊕ H̃33 and G̃ = D ⊕ 0r+k,

then λk(cos t H̃ + sin tG̃) � 0 for all t ∈ [0,2π) and hence 0 ∈ Ωk( Ã). By Theorem 2.2 in [13], there is a (p + q + r + k) × k
matrix X such that

X∗ X = Ik and X∗ Ã X = 0k.

Consequently, as Ã is a finite compression of S(A − ε I)S∗ , there is a partial isometry Y : C
k → H such that

Y ∗ S(A − ε I)S∗Y = 0k . Note that S∗Y = Z T with Z∗ Z = Ik for some invertible T ∈ Mk . Thus, Z∗(A − ε I)Z = 0k , i.e.,
ε ∈ Λk(A). �

In the finite dimensional case, Λk(A) is always closed. If dimH is uncountable, then for any bounded convex set S in
C one can construct a normal operator B using the points in S as eigenvalues so that Λk(A) = S for A = B ⊗ Ik . In the
following, we give examples of A acting on a separable Hilbert space such that Λk(A) has non-empty interior with no, some
or all its boundary points. It is known that Λk(A) is a singleton if A is a scalar operator, and that Λk(A) ⊆ R if A = A∗ . We
give examples different from these trivial cases.

Example 2.2. In the following examples, let B = [ 0 2
0 0

]
.

(a) Let A = B ⊗ Ik−1 ⊕ 0. Then Ωk(A) = Λk(A) = {0}.
(b) Let A = B ⊗ Ik−1 ⊕ diag(1,1/2,1/3, . . .). Then Λk(A) = (0,1]. One can easily modify the example so that Λk(A) = [0,1]

or Λk(A) = (0,1).
(c) Let A = B ⊗ Ik−1 ⊕ C . If C = B ⊕ 0 then Λk(A) is the closed unit disk; if C is the unilateral shift, then Λk(A) is the open

unit disk; if C = diag(−1, i,−i,1/2,2/3,3/4,4/5, . . .) then Ωk(A) is the convex hull of {−1, i,−i,1}, and Λk(A) is the
union of the interior of Ωk(A) and the convex hull of {−1, i,−i}.

3. Low rank perturbations of general operators

For a positive integer r, let Fr be the set of operators in B(H) with rank at most r, and let Pr be the set of rank r
orthogonal projections in B(H).

Theorem 3.1. Let 1 � r < k < ∞. Suppose A ∈ B(H) and F ∈Fr . Then Λk(A) ⊆ Λk−r(A + F ). Consequently,

Λk(A) ⊆
⋂{

Λk−r(A + F ): F ∈Fr
}
.

Proof. Suppose λ ∈ Λk(A). Let X : C
k → H be an isometry such that X∗ A X = λIk . Then X∗ F X has rank at most r. There is

a unitary U ∈ Mk such that

U∗ X∗ F XU =
[

0k−r ∗
0 ∗

]
.

Let U1 be obtained by taking the first k − r column of U , and V = XU1. Then V ∗(A + F )V = λIk−r so that λ ∈
Λk−r(A + F ). �

Note that one can easily adapt the above proof to show that for A1, . . . , Am ∈ B(H), if X∗ A j X = λ j Ik with X∗ X = Ik and
if F1, . . . , Fm ∈ B(H) are such that

U∗ X∗ F j XU =
[

0k−r ∗
0 ∗

]
, j = 1, . . . ,m,

then V ∗(A j + F j)V = λ j Ik−r for all j = 1, . . . ,m. So, the comment about a low rank perturbation of a quantum channel in
Section 1 follows.

If 1 � r < k < ∞ and A ∈ B(H), then Ωk(A) can be written as the intersection of Ωk−r(A + F ) for a collection of rank r
operators F as shown in the following.

Theorem 3.2. Suppose A ∈ B(H) and 1 � r < k < ∞. Let S be a subset of Fr containing the set S0 = {2eiξ‖A‖P : P ∈ Pr and ξ ∈
[0,2π)}. Then

Ωk(A) =
⋂{

Ωk−r(A + F ): F ∈ S
}
.
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Proof. The inclusion (⊆) follows from Theorem 3.1 and the fact that Ωk(A) = Cl(Λk(A)) by Theorem 2.1.
Suppose λ /∈ Ωk(A). Then there exists t ∈ R such that λk(Re(eit A)) < Re(eitλ). Let eit A = H + iG be with H = H∗ and

G = G∗ . Then H has an operator matrix diag(λ1, . . . , λm) ⊕ H2 with m � k − 1 such that supσ(H2) < Re(eitλ). Let F =
−2e−it‖A‖(Ir ⊕ 0) ∈ B(H). Then λk−r(Re(eit(A + F ))) < Re(eitλ). Hence, λ /∈ Ωk−r(A + F ). �

Note that for the set S in the above theorem, we can take the whole Fr or the much smaller subset S0. We have the
following corollary.

Corollary 3.3. Under the same setting as in Theorem 3.2. Each of the following sets is equal to Ωk(A).

(a)
⋂{Ωk−1(A + 2eiξ‖A‖P ): ξ ∈ [0,2π), P ∈P1}.

(b)
⋂{Ω1(A + 2eiξ‖A‖P ): ξ ∈ [0,2π), P ∈Pk−1}.

With Theorem 2.1, the above result also holds if we replace Ωm(B) by Cl(Λm(B)). Using the fact that Λk(A) = Ωk(A)

when A ∈ Mn , we have the following result.

Theorem 3.4. Suppose A ∈ Mn and 1 � r < k � n. Let S be a subset of Fr containing the set S0 = {2eiξ‖A‖P : P ∈ Pr and ξ ∈
[0,2π)}. Then

(a) Λk(A) = ⋂{Λk−r(A + F ): F ∈ S}.

(b) Λk(A) = ⋂{Λk−1(A + 2eiξ‖A‖P ): ξ ∈ [0,2π), P ∈P1}.

(c) Λk(A) = ⋂{W (A + 2eiξ‖A‖P ): ξ ∈ [0,2π), P ∈Pk−1}.

The following example shows that Theorem 3.4 does not hold for infinite dimensional operators.

Example 3.5. Let A = A1 ⊕ A2, where

A1 =
[

0 i
i 2

]
and A2 = diag(b2, b̄2,b3, b̄3, . . .) ⊕ diag(b2, b̄2,b3, b̄3, . . .)

with bm = −1 + eiπ/m for m = 2, . . . . Then 0 ∈ Cl(Λ2(A)) and 0 /∈ Λ2(A), but 0 ∈ ⋂{W (A + F ): F is rank one}.
Verification. Note that every μ ∈ Λ1(A2) is an element of Λ2(A2), and hence Λ1(A2) = Λ2(A2). Clearly, 0 ∈ Cl(Λ1(A)) =

Cl(Λ2(A)).
Next, we show that 0 /∈ Λ2(A). Suppose 0 ∈ Λ2(A). Then 0 ∈ Λ2(H) for H = (A + A∗)/2. Let U be unitary such that

U∗ AU = [ 02 ∗
∗ ∗

]
. Then U∗HU has the same form. Since H has spectrum {2,0} ∪ {−1 + cosπ/m: m = 2, . . .}, we may assume

that U has the form [1] ⊕ U1 such that the (1,1) entry of U1 is nonzero. But then U∗GU will have nonzero (1,2) entry for
G = (A − A∗)/(2i). This contradicts the fact that U∗ AU has zero (1,2) entry. So, we see that 0 /∈ Λ2(A).

Now, suppose F = [ F11 F12
F21 F22

]
is a rank one operator with F11 ∈ M2. Let x ∈ C

2 be a nonzero vector such that F11x = 0. If
x is a multiple of e1, then the (1,1) entry of A1 + F11 equals 0 and we have 0 ∈ W (A1 + F11) ⊆ W (A + F ). If x is not a
multiple of e1, then μ0 = x∗(A1 + F11)x = x∗ A1x ∈ W (A1) has positive real part and μ0 ∈ W (A1 + F11) ⊆ W (A + F ). Since
F22 has rank at most one, by Theorem 3.1 we have

W (A2) = Λ2(A2) ⊆ Λ1(A2 + F22) = W (A2 + F22) ⊆ W (A + F ).

So there exist μ1,μ2 ∈ W (A2) ⊆ W (A + F ) on the different sides of the line passing through μ0 and the origin. It follows
that 0 ∈ conv{μ0,μ1,μ2} ⊆ W (A + F ) by the convexity of W (A + F ). Consequently, we have

0 ∈
⋂{

W (A + F ): F has rank one
}
.

4. Low rank perturbations of infinite dimensional normal operators

In the following, we prove that Theorem 3.4 is valid for (infinite dimensional) normal operators. We first establish
some auxiliary results showing that one can refine the spectral decomposition of a normal operator using the geometrical
information of its numerical range.

Let P = {z ∈ C: Im(z) > 0} be the open upper half plane of C. For A ∈ B(H) and k � dimH, let

μk(A, t) = λk
((

e−it A − eit A∗)/(2i)
)
.

Notice also that

Ωk(A) =
⋂

t∈[0,2π)

{
μ ∈ C: Im

(
e−itμ

)
� μk(A, t)

}
.
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Lemma 4.1. Suppose A ∈ B(H) is normal. If μm(A, t) � 0 for some m � 1 and t ∈ R. Then A has a decomposition A1 ⊕ A2 ⊕ Â such
that dim A1 < m,

W (A1) ⊆ eitP, W (A2) ⊆ −eitP and W ( Â) ⊆ eit
R.

Furthermore, if λ�(e−it Â + eit Â∗)/2 � 0 for some � � 1, then Â has a decomposition A3 ⊕ A4 ⊕ 0 such that dim A3 < �,

W (A3) ⊆ eit(0,∞), and W (A4) ⊆ eit(−∞,0).

Note that each of the summands A1 , A2 , Â, A3 , A4 , 0 may be vacuous.

Proof. Without loss of generality, we may assume that t = 0. Let A = H + iG , where H, G are self-adjoint. Then G =
G1 ⊕ G2 ⊕ 0 such that G1 is positive definite with dimension p < m and G2 is negative definite. Let

H =
[ H11 H12 H13

H∗
12 H22 H23

H∗
13 H∗

23 H33

]

such that H12 = [D | 0], where D = diag(d1, . . . ,dp) with d1 � · · · � dp � 0. Since G H = HG , it follows that G1[D | 0] = [D |
0]G2. Since G1 is positive definite and G2 is negative definite, the (1,1) entry on the left side is nonnegative, and the (1,1)

entry on the right side is nonpositive. Thus, d1 = 0 and hence H12 = 0. Since G1 H13 = 0 and G2 H23 = 0, we have H13 = 0
and H23 = 0. So, H = H11 ⊕ H22 ⊕ H33 and A has asserted properties, with A1 = H11 + iG1, A2 = H22 + iG2, and Â = H33.

If λ�(e−it Â + eit Â∗)/2 � 0 for some �, then we can apply the above result to Â and get the desired decomposition
for Â. �

The following result [1, Lemma 2 and Corollary] will be needed in later discussion.

Lemma 4.2. Suppose dim H is infinite. Let T ∈ B(H). Then the following are equivalent.

(a) λ ∈ We(T ).
(b) There is an orthonormal set {en} such that 〈T en, en〉 → λ.
(c) There is a decomposition of H as H1 ⊕H2 and a sequence {λi} in C, such that λi → λ and

T =

⎡
⎢⎢⎢⎣

λ1 0
λ2 ∗

0
. . .

∗ ∗

⎤
⎥⎥⎥⎦ .

Furthermore, if α, β ∈ We(T ), then there exist two sequences {αi} and {βi} in C, such that αi → α, βi → β and a decomposition of
H as H1 ⊕H2 such that

T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

α1
β1 0

α2 ∗
0 β2

. . .

∗ ∗

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

In both cases, we may take H2 to be infinite dimensional.

Lemma 4.3. Suppose T ∈ B(H) is a normal operator such that for some π � s1 < s2 � 2π ,

σ(T ) ⊆ {
ρeit ∈ C: ρ > 0, t ∈ [s1, s2]

}
.

Let k be a positive integer and s3 ∈ (s1, s2),

L= {
ρeit ∈ C: ρ > 0, t ∈ (s1, s3)

}
and R= {

ρeit ∈ C: ρ > 0, t ∈ (s3, s2)
}
.

We have

(a) If L ∩ σ(T ) is infinite or contains an eigenvalue of T with infinite multiplicity, then T has a compression T1 ∈ Mk such that
W (T1) ⊆L.

(b) If R ∩ σ(T ) is infinite or contains an eigenvalue of T with infinite multiplicity, then T has a compression T2 ∈ Mk such that
W (T2) ⊆R.
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If both hypotheses in (a) and (b) hold, then T has a compression of the form T1 ⊕ T2 such that dim T1 = dim T2 = k and

W (T1) ⊆L and W (T2) ⊆R.

Proof. We will prove the last assertion. The proofs of (a) and (b) are similar. Suppose both R∩ σ(T ) and L∩ σ(T ) contain
only isolated points of σ(T ). Then we can construct T1 (respectively, T2) from any k (counting multiplicity) eigenvalues
of T in L (respectively, in R) and the corresponding eigenvectors.

Suppose one of the sets L ∩ σ(T ) or R ∩ σ(T ), say L ∩ σ(T ), contains only isolated points of σ(T ), and the other set
contains an accumulation point of σ(T ). Then we can construct T1 from any k eigenvalues of T in L and the corresponding
eigenvectors. Let H1 be the k-dimensional subspace spanned by the k eigenvectors. Then with respect to the decomposition
H = H1 ⊕ H⊥

1 , T = T1 ⊕ S for some normal S . Since R contains an accumulation point of σ(S) and S is normal, by
Lemma 4.2, S has a k-dimensional compression T2 with W (T2) ⊆R.

Finally, suppose both L and R contain an accumulation point of σ(T ). Then the result follows from the last statement
in Lemma 4.2. �
Theorem 4.4. Suppose A ∈ B(H) is normal. Then λ /∈ Λk(A) if and only if A can be decomposed into Ã1 ⊕ Ã2 such that Ã1 has
dimension at most k − 1, W ( Ã1) ⊆ λ + S and W ( Ã2) ⊆ C \ (λ + S), where S = eit(P ∪ L̃) with P = {z ∈ C: Im(z) > 0} and
L̃ = (−∞,0] or [0,∞) for some t ∈ R.

Proof. Suppose A has the decomposition as stated with dim Ã1 = m � k−1. Take F ∈ Mm such that W ( Ã1 + F ) ⊆ C\(λ+ S).
By Theorem 3.1,

Λk(A) ⊆ W
(

A + (F ⊕ 0)
) = W

(
( Ã1 + F ) ⊕ Ã2

) ⊆ C \ (λ + S).

Hence, λ /∈ Λk(A).
Conversely, suppose λ /∈ Λk(A). Without loss of generality, we may assume that λ = 0.

Case 1. Suppose λ = 0 /∈ Ωk(A), then μk(A, t) < 0 for some t ∈ [0,2π). By Lemma 4.1, A = A1 ⊕ A2 ⊕ Â with dim A1 < k,
W (A1) ⊆ eitP , W (A2) ⊆ −eitP and W ( Â) ⊆ eit

R. Furthermore, as μk(A, t) < 0, we must have dim A1 + dim Â < k. Then
Â = A3 ⊕ A4 so that W (A3) ⊆ eit[0,∞) and W (A4) ⊆ −eit(0,∞). Then the result follows with Ã1 = A1 ⊕ A3 and Ã2 =
A2 ⊕ A4.

Case 2. Suppose λ = 0 ∈ Ωk(A) and such decomposition mentioned in the theorem does not exist. Suppose ker A, the kernel
of A, has dimension p < k. We may assume that p = 0. Otherwise, replace A by the compression of A on (ker A)⊥ and
replace k by k − p. We are going to derive a contradiction by showing that A has a finite dimensional compression B such
that 0 ∈ Ωk(B) = Λk(B) ⊆ Λk(A).

To construct the matrix B , we first show that there exist s1 � 0 � π � s2 with s2 − s1 � 2π such that A = A1 ⊕ A2 ⊕
A3 ⊕ A4, where

dim A1 < ∞, W (A1) ⊆ {
ρeit : ρ > 0, t ∈ (s1, s2)

}
, W (A2) ⊆ {

ρeit : ρ > 0, t ∈ (s2, s1 + 2π)
}
,

W (A3) ⊆ eis1(0,∞), and W (A4) ⊆ eis2(0,∞). (4.1)

Then we show that A2 ⊕ A3 ⊕ A4 has a finite dimensional compression B2 ⊕ B3 ⊕ B4 such that B = A1 ⊕ B2 ⊕ B3 ⊕ B4 has
0 ∈ Ωk(B).

Since 0 ∈ Ωk(A), we have μk(A, t) � 0 for all t ∈ [0,2π). If μk(A, t) > 0 for all t ∈ [0,2π), then 0 lies in the interior of
Ωk(A). Hence, 0 ∈ Λk(A). So, we may assume that there is t0 ∈ [0,2π) such that μk(A, t0) = 0. We may further assume
that t0 = 0.

As μk(A, t0) = 0, A has at most k − 1 eigenvalues in the open upper half plane. Suppose these eigenvalues have
arguments 0 < t1 � t2 � · · · � tp < π , p < k. Take tp+1 = π . Let g ∈ {1, . . . , p + 1} be the smallest integer such that
μm(A, tg − π) = 0 for some m and h ∈ {0,1, . . . , p} be the largest integer satisfying μm(A, th) = 0 for some m. We are
going to find A j for j = 1,2,3,4 satisfying (4.1) with s1 = tg − π and s2 = th + π .

By Lemma 4.1 with t = th , we have A = Â1 ⊕ Â2 ⊕ Â such that

dim Â1 < ∞, W ( Â1) ⊆ eithP, W ( Â2) ⊆ −eithP, and W ( Â) ⊆ eith R.

Let Ĥ = (e−ith Â + e−ith Â∗)/2. If both λk(Ĥ) and λk(−Ĥ) are nonnegative, then we have 0 ∈ Λk(Ĥ), which implies
that 0 ∈ Λk(A), a contradiction. So, we have either λk(Ĥ) or λk(−Ĥ) is negative. By Lemma 4.1 and the assumption that
ker A = 0, we have Â = Â3 ⊕ Â4 with

W ( Â3) ⊆ eith (0,∞) and W ( Â4) ⊆ −eith (0,∞).

If th = tg − π , we take A j = Â j for j = 1,2,3,4. Then A1, A2, A3, A4 satisfy (4.1) with s1 = tg − π = 0 and
s2 = th + π = π .



C.-K. Li et al. / J. Math. Anal. Appl. 348 (2008) 843–855 851
Suppose th > tg −π . Then dim Â3 is finite. We further apply Lemma 4.1 to Â2 with t = tg −π , we have Â2 = A′
1 ⊕ A′

2 ⊕ A′
3,

with

dim A′
1 < ∞, W

(
A′

1

) ⊆ {
ρeit : ρ > 0, t ∈ (tg − π, th)

}
,

W
(

A′
2

) ⊆ {
ρeit : ρ > 0, t ∈ (th − π, tg − π)

}
, and W

(
A′

3

) ⊆ ei(tg−π)(0,∞).

Note that A′
4 is vacuous because th � tg � th +π . Then A1 = Â1 ⊕ Â3 ⊕ A′

1, A2 = A′
2, A3 = A′

3, and A4 = Â4 will satisfy (4.1)
with s1 = tg − π and s2 = th + π .

Now we choose a finite dimensional compression B2 ⊕ B3 ⊕ B4 of A2 ⊕ A3 ⊕ A4 and show that μk(A1 ⊕ B2 ⊕ B3 ⊕
B4, t) � 0 for all t ∈ [0,2π). Observe that

μk(A1, t) � 0 for all tg − π < t < th. (4.2)

Let B3 be a k-dimensional compression of A3, if dim A3 is infinite and B3 = A3, otherwise. We claim that

μk(A1 ⊕ B3, t) � 0 for all tg−1 − π � t � tg − π. (4.3)

The claim is clear if dim A3 is infinite. Suppose dim A3 is finite and μk(A1 ⊕ A3, t) < 0 for some t ∈ [tg−1 −π, tg −π ]. Since
dim(A1 ⊕ A3) is finite and W (A1 ⊕ A3) ⊆ {ρeit : ρ > 0, t ∈ [tg − π, th + π)}, A1 ⊕ A3 has a decomposition A′′

1 ⊕ A′′
3, with

dim A′′
1 < k, W (A′′

1) ⊆ S, and W (A′′
3) ⊆ C \ S,

where S = ei(tg−π)(P ∪ [0,∞)) = {ρeit : ρ > 0, t ∈ [tg − π, tg)}. Notice also that W (A2 ⊕ A4) ⊆ C \ S . Then if we take
Ã1 = A′′

1 and Ã2 = A2 ⊕ A′′
3 ⊕ A4, we have W ( Ã1) ⊆ S and W ( Ã2) ⊆ C \ S , which contradicts our assumption that such

decomposition does not exist.
Next, let B4 be a k-dimensional compression of A4, if dim A4 is infinite and B4 = A4, otherwise. By a similar argument

as in the previous paragraph, we can show that

μk(A1 ⊕ B4, t) � 0 for all th � t � th+1. (4.4)

In the following, we will choose a finite dimension compression of B2 of A2 so that

μk(B2 ⊕ B3 ⊕ B4, t) � 0 for all th+1 � t � tg−1 + π. (4.5)

Suppose dim A2 is finite. Then by the definition of th and tg , both dim A3 and dim A4 are infinite. Then μk(B3 ⊕ B4, t) � 0
for all t ∈ [th+1, tg−1 + π ] and so (4.5) holds with vacuous B2.

Now suppose dim A2 is infinite. We consider the following three cases.

Case 1. tg = th . In this case, the summand A′
2 ⊕ A′

3 is vacuous and so as A2 ⊕ A3. Also dim A4 is infinite. Then (4.5) holds
with vacuous B2 and B3.

Case 2. tg = th+1. Let B2 be a k-dimensional compression of A2. Then μk(B2, t) � 0 for all t ∈ [th+1, tg−1 − π ] and so (4.5)
holds.

Case 3. tg > th+1. Because of the choice tg and th , both L ∩ σ(A2) and R ∩ σ(A2) are infinite or contains an eigenvalue
of A2 with infinite multiplicity, where

L= {
ρeit : ρ > 0, t ∈ (th + π, th+1 + π)

}
and R= {

ρeit : ρ > 0, t ∈ (tg−1 + π, tg + π)
}
.

By Lemma 4.3, we can get finite dimensional compressions T1 and T2 of A2 such that dim(T1) = dim(T2) = k, W (T1) ⊆ L
and W (T2) ⊆ R. Then μk(T1, t) � 0 for all t ∈ [th+1, th + π ] and μk(T2, t) � 0 for all t ∈ [tg, tg−1 + π ]. Thus, B2 = T1 ⊕ T2
will satisfy (4.5).

Now let B = A1 ⊕ B2 ⊕ B3 ⊕ B4. By (4.2), (4.3), (4.4), and (4.5), we conclude that μk(B, t) � 0 for all t ∈ [0,2π) and
hence 0 ∈ Ωk(B) = Λk(B). �
Theorem 4.5. Suppose A ∈ B(H) is normal and 1 � r < k < ∞. Let S be a subset of Fr containing the set S0 = {2eiξ‖A‖P : P ∈
Pr and ξ ∈ [0,2π)}. Then

Λk(A) =
⋂{

Λk−r(A + F ): F ∈ S
}
.
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Proof. The inclusion (⊆) follows from Theorem 3.1. Suppose λ /∈ Λk(A). By Theorem 4.4, A has a decomposition A1 ⊕ A2
with A1 ∈ Mm , W (A1) ⊆ λ + S and W (A2) ⊆ C \ (λ + S), where m � k − 1 and S is defined as in Theorem 4.4. Let F =
−2ieit‖A‖(Ir ⊕ 0) ∈ S0. Then A + F has less than k − r eigenvalues in λ +S . Thus, A + F has a decomposition B1 ⊕ B2 with
dim B1 < k − r such that W (B1) ⊆ λ + S and W (B2) ⊆ C \ (λ + S). By Theorem 4.4, λ /∈ Λk−r(A + F ). �

If A ∈ B(H) is self-adjoint, Theorem 4.4 reduces to the following corollary.

Corollary 4.6. Suppose A ∈ B(H) is self-adjoint and 1 � r � k. Then λ ∈ Λk(A) if and only if A can be decomposed into Ã1 ⊕ Ã2 such
that dim Ã1 < k, W ( Ã1) ⊆ L and W ( Ã2) ⊆ R \ L, where L = [λ,∞) or (−∞, λ].

Using a similar argument as in the proof of Theorem 4.5, an analogous result can also be obtained for self-adjoint
operators.

Theorem 4.7. Suppose A ∈ B(H) is self-adjoint and 1 � r < k < ∞. Let S be a subset of Fr containing the set {±2‖A‖P : P ∈ Pr}.
Then

Λk(A) =
⋂{

Λk−r(A + F ): F ∈ S
}
.

In [14, Proposition 2.3], the author showed that Λk(A) ⊆ ⋂
X∈Vk−1

W (X∗ A X), where Vm is the set of X : H → H with

X∗ X = IH and X(H) =H⊥
1 for some subspace H1 of H satisfying dimH1 � m. In general, we have the following.

Proposition 4.8. Suppose A ∈ B(H) and 1 � r < k < ∞. Then

Λk(A) ⊆
⋂{

Λk−r
(

X∗ A X
)
: X ∈ Vr

}
.

Proof. Let λ ∈ Λk(A). Then there exists a rank k orthogonal projection P such that P A P = λP . Suppose X ∈ Vr . Then there
exists a subspace H1 of H with dimH1 � r satisfying X∗ X = IH and X(H) = H⊥

1 . Therefore, dim (P (H) ∩ H⊥
1 ) � k − r.

Choose a (k − r)-dimensional subspace H2 of H such that X(H2) ⊆ P (H) ∩H⊥
1 . Let {yi}k−r

i=1 be an orthogonal basis of H2.

Then {X(yi)}k−r
i=1 is an orthonormal subset of P (H). So, for 1 � i, j � k − r, we have〈

X∗ A X yi, y j
〉 = 〈

A(X yi), (X y j)
〉 = δi jλ.

Hence, λ ∈ Λk−r(X∗ A X). �
Using Theorems 3.4 and 4.5, we have

Corollary 4.9. Suppose A ∈ B(H) and 1 � r < k < ∞. If dimH < ∞ or A is normal, then

Λk(A) =
⋂{

Λk−r
(

X∗ A X
)
: X ∈ Vr

}
.

Proof. For each F ∈Fr , there is X ∈ Vr such that X∗ F X = 0. Then

Λk(A) ⊆
⋂

X∈Vr

Λk−r
(

X∗ A X
) ⊆

⋂
F∈Fr

Λk−r
(

X∗(A + F )X
) ⊆

⋂
F∈Fr

Λk−r(A + F ).

By Theorems 3.4 and 4.5, the inclusions are indeed equalities. �
Similarly, using Theorems 2.1 and Corollary 3.3, we have the last corollary in this section.

Corollary 4.10. Suppose A ∈ B(H) and 1 � r < k < ∞. Then

Ωk(A) =
⋂{

Ωk−r
(

X∗ A X
)
: X ∈ Vr

}
.

5. Results on Λ∞(A)

Suppose H is infinite dimensional and A ∈ B(H). It is clear that Λ∞(A) can be viewed as the set of λ ∈ C for which
there exists an infinite orthonormal set {xi ∈ H: i � 1} such that 〈Axi, x j〉 = δi jλ for all i, j � 1. Extend the definition of
Ωk(A) to

Ω∞(A) =
⋂

ξ∈[0,2π)

{
μ ∈ C: Re

(
eiξμ

)
� λk

(
Re

(
eiξ A

))
for all k � 1

}
.

We have the following result.
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Theorem 5.1. Suppose dim H is infinite and A ∈ B(H). Let S be a set of finite rank operators on B(H) containing the set{
2eiξ‖A‖P : ξ ∈ [0,2π), P is a finite rank orthogonal projection

}
.

Then we have the following equalities.

(1) Ω∞(A) = ⋂
k�1 Ωk(A) = ⋂{Cl(W (A + F )): F ∈ S} = We(A).

(2) Λ∞(A) = ⋂
k�1 Λk(A) = ⋂{W (A + F ): F ∈ S}.

Proof. (1) By the definition of Ω∞(A), we have Ω∞(A) = ⋂
k�1 Ωk(A). By (1.2) and Corollary 3.3, we have

We(A) =
⋂{

Cl
(
W (A + F )

)
: F ∈ B(H) has finite rank

}
=

⋂
k�1

⋂{
Cl

(
W (A + F )

)
: F ∈ B(H) has rank k − 1

}

=
⋂
k�1

Ωk(A)

=
⋂
k�1

⋂{
Cl

(
W (A + F )

)
: F ∈ S has rank k − 1

}

=
⋂{

Cl
(
W (A + F )

)
: F ∈ S

}
.

So, the second and third equalities in (1) hold.
(2) By Theorem 4 in [1], we have

Λ∞(A) =
⋂{

W (A + F ): F ∈ B(H) has finite rank
}
. (5.1)

Clearly, we have the inclusion

Λ∞(A) ⊆
⋂
k�1

Λk(A).

To prove the reverse inclusion, suppose λ ∈ ⋂
k�1 Λk(A). Let F ∈ B(H) of rank m. Choose k � m + 1. Then λ ∈ Λk(A). By

Theorem 3.1, we have

λ ∈ Λk(A) ⊆ Λ1(A + F ) = W (A + F ).

Hence,⋂
k�1

Λk(A) ⊆
⋂{

W (A + F ): F ∈ B(H) is of finite rank
} = Λ∞(A).

Thus, we get the first equality in (2).
Next, we show that one only needs to use F ∈ S for the intersection on the right side of (5.1). To this end, note that⋂{

W (A + F ): F ∈ B(H) is of finite rank
} ⊆

⋂{
W (A + F ): F ∈ S

}
.

To prove the reverse inclusion, assume that

λ /∈
⋂{

W (A + F ): F ∈ B(H) is of finite rank
}
.

If λ /∈ Ω∞(A), then there is a finite rank F ∈ B(H) such that λ /∈ Cl(W (A + F )) and hence λ /∈ W (A + F ). So, assume that

λ ∈ We(A) ⊆ W (A) and thus |λ| � sup
{|μ|: μ ∈ W (A)

}
� ‖A‖. (5.2)

Then there is ξ ∈ [0,2π) and a finite rank operator F ∈ B(H) such that

eiξ W (A + F − λI) ⊆ {
μ ∈ C: Im(μ) < 0

} ∪L, (5.3)

with L = (0,∞) or L = (−∞,0). We may replace A by eiξ A and assume that ξ = 0. Without loss of generality, assume
that L= (−∞,0).

Let λ = a + ib with a,b ∈ R and A = H + iG with H = H∗ and G = G∗ . Since (5.3) holds with ξ = 0 for a finite rank
operator F ∈ B(H), there is r not larger than the rank of Im F such that G has an operator matrix of the form

diag(g1, . . . , gr) ⊕ bIs ⊕ G2 (5.4)

with g1 � · · · � gr > b, W (G2) ⊆ (−∞,b) and 0 � s � ∞. By (5.2), we have

g1 − b � |g1| + |b| � 2‖G‖ � 2‖A‖.
We consider two cases.
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Case 1. Suppose g1 − b = 2‖A‖. Then g1 = ‖A‖ = −b. Since λ ∈ We(A) and

‖A‖ = |b| � |a + ib| = |λ| � ‖A‖,
it follows that

a = 0 and λ = ib = −i‖A‖
is the only element in Cl(W (A)) ∩ {μ ∈ C: Im(μ) � −‖A‖}. Thus, G2 in (5.4) is vacuous, i.e., G has operator matrix
diag(g1, . . . , gr) ⊕ bIs . Using the same basis, we let H have the operator matrix[

H11 H12
H∗

12 H22

]
.

Since ‖H22 + ibI‖ � ‖A‖ = |b|, we see that H22 = 0. By the fact that

|b|2 = ∥∥A∗ A
∥∥ = ∥∥(H + iG)∗(H + iG)

∥∥,

we see that H12 is zero as well. Thus, A has operator matrix

A1 ⊕ ibIs with A1 ∈ Mm.

Since (5.3) holds for a finite operator F with ξ = 0 and L= (−∞,0), we see that s �= ∞. But then dimH is finite, which is
a contradiction.

Case 2. Suppose g1 − b < 2‖A‖. If s is finite in (5.4), then

F̃ = i2‖A‖(Ir+s ⊕ 0) ∈ S and W (A − F̃ ) ⊆ {
μ ∈ C: Im(μ) < b

}
.

Thus, λ = a + ib /∈ W (A − F̃ ).
Next, assume that s = ∞. Suppose the compression of H on the null space of G − bI equals H0. Then there is a positive

integer m such that H0 has operator matrix diag(h1, . . . ,hm) ⊕ H1 such that h1 � · · · � hm � a and W (H1) ⊆ (−∞,a).
Otherwise, (5.3) cannot hold for a finite operator F with ξ = 0 and L = (−∞,0). Let F̃ = i2‖A‖(Ir+m ⊕ 0) ∈ S , and let
Â = A − F̃ − λI . Then Im( Â) = ( Â − Â∗)/2i has an operator matrix Ĝ1 ⊕ 0s−m ⊕ Ĝ2 with W (Ĝ1 ⊕ Ĝ2) ⊆ (−∞,0). Moreover,
the compression of Re( Â) = ( Â + Â∗)/2 on the null space of Im( Â) equal H1 − aI . As a result, if μ = 〈 Âx, x〉 ∈ W ( Â) has
imaginary part 0, then x must lie in the null space of Im( Â), and hence the real part of μ lies in W (H1 − aI) ⊆ (−∞,0).
Thus, 0 /∈ W ( Â), equivalently, λ /∈ W (A − F̃ ). Consequently,⋂{

W (A + F ): F ∈ S
} ⊆

⋂{
W (A + F ): F ∈ B(H) is of finite rank

}
. �

In [14], Martinez-Avendano asked whether Λ∞(A) = ⋂
k�1 Λk(A). Assertion (2) answers the question affirmatively.

Theorem 5.2. Suppose A ∈ B(H), where H is infinite dimensional. Then

Int
(
Ω∞(A)

) ⊆ Λ∞(A) ⊆ Ω∞(A).

Moreover, Cl(Λ∞(A)) = Ω∞(A) if and only if Λ∞(A) �= ∅.

Proof. By the Corollary after Theorem 4 in [1], we see that Int(Ω∞(A)) ⊆ Λ∞(A). The inclusion Λ∞(A) ⊆ Ω∞(A) is clear.
Note that Ω∞(A) is always a non-empty compact convex set. If Λ∞(A) = ∅, then Cl(Λ∞(A)) �= Ω∞(A). Conversely,

suppose Λ∞(A) �= ∅. If Int(Λ∞(A)) = Int(Ω∞(A)) is non-empty, then Cl(Λ∞(A)) = Ω∞(A). If Int(Ω∞(A)) is empty, then
Ω∞(A) = {μ} is a singleton and so is the non-empty set Λ∞(A). Hence Cl(Λ∞(A)) = Λ∞(A) = {μ}. �

The next example show that Λ∞(A) may indeed be empty so that Cl(Λ∞(A)) �= Ω∞(A).

Example 5.3. Let A = ⊕
n�2 diag(eiπ/n/n,−1/n) ∈ B(H). Then Ω∞(A) = {0} but 0 /∈ Λ1(A) so that Λ∞(A) = ⋂{Λk(A):

k = 1,2, . . .} = ∅. On the other hand, if B = A ⊕ 0H , then Λ∞(B) = {0}.

From the proof of Theorem 5.2, we see that if Λ∞(A) is a singleton, then Ω∞(A) is also a singleton, which can happen
if and only if A − μI is a compact operator for some μ ∈ C by the corollary after Lemma 3 in [1]. In connection to this
comment and Example 5.3, we have the following.

Proposition 5.4. Let A ∈ B(H) and μ ∈ C be such that A − μI is compact. Then the following are equivalent.

(a) Λ∞(A) is non-empty.
(b) Λ∞(A) = {μ}.
(c) μ ∈ Λk(A) for each k = 1,2, . . . .

Proof. The implications “(a) ⇔ (b)” is clear. We have “(c) ⇔ (b)” because Λ∞(A) = ⋂
k Λk(A) by Theorem 5.1. �
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