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In this paper the RBdstrGm embedding theorem (Proc. Amer. Math. Sot. 3 
(1952), 165) is generalized and is used to define the concept of the differential of a 
fuzzy function. 

1. INTRODUCTION 

The purpose of this paper is to define the concept of the differential of a 
fuzzy function which extends the differential of a set-valued function. The 
latter concept was first defined by Hukuhara [8]. Later, Banks and Jacobs 
[2] defined a more general concept of differential and investigated its 
properties. 

Set-valued functions and their calculus were found useful in some of the 
problems of economics [l] and control theory [7]. From a probabilistic 
viewpoint, random sets (as a particular case of set-valued functions) have a 
rather well-developed theory [ 111. 

Zadeh [16] introduced the notion of fuzzy set and later its relationships 
with random sets were investigated by Fortet and Kambouzia [5], F&on [4], 
and Goodman [6]. Fuzzy random variables [ 131 as a generalization of 
random sets can be used to represent inexactness due to both randomness 
and fuzziness. 

On the other hand, the analysis of evidence [ 151 was related to the fuzzy 
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analysis and to the theory of possibility by Zadeh ! 171 and, -more recenrly. 
by Kampi de Feriet [9]. 

In defining the differential of a set-valued function 123 and the integral oi 
such a function 131, a key result is an embedding theorem due to Rbdstrom 
j14]. This theorem, which states that the collection of nonempty closed 
bounded and convex subsets of a Banach space can be embedded in a 
normed space, makes it possible to define the differential of a set-valued 
function as a differential of a function between normed spaces. To extend the 
definition of differential to fuzzy functions, it is natural to extend first the 
Ridstrom embedding theorem by considering an appropriate space of fuzzy 
subsets of a Banach space. This extension is given in Section 2 by using a 
suitable generalization of the Hausdorff metric. As an application of this 
embedding theorem, we introduce the concept of the differential of a fuzzy 
function in Section 3 and study some of its properties. 

2. THE EMBEDDING THEOREM 

Let X be a reflexive Banach space, and let A, be two nonempty bounded 
subsets ofX. The Hausdorfj distance between A and B is 

&(A, B) = max[ ;ttJ: irrr //a - bil, ELII d$ lja - b/j], (2. i f 

where // // denotes the norm in X. 
If Q(X) denotes the collection of all nonempty compact and convex 

subsets of X, it is well known [lo] that (Q(X), dN) is a complete metric 
space. 

If M is a set, afuzzy subset of M is a function U: M--f [O, 1 ]. The set of all 
fuzzy subsets of M, F(M) is a completely distributive lattice which includes 
the ordinary subsets of M (viewed as characteristic functions M --) (0, 1 j j. 

For any fuzzy subset U: M+ [0, 1 ], denote by L,(u) = {m E M / 
u(m) > a}, a E [0, 11, the u-level set of U. 

If M is a vector space, a fuzzy subset u E .7(M) is called a fuzzy conzi~ 
subset (see [ 16]), if 

u(Am, + (1 --A) mz> > min[u(mz), u(mJ] @Jl 

for every m,) m, EM, A E [0, 11. 
If X is a reflexive Banach space, in order to extend the Hausdorff distance, 

we shall consider the subset &J(X) of LP-(X), containing ali fuzzy sets 
ZI: X-t [0, 11 with properties: 

G> 24 is upper semicontinuous, 

(ii) u is fuzzy convex, 

(iii) E,(u) is compact, for every CI # 0. 
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If u, v E 6(X), define the distance between u and v by 

(2.3) 

where d, denotes the Hausdorff distance. 
We shall use the following result: The proof, given in [ 131 for the case 

X= IR”, works in the general case, and will be omitted here. 

THEOREM 2.1. (Y&Y), d) is a complete metric space. 

The embedding theorem of Radstrijm will be extended to 5(X). To do 
this, a linear structure is defined in e(X) by 

(u + v)(x) = sup{a E [O, 11 1 x E L,(U) + L,(v)} (2.4) 

(h)(x) = 24(/l- ‘x), if A f 0, 

= 0, if A = 0, xf 0, (2.5) 

= syzxp U(Y)> if A = 0, x= 0, 

for U, v E3(X), A E F?. 
It is clear that these definitions extend the corresponding operations in 

Q(X) (addition of sets and multiplication of a set by a scalar). In the process 
1 of generalizing the embedding theorem, Lemma 2.1 will be useful. 

LEMMA 2.1. Let A4 be a set and let (A4,I a E [0, I]} be a family of 
subsets of A4 such that: 

(a> M, =JK 
(b) a<P*M,cM,, 

cc> al<a”z<-..,lim,,, a,=a*M,=n~=,M,,. 

Then the fuzzy subset 4: M-+ [0, I] defined by 4(m) = sup{a E [0, I] 1 
x E M,} has the property that L,(4) = 174, for every a E [0, 11. 

The proof is given in [12]. 
Propositions 2.1-2.3 will lead to Theorem 2.2, which is the desired 

embedding result. 

PROPOSITON 2.1. If u, v E&(X), then L,(u + v) = L,(u) + L,(v) for 
every a E [0, 11. 

ProoJ Denote X, = L,(u) + L,(v). Obviously, X,, =X, and a </?a 
X, G X,. To apply Lemma 2.1, we check that a1 < a2 < .. . , lim,,, a,, = 
a,*X,o=fJ~=lXa,. 
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Take x E i(J~zl Xa,; then x = X, + y,, X, E L,“(U), y, E k,,,(u). Since 

k&4 = Jq&> 2 . ..1 it follows that {x~},, c Lal(u); analogously, ( y, in c 
La,(v). Since L,,(U), Lal(v) are compact, there are subsequences such that 
x,~ + x0, y,, + yO, By using the upper semicontinuity of u and U, and 
+J > a,, v(y,> > a,, it follows easily that u(xJ > a,,, v(y,,) > aO. From 
this and x=x,+ y,, by taking subsequences we conclude that x = 

%+ Yo~Ko. 
From Lemma 2.1 it follows that u + u as defined by (2.4) satisfies 

L,(u + v) = L,(u) + L,(v) for every o E [O, 11~ 
Proposition 2.2 shows that the cancellation law holds in (,;“,(X), i-). 

Proof. This follows from Proposition 2.1 and ]14; Lemma 21. When 
scalar multiplication (2.5) is concerned, it is easy to see that LcI(JLu) = X,(u) 
for u E.%(X), A E R, and every CL E ]O, 11. Note, however, that 
G%(X), +, .) is not a vector space. 

PROPOSITION 2.3. If u, v, w E cFo(X), then d(u -t w, v -t w) = d(u, u). 

Proo;l: This follows easily from the definition of d (2.3) and from i IS, 
Lemma 3 ]. 

Theorem 2.2 gives the desired embedding result. 

THEOREM 2.2. There exists a norrned space A” such lizat <6;(X) caa 7e 
embedded isometrically into X. 

ProoJ: This follows from Propositions 2.2 and 2.3 and from ] 14, 
Theorem 1 ]. 

Remark. The knowledge of the structure of the normed space .;%’ will be 
necessary in the next section. It can be described as follows: Define in 
F*(X) x LFO(X) the equivalence relation 

(u, v) - (u’, v’) a u + v’ = v + 24’. (2.6) 

The equivalence class of (u, v) will be denoted by (u, v). The space .X is 
the set of equivalence classes. A vector space structure is defined in K by 

(u, v) + (u’, u’) = (24 t u’, v + u’), (2 7 \ . 1 

qu, u) = (au, h), if A 2 0, 

= ((-Ah (W>u): if A < 0. 
(2.8) 

QOY/9i,2-:7 
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The embedding j: 5(X) -+ X is defined by 

Au> = (4 01, 

where 0 is the fuzzy subset O(x) = 0. 
Finally, the norm in X is defined by 

(2.9) 

(2.10) 

3. THE DIFFERENTIAL OF A FUZZY FUNCTION 

Let X be a normed space and U be an open subset of X. Let Y be a 
reflexive Banach space. 

By fuzzy function we mean a function F: U+ &j(Y); such a function 
associates to each point x E U a fuzzy subset F(x) of Y (with properties 
(ik(iii) described in Section 2). Clearly, such fuzzy functions generalize set- 
valued functions U--f Q(Y). 

To define the differential of a fuzzy function, we shall use the embedding 
Theorem 2.2 and the classical concept of a differential in normed spaces. 

By Theorem 2.2, s(Y) can be embedded isometrically in a normed space 
$!/; let j: %(Y) + $Z denote this embedding. 

DEFINITION 3.1. The fuzzy function F: U -+ FO(Y) is called differentiable 
at x,, E U if the map E? = j o F is differentiable at x0. 

More precisely, F is differentiable at x,, E U if there exists a linear 
bounded operator #‘(x0): X-+ $‘, such that 

lim [I]&) - #(x0) - P’(x,)(x - xO)]]/]i x - x0 ]I] = 0. (3.1) x+x0 

This concept of differential generalizes the differential of a set-valued 
function U+ Q(Y) as studied by Banks and Jacobs [2]. 

If X is a finite-dimensional vector space with basis e,, e2,..., e,, and if 
8?‘(xo)(e,) E j(%(Y)) c: j2 for k = 1, 2,..., II, we say that the fuzzy function 
F is conically differentiable at x, E U. This concept will be related to the 
differential defined by Hukuhara [S]. 

To define the Hukuhara differential of a fuzzy function, we shall consider 
a more particular context: X = R, Y = R”, and U is an open interval of the 
real line. A fuzzy function in this context is a function F: U -2$(R”). 

If U, u E &(R”), and if there exists a fuzzy subset r E %(R”) such that 
c + u = U, then < is unique by Proposition 2.2. In this case, c is called the 
Hukuhara difference of v and u and is denoted by v - u. 
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DEFINITION 3.2. A fuzzy function F: %i-+ F,(R”) is called H- 
differentiable at x,, E U if there exists DF(x,) E J”,(R”), such that the iimrts 
hm,,,, [(8(x0 + h) - F(x,))/h] and Em,,,, [(8(x,) - F(x, - h))/h ] both 
exist and are equal to DF(x,). 

The relaiionship between conical differentiability and ~-differentiability of 
fuzzy functions is given in the following proposition which generahzes a 
corresponding result of Banks and Jacobs [2]: 

PRSW~SITION 3.1. If the fuzzy function F: U+.FO(lRn) is H- 
differenriable at x0 E U, then F is conically dfferentiable at x0 and 

P’(x,)(h) = h(DF(x,), 0). (3.2) 

ProojX Observe that if u - u exists for U, u E .~(R’), then (u, 0) - 
(u, 0) = (G - u, 0). We have 

I ^ 
/ F(xo + T- - F(xo) _ (DF(xo), 0) /I = d tFcxo - “;; - F(xo) ) )F(~,); 

(3.3) 

and the resuh follows as in [2]. 
The above theorem shows that differentiability as given in Definition 3.1 *s 

a more general concept than H-differentiability. 
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