

Available online at www.sciencedirect.com

JOURNAL OF Algebra

Journal of Algebra 258 (2002) 1-22

www.elsevier.com/locate/jalgebra

Rationality properties of unipotent representations ☆

G. Lusztig

Department of Mathematics, MIT, Cambridge, MA 02139, USA Received 22 May 2001

Dedicated to Claudio Procesi on the occasion of his 60th birthday

Introduction

0.1. Let **k** be an algebraic closure of a finite field F_q with q elements. Let G be a connected simple algebraic group of adjoint type over **k** with a fixed F_q -rational structure; let $F: G \to G$ be the corresponding Frobenius map and let r(G) be the F_q -rank of G. The fixed point set G^F is a finite group. Let W be the Weyl group of G. For $w \in W$ let R_w be the character of the virtual representation $R^1(w)$ of G^F defined in [DL, 1.5]. (The definition of R_w is in terms of l-adic cohomology but in fact R_w has integer values and is independent of l, see [DL, 3.3].) For an irreducible representation ρ of G^F over \mathbb{C} we denote by tr_ρ the character of ρ . We say that ρ is *unipotent* if $(\rho : R_w)$, the multiplicity of ρ in R_w , is $\neq 0$ for some $w \in W$ (see [DL, 7.8]). Let \mathcal{U} be the set of isomorphism classes of unipotent representations of G^F . Let $\widetilde{\mathcal{U}}_{\mathbb{Q}} = \{\rho \in \mathcal{U}: \mathrm{tr}_\rho(g) \in \mathbb{Q} \; \forall g \in G^F\}$. Let $\mathcal{U}_{\mathbb{Q}}$ be the set of all $\rho \in \mathcal{U}$ such that ρ is defined over \mathbb{Q} (that is, it can be realized by a $\mathbb{Q}[G^F]$ -module). We have $\mathcal{U}_{\mathbb{Q}} \subset \widetilde{\mathcal{U}}_{\mathbb{Q}} \subset \mathcal{U}$. Let $\mathcal{U}^0 = \{\rho \in \mathcal{U}: \rho$ cuspidal}.

Unless otherwise specified, we assume that G is split over F_q . The following is one of our results.

Theorem 0.2. We have $\mathcal{U}_{\mathbb{Q}} = \widetilde{\mathcal{U}}_{\mathbb{Q}}$.

Supported by the National Science Foundation. *E-mail address:* gyuri@math.mit.edu.

0.3. We will also show (see Corollary 1.12) that if *G* is of type *A*, *B*, *C* or *D*, then $\mathcal{U}_{\mathbb{Q}} = \mathcal{U}$. (The analogous statement is false for exceptional types.) The rationality of certain unipotent cuspidal representations connected with Coxeter elements has been proved in [L1]. The method of [L1] has been extended in [L2, unpublished] to determine explicitly $\mathcal{U}_{\mathbb{Q}}$ in the general case (including non-split groups). The case where *G* is non-split of type *A* has been also considered by Ohmori [Oh], another extension of the method [L1].

Our study of rationality of unipotent representations is based on the statement that a given unipotent representation appears with multiplicity 1 in some (possibly virtual) representation R defined using *l*-adic cohomology and then using the Hasse principle. In the first method (that of [L2]), R is a particular intersection cohomology space of a variety; see Section 1. In the second method (which applies only in the cuspidal case), R will be one of the R_w above; see Section 2. In one case ($G = SO_5$ with q odd), we give an elementary approach to rationality (without using the Hasse principle); see Section 3.

1. First method

1.1. Let *p* be the characteristic of F_q . For any prime number $l \neq p$, we choose an imbedding of the field \mathbb{Q}_l , the *l*-adic numbers, into \mathbb{C} . This allows us to regard any representation of G^F over \mathbb{Q}_l as one over \mathbb{C} . Let *X* be the flag manifold of *G*; let $F: X \to X$ be the map induced by $F: G \to G$. For $w \in W$ let O_w be the set of all $(B, B') \in X \times X$ that are in relative position *w*. As in [DL], for any $w \in W$, let $X_w = \{B \in X: (B, F(B)) \in O_w\}$; let \overline{X}_w be the closure of X_w in *X*. Then X_w, \overline{X}_w are stable under the conjugation action of G^F on *X*. Hence for any $j \in \mathbb{Z}$ there is an induced action of G^F on the *l*-adic cohomology with compact support $H_c^j(X_w, \mathbb{Q}_l)$ and on the *l*-adic intersection cohomology $\mathbf{H}^j(\overline{X}_w, \mathbb{Q}_l)$. (Note that \overline{X}_w has pure dimension l(w) where $l: W \to \mathbb{N}$ is the length function.) Recall that R_w is the character of the virtual representation $\sum_{i \in \mathbb{Z}} (-1)^j H_c^j(X_w, \mathbb{Q}_l)$ of G^F .

Lemma 1.2. Let $\rho \in \mathcal{U}$. There exists $x \in W$ and $j \in [0, l(x)]$ such that $(\rho : \mathbf{H}^j(\overline{X}_x, \mathbb{Q}_l)) = 1$.

The proof is based on results of [L3]. For any $x \in W$ let \mathcal{A}_x be the virtual representation of W defined in [L3, pp. 154, 156]. For any virtual representation E of W we set $R_E = |W|^{-1} \sum_{w \in W} \operatorname{tr}(w, E) R_w$ (a \mathbb{Q} -valued class function on G^F). Thus, $R_{\mathcal{A}_x}$ is defined. Let $a: W \to \mathbb{N}$ be as in [L3, p. 178]. Assume that

$$x \in W$$
 is such that $\left(\rho : (-1)^{l(x)-a(x)} R_{\mathcal{A}_x}\right) = 1.$ (1.2a)

Then from [L3, 6.15, 6.17(i), 5.13(i)] we deduce $(\rho : \mathbf{H}^{l(x)-a(x)}(\overline{X}_x, \mathbb{Q}_l)) = 1$. (Actually, in [L3], q is assumed to be sufficiently large; but this assumption is removed later in [L3].) Thus, to prove the lemma it is enough to show that (1.2a) holds for some $x \in W$. Now in [L3], the multiplicities of unipotent representations in $(-1)^{l(x)-a(x)}R_{\mathcal{A}_x}$ have been explicitly described for many x. (See the tables in [L3, pp. 304–306] for types E_8 , F_4 , and the results in [L3, Chapter 9] for classical types.) In particular, we see that (1.2a) holds for some $x \in W$.

Lemma 1.3. Let $\rho \in \widetilde{\mathcal{U}}_{\mathbb{Q}}$. Let l be a prime number invertible in **k**. Let x, j be as in Lemma 1.2.

- (a) ρ is defined over \mathbb{Q}_l .
- (b) ρ is defined over \mathbb{R} if and only if j is even.
- (c) If *j* is even then $\rho \in U_{\mathbb{O}}$.

Clearly, (a) follows from Lemma 1.2. We prove (b). Let $c \in H^2(\overline{X}_w, \mathbb{Q}_l)$ be the Chern class of an ample line bundle on \overline{X}_w (we ignore Tate twists); we may assume that this line bundle is the restriction of a line bundle on X. Since G^F acts trivially on $H^2(X, \mathbb{Q}_l)$ it follows that c is G^F -invariant. Hence the map $\mathbf{H}^j(\overline{X}_x, \mathbb{Q}_l) \to \mathbf{H}^{2l(x)-j}(\overline{X}_x, \mathbb{Q}_l)$ given by $\xi \mapsto c^{l(x)-j}\xi$ is compatible with the G^{F} -action. This map is an isomorphism, by the Hard Lefschetz Theorem [BBD, 5.4.10]. Let (,): $\mathbf{H}^{j}(\overline{X}_{x}, \mathbb{Q}_{l}) \times \mathbf{H}^{2l(x)-j}(\overline{X}_{x}, \mathbb{Q}_{l})$ be the Poincaré duality pairing. (We again ignore Tate twists.) Then $\xi, \xi' \mapsto (\xi, c^{l(x)-j}\xi')$ is a $(-1)^j$ -symmetric, non-singular, G^F -invariant bilinear form $\mathbf{H}^j(\overline{X}_x, \mathbb{Q}_l) \times \mathbf{H}^j(\overline{X}_x, \mathbb{Q}_l) \to \mathbb{Q}_l$. This restricts to a $(-1)^{j}$ -symmetric, G^{F} -invariant bilinear form on the ρ -isotypic part of $\mathbf{H}^{j}(\overline{X}_{\underline{x}}, \mathbb{Q}_{l})$, which is non-singular, since ρ is isomorphic to its dual (recall that $\rho \in \widetilde{\mathcal{U}}_{\mathbb{Q}}$). This ρ -isotypic part is isomorphic to ρ and (b) follows. Under the assumption of (c), we see from (a), (b), using the Hasse principle for division algebras with centre \mathbb{Q} [Weil, Theorem 2, Chapter XI-2] that ρ is defined over \mathbb{Q} . (The Hasse principle is applicable even when information is missing at one place, in our case at *p*-adic numbers, see [Weil, Theorem 2, Chapter XIII-3].) The lemma is proved.

Lemma 1.4. Let $\rho \in \widetilde{\mathcal{U}}_{\mathbb{Q}}$. Let x, j be as in Lemma 1.2. Then j is even.

It is known [L3] that the parity of an integer j such that $(\rho : \mathbf{H}^j(\overline{X}_x, \mathbb{Q}_l)) \neq 0$ for some $x \in W$, is an invariant of ρ . Moreover, j is even except if G is of type E_7 and $\rho \in \mathcal{U}^0$, or G is of type E_8 and ρ is a component of the representation induced by a unipotent cuspidal representations of a parabolic of type E_7 (see [L3, Chapter 11]). In these exceptional cases, we have $\rho \notin \widetilde{\mathcal{U}}_{\mathbb{Q}}$, as one sees using [L3, 11.2]. The lemma is proved.

1.5. Now Theorem 0.2 follows immediately from Lemmas 1.3(c) and 1.4.

1.6. Let \mathcal{X} be the set of all triples (\mathcal{F}, y, σ) where \mathcal{F} is a "family" [L3, 4.2] of irreducible representations of W (with an associated finite group $\mathcal{G}_{\mathcal{F}}$, see [L3, Chapter 4]), y is an element of $\mathcal{G}_{\mathcal{F}}$ defined up to conjugacy, and σ is an irreducible representation of the centralizer of y in $\mathcal{G}_{\mathcal{F}}$ defined up to isomorphism. For $(\mathcal{F}, y, \sigma) \in \mathcal{X}$, let $\lambda_{y,\sigma}$ be the scalar by which y acts on σ (a root of 1). Let \mathcal{X}_1 be the set of all $(\mathcal{F}, y, \sigma) \in \mathcal{X}$ such that $|\mathcal{F}| \neq 2$ and $\lambda_{y,\sigma} = \pm 1$. If q is a square, let \mathcal{X}_2 be the set of all $(\mathcal{F}, y, \sigma) \in \mathcal{X}$ such that $|\mathcal{F}| = 2, y = 1$. If q is not a square, let $\mathcal{X}_2 = \emptyset$. In any case, \mathcal{X}_2 is empty unless G is of type E_7 or E_8 . Let $\mathcal{X}_{\mathbb{Q}} = \mathcal{X}_1 \cup \mathcal{X}_2$.

In [L3, 4.23], \mathcal{X} is put in a bijection

$$(\mathcal{F}, y, \sigma) \leftrightarrow \rho_{\mathcal{F}, y, \sigma} \tag{1.6a}$$

with \mathcal{U} .

Lemma 1.7. Assume that $(\mathcal{F}, y, \sigma) \in \mathcal{X}_{\mathbb{Q}}$, $(\mathcal{F}', y', \sigma') \in \mathcal{X}$ are distinct. Let $\rho = \rho_{\mathcal{F}, y, \sigma}, \rho' = \rho_{\mathcal{F}', y', \sigma'}$. Then there exists $x \in W$ such that

 $\left(\rho: (-1)^{l(x)-a(x)} R_{\mathcal{A}_x}\right) \neq \left(\rho': (-1)^{l(x)-a(x)} R_{\mathcal{A}_x}\right).$

As mentioned in the proof of Lemma 1.2, the multiplicities of various unipotent representations in $(-1)^{l(x)-a(x)}R_{\mathcal{A}_x}$ have been explicitly computed in [L3] for many $x \in W$. From this the lemma follows easily.

Lemma 1.8. Let $\rho = \rho_{\mathcal{F}, y, \sigma}$, where $(\mathcal{F}, y, \sigma) \in \mathcal{X}_{\mathbb{Q}}$. Then $\rho \in \widetilde{\mathcal{U}}_{\mathbb{Q}}$.

Let $\gamma \in \text{Gal}(\mathbb{C}/\mathbb{Q})$. Then $\gamma(\text{tr}_{\rho}) = \text{tr}_{\rho'}$ for some $\rho' \in \mathcal{U}$. Since the character of $(-1)^{l(x)-a(x)}R_{\mathcal{A}_x}$ is an integer valued, it is fixed by γ . (Here *x* is any element of *W*.) Hence ρ , ρ' have the same multiplicity in $(-1)^{l(x)-a(x)}R_{\mathcal{A}_x}$. From Lemma 1.7 it follows that $\rho = \rho'$. Thus, $\gamma(\text{tr}_{\rho}) = \text{tr}_{\rho}$ for any $\gamma \in \text{Gal}(\mathbb{C}/\mathbb{Q})$, so that tr_{ρ} has rational values. The lemma is proved.

Lemma 1.9. Let $\rho = \rho_{\mathcal{F}, y, \sigma}$, where $(\mathcal{F}, y, \sigma) \notin \mathcal{X}_{\mathbb{Q}}$. Then $\rho \notin \widetilde{\mathcal{U}}_{\mathbb{Q}}$.

Assume first that $\lambda_{y,\sigma} \neq \pm 1$. Then $\lambda_{y,\sigma} \notin \mathbb{Q}$ hence there exists $\gamma \in \text{Gal}(\mathbb{C}/\mathbb{Q})$ such that $\gamma(\lambda_{y,\sigma}) \neq \lambda_{y,\sigma}$. Using the interpretation of $\lambda_{y,\sigma}$ given in [L3, 11.2], it follows that $\gamma(\text{tr}_{\rho}) \neq \text{tr}_{\rho}$. Hence $\rho \notin \widetilde{\mathcal{U}}_{\mathbb{Q}}$. Next assume that $\lambda_{y,\sigma} = \pm 1$. Then $|\mathcal{F}| = 2$. Moreover, if q is a square, then $y \neq 1$. Let σ' be the character of $\mathcal{G}_{\mathcal{F}} = \mathbb{Z}/2\mathbb{Z}$ other than σ . Let $\rho' = \rho_{\mathcal{F},y,\sigma'}$. If $y \neq 1$, then by the results of [L1], tr_{ρ} is carried to tr_{ρ'} by an element of $\text{Gal}(\mathbb{C}/\mathbb{Q})$ that takes $\sqrt{-q}$ to $-\sqrt{-q}$. If y = 1, then by the known construction of representations of Hecke algebras in terms of W-graphs, tr_{ρ} is carried to tr_{ρ'} by an element of $\text{Gal}(\mathbb{C}/\mathbb{Q})$ that takes \sqrt{q} to $-\sqrt{q}$. Hence again $\rho \notin \widetilde{\mathcal{U}}_{\mathbb{Q}}$. **Proposition 1.10.** Under the bijection $\mathcal{X} \leftrightarrow \mathcal{U}$ in (1.6a), the subset $\widetilde{\mathcal{U}}_{\mathbb{Q}}$ of \mathcal{U} corresponds to the subset $\mathcal{X}_{\mathbb{Q}}$ of \mathcal{X} .

This follows immediately from Lemma 1.9. Combining the proposition with Theorem 0.2, we obtain:

Corollary 1.11. Under the bijection $\mathcal{X} \leftrightarrow \mathcal{U}$ in (1.6a), the subset $\mathcal{U}_{\mathbb{Q}}$ of \mathcal{U} corresponds to the subset $\mathcal{X}_{\mathbb{Q}}$ of \mathcal{X} .

If *G* is of type *A*, *B*, *C* or *D*, then for any family \mathcal{F} we have $|\mathcal{F}| \neq 2$ and the group $\mathcal{G}_{\mathcal{F}}$ is an elementary abelian 2-group, hence $\lambda_{y,\sigma} = \pm 1$ for any $(\mathcal{F}, y, \sigma) \in \mathcal{X}$. Thus, we have $\mathcal{X}_{\mathbb{Q}} = \mathcal{X}$ and we obtain:

Corollary 1.12. If G is of type A, B, C or D, then $\mathcal{U}_{\mathbb{Q}} = \mathcal{U}$.

1.13. If *G* is non-split, the analogues of Lemmas 1.2 and 1.3 continue to hold but that of Lemma 1.4 does not (it does in type *D* but not in type *A*). Also, if *G* is non-split of type *D*, then $\mathcal{U}_{\mathbb{Q}} = \mathcal{U}$. If *G* is non-split of type *A* we have $\widetilde{\mathcal{U}}_{\mathbb{Q}} = \mathcal{U}$ but in general $\mathcal{U}_{\mathbb{Q}} \neq \mathcal{U}$.

2. Second method

2.1. Let $n \in \mathbb{N}$. Let $\lambda_1, \lambda_2, \ldots, \lambda_a$ be a sequence of integers such that

$$\sum_{i} \lambda_i = n + \binom{a}{2}.$$
(2.1a)

We define a virtual representation $[\lambda_1, \lambda_2, ..., \lambda_a]$ of the symmetric group S_n as follows. If $0 \le \lambda_1 < \lambda_2 < \cdots < \lambda_a$, then $[\lambda_1, \lambda_2, ..., \lambda_a]$ is the irreducible representation of S_n corresponding to the partition $\lambda_1 \le \lambda_2 - 1 \le \cdots \le \lambda_a - a + 1$ of *n*, as in [L3, p. 81]. If $\lambda_1, \lambda_2, ..., \lambda_a$ are in \mathbb{N} and are distinct, then

 $[\lambda_1, \lambda_2, \dots, \lambda_a] = \operatorname{sgn}(\sigma) [\lambda_{\sigma(1)}, \lambda_{\sigma(2)}, \dots, \lambda_{\sigma(a)}]$

where σ is the unique permutation of 1, 2, ..., a such that $\lambda_{\sigma(1)} < \lambda_{\sigma(2)} < \cdots < \lambda_{\sigma(a)}$. If $\lambda_1, \lambda_2, ..., \lambda_a$ are not distinct, or if at least one of them is < 0, we set $[\lambda_1, \lambda_2, ..., \lambda_a] = 0$. From the definition we see easily that

$$[\lambda_1, \lambda_2, \dots, \lambda_a] = [0, \lambda_1 + 1, \lambda_2 + 1, \dots, \lambda_a + 1]$$

for any sequence of integers $\lambda_1, \lambda_2, \ldots, \lambda_a$ such that (2.1a) holds.

Lemma 2.2. Let $\lambda_1, \lambda_2, ..., \lambda_a$ be a sequence of integers such that (2.1a) holds. Let $w = (k)w' \in S_k \times S_{n-k} \subset S_n$ where (k) denotes a k-cycle in S_k and $w' \in S_{n-k}$. We have

$$\operatorname{tr}(w, [\lambda_1, \lambda_2, \dots, \lambda_a]) = \sum_{i=1}^{a} \operatorname{tr}(w', [\lambda_1, \lambda_2, \dots, \lambda_{i-1}, \lambda_i - k, \lambda_{i+1}, \dots, \lambda_a]).$$
(2.2a)

If λ_i are not distinct or if at least one of them is < 0 then both sides of (2.2a) are 0. We may assume that $0 \le \lambda_1 < \lambda_2 < \cdots < \lambda_a$. In this case, (2.2a) can be seen to be equivalent to Murnaghan's rule, see [Weyl].

2.3. For $n \ge 0$ let W_n be the group of all permutations of 1, 2, ..., n, n', ..., 2', 1' which commute with the involution $i \leftrightarrow i'$ for i = 1, ..., n (we have $W_0 = \{1\}$). Given two sequences of integers $\lambda_1, ..., \lambda_a$ and $\mu_1, \mu_2, ..., \mu_b$ such that

$$\sum_{i} \lambda_i + \sum_{i} \mu_i = n + \binom{a}{2} + \binom{b}{2}, \qquad (2.3a)$$

we define a virtual representation

$$\begin{bmatrix} \lambda_1 & \lambda_2 & \cdots & \lambda_a \\ \mu_1 & \mu_2 & \cdots & \mu_b \end{bmatrix}$$
(2.3b)

of W_n as follows. If λ_i are not distinct or if μ_i are not distinct or if at least one of λ_i or μ_i is < 0, we define (2.3b) to be 0. Assume now that $\lambda_i \in \mathbb{N}$ are distinct, and that $\mu_i \in \mathbb{N}$ are distinct. Then r, \tilde{r} defined by

$$\sum_{i} \lambda_{i} = r + \binom{a}{2}, \qquad \sum_{i} \mu_{i} = \tilde{r} + \binom{b}{2}$$

satisfy $r, \tilde{r} \in \mathbb{N}, r + \tilde{r} = n$. We identify $W_r \times W_{\tilde{r}}$ with a subgroup of W_n as in [L3, p. 82]. The virtual representation $[\lambda_1, \lambda_2, ..., \lambda_a] \boxtimes [\mu_1, \mu_2, ..., \mu_b]$ of $S_r \times S_{\tilde{r}}$ may be regarded as a virtual representation of $W_r \times W_{\tilde{r}}$ via the obvious projection $W_r \times W_{\tilde{r}} \to S_r \times S_{\tilde{r}}$ (see [L3, p. 82]). We tensor this with the one-dimensional character of $W_r \times W_{\tilde{r}}$ which is the identity on the W_r -factor and is the restriction of $\chi : W_n \to \{\pm 1\}$ (see [L3, p. 82]) on the $W_{\tilde{r}}$ -factor. Inducing the resulting virtual representation from $W_r \times W_{\tilde{r}}$ to W_n , we obtain the virtual representation (2.3b) of W_n . Note that if $\lambda_1 < \lambda_2 < \cdots < \lambda_a$ and $\mu_1 < \mu_2 < \cdots < \mu_b$, then this is an irreducible representation; if σ is a permutation of $1, 2, \ldots, a$ and σ' is a permutation of $1, 2, \ldots, b$, then

$$\begin{bmatrix} \lambda_{\sigma(1)} & \lambda_{\sigma(2)} & \cdots & \lambda_{\sigma(a)} \\ \mu_{\sigma'(1)} & \mu_{\sigma'(2)} & \cdots & \mu_{\sigma'(b)} \end{bmatrix} = \operatorname{sgn}(\sigma) \operatorname{sgn}(\sigma') \begin{bmatrix} \lambda_1 & \lambda_2 & \cdots & \lambda_a \\ \mu_1 & \mu_2 & \cdots & \mu_b \end{bmatrix}.$$

From the definition we see easily that

$$\begin{bmatrix} \lambda_1 & \lambda_2 & \cdots & \lambda_a \\ \mu_1 & \mu_2 & \cdots & \mu_b \end{bmatrix} = \begin{bmatrix} 0 & \lambda_1 + 1 & \lambda_2 + 1 & \cdots & \lambda_a + 1 \\ 0 & \mu_1 + 1 & \mu_2 + 1 & \cdots & \mu_b + 1 \end{bmatrix}.$$

Lemma 2.4. Let $\lambda_1, \lambda_2, ..., \lambda_a$ and $\mu_1, \mu_2, ..., \mu_b$ be two sequences of integers such that (2.3a) holds. Let $w = (2k) \times w' \in W_k \times W_{n-k} \subset W_n$ where $0 < k \leq n$, (2k) denotes an element of W_k whose image under the obvious imbedding $W_k \subset S_{2k}$ is a 2k-cycle and $w' \in W_{n-k}$. We have

$$\operatorname{tr}\left(w, \begin{bmatrix} \lambda_{1} & \lambda_{2} & \cdots & \lambda_{a} \\ \mu_{1} & \mu_{2} & \cdots & \mu_{b} \end{bmatrix}\right)$$
$$= \sum_{i=1}^{a} \operatorname{tr}\left(w', \begin{bmatrix} \lambda_{1} & \lambda_{2} & \cdots & \lambda_{i-1} & \lambda_{i} - k & \lambda_{i+1} & \cdots & \lambda_{a} \\ \mu_{1} & \mu_{2} & \cdots & \mu_{b} & & \end{bmatrix}\right)$$
$$- \sum_{i=1}^{a} \operatorname{tr}\left(w', \begin{bmatrix} \lambda_{1} & \lambda_{2} & \cdots & \lambda_{a} \\ \mu_{1} & \mu_{2} & \cdots & \mu_{i-1} & \mu_{i} - k & \mu_{i+1} & \cdots & \mu_{b} \end{bmatrix}\right).$$

This follows from Lemma 2.2, using the definitions.

2.5. Let $m \in \mathbb{N}$ and let $n = m^2 + m$. Let $w_m \in W_n$ be an element whose image under the imbedding $W_n \subset S_{2n}$ is a product of cycles $(4)(8)(12) \dots (4m)$. Let

$$\lambda_1 < \lambda_2 < \dots < \lambda_{m+1} \quad \text{and} \quad \mu_1 < \mu_2 < \dots < \mu_m \tag{2.5a}$$

be two sequences of integers such that $\lambda_1, \lambda_2, \dots, \lambda_{m+1}, \mu_1, \mu_2, \dots, \mu_m$ is a permutation of 0, 1, 2, 3, ..., 2*m*. Then (2.3a) holds (with a = m + 1, b = m, and $n = m^2 + m$). Consider the property

$$\lambda_i + \lambda_j \neq 2m$$
 for any $i \neq j$ and $\mu_i + \mu_j \neq 2m$ for any $i \neq j$. (*)

Lemma 2.6. In the setup of Section 2.5, if (*) holds, then

$$\operatorname{tr}\left(w_{m}, \begin{bmatrix} \lambda_{1} & \lambda_{2} & \cdots & \lambda_{m+1} \\ \mu_{1} & \mu_{2} & \cdots & \mu_{m} \end{bmatrix}\right) = (-1)^{(m^{2}+m)/2}$$

If (*) *does not hold, then*

$$\operatorname{tr}\left(w_m, \begin{bmatrix} \lambda_1 & \lambda_2 & \cdots & \lambda_{m+1} \\ \mu_1 & \mu_2 & \cdots & \mu_m \end{bmatrix}\right) = 0.$$

We argue by induction on *m*. The result is clear when m = 0. Assume now that m > 0. We can assume that $w_m = (4m)w_{m-1} \in W_{2m} \times W_{n-2m} \subset W_n$ where $w_{m-1} \in W_{n-2m}$ is defined in a similar way to w_m . We apply Lemma 2.4 with $w = w_m$, k = 2m, $w' = w_{m-1}$. Note that in the formula in Lemma 2.4, at most one term is non-zero, namely, the one in which k = 2m is substracted from the largest of entries λ_i or μ_i (the other terms are zero since they contain some < 0 entry). We are in one of the four cases below.

Case 1 ($2m = \lambda_{m+1}, 0 = \mu_1$). Using Lemma 2.4, we have

$$A = \operatorname{tr}\left(w_{m}, \begin{bmatrix}\lambda_{1} & \lambda_{2} & \cdots & \lambda_{m+1} \\ \mu_{1} & \mu_{2} & \cdots & \mu_{m}\end{bmatrix}\right)$$

$$= \operatorname{tr}\left(w_{m-1}, \begin{bmatrix}\lambda_{1} & \lambda_{2} & \cdots & \lambda_{m} & 0 \\ 0 & \mu_{2} & \cdots & \mu_{m}\end{bmatrix}\right)$$

$$= (-1)^{m} \operatorname{tr}\left(w_{m-1}, \begin{bmatrix}0 & \lambda_{1} & \lambda_{2} & \cdots & \lambda_{m} \\ 0 & \mu_{2} & \cdots & \mu_{m}\end{bmatrix}\right)$$

$$= (-1)^{m} \operatorname{tr}\left(w_{m-1}, \begin{bmatrix}\lambda_{1} - 1 & \lambda_{2} - 1 & \cdots & \lambda_{m} - 1 \\ \mu_{2} - 1 & \mu_{3} - 1 & \cdots & \mu_{m} - 1\end{bmatrix}\right).$$

Now the induction hypothesis is applicable to sequences

$$\lambda_1 - 1 < \lambda_2 - 1 < \dots < \lambda_m - 1$$
 and
 $\mu_2 - 1 < \mu_3 - 1 < \dots < \mu_m - 1$ (2.6a)

instead of sequences (2.5a). (Clearly, (2.5a) satisfies (*) if and only if (2.6a) satisfies the analogous condition.) Hence, if (2.5a) satisfies (*), then

$$A = (-1)^{m} (-1)^{(m^{2}-m)/2} = (-1)^{(m^{2}+m)/2}$$

as required. If (2.5a) does not satisfy (*), then $A = (-1)^m 0 = 0$, as required.

Case 2 ($2m = \lambda_{m+1}, 0 = \lambda_1$). Using Lemma 2.4, we have

$$\operatorname{tr}\left(w_{m}, \begin{bmatrix}\lambda_{1} & \lambda_{2} & \cdots & \lambda_{m+1}\\ \mu_{1} & \mu_{2} & \cdots & \mu_{m}\end{bmatrix}\right) = \operatorname{tr}\left(w_{m-1}, \begin{bmatrix}0 & \lambda_{2} & \cdots & \lambda_{m} & 0\\ \mu_{1} & \mu_{2} & \cdots & \mu_{m}\end{bmatrix}\right)$$

and this equals 0 since 0 appears twice in the top row.

Case 3 $(2m = \mu_m, 0 = \lambda_1)$. Using Lemma 2.4, we have

$$A = \operatorname{tr}\left(w_{m}, \begin{bmatrix}\lambda_{1} & \lambda_{2} & \cdots & \lambda_{m+1}\\ \mu_{1} & \mu_{2} & \cdots & \mu_{m}\end{bmatrix}\right)$$

$$= -\operatorname{tr}\left(w_{m-1}, \begin{bmatrix}0 & \lambda_{2} & \cdots & \lambda_{m} & \lambda_{m+1}\\ \mu_{1} & \mu_{2} & \cdots & \mu_{m-1} & 0\end{bmatrix}\right)$$

$$= (-1)^{m} \operatorname{tr}\left(w_{m-1}, \begin{bmatrix}0 & \lambda_{2} & \cdots & \lambda_{m} & \lambda_{m+1}\\ 0 & \mu_{1} & \mu_{2} & \cdots & \mu_{m-1}\end{bmatrix}\right)$$

$$= (-1)^{m} \operatorname{tr}\left(w_{m-1}, \begin{bmatrix}\lambda_{2} - 1 & \cdots & \lambda_{m} - 1 & \lambda_{m+1} - 1\\ \mu_{1} - 1 & \mu_{2} - 1 & \cdots & \mu_{m-1} - 1\end{bmatrix}\right).$$

Now the induction hypothesis is applicable to sequences

$$\lambda_2 - 1 < \dots < \lambda_m - 1 < \lambda_{m+1} - 1$$
 and
 $\mu_1 - 1 < \mu_2 - 1 < \dots < \mu_{m-1} - 1$ (2.6b)

instead of sequences (2.5a). (Clearly, (2.5a) satisfies (*) if and only if (2.6b) satisfies the analogous condition.) Hence, if (2.5a) satisfies (*), then

$$A = (-1)^m (-1)^{(m^2 - m)/2} = (-1)^{(m^2 + m)/2}$$

as required. If (2.5a) does not satisfy (*), then $A = (-1)^m 0 = 0$, as required.

Case 4 ($2m = \mu_m$, $0 = \mu_1$). Using Lemma 2.4, we have

$$\operatorname{tr}\left(w_{m}, \begin{bmatrix}\lambda_{1} \quad \lambda_{2} \quad \cdots \quad \lambda_{m+1}\\ \mu_{1} \quad \mu_{2} \quad \cdots \quad \mu_{m}\end{bmatrix}\right)$$
$$= -\operatorname{tr}\left(w_{m-1}, \begin{bmatrix}\lambda_{1} \quad \lambda_{2} \quad \cdots \quad \lambda_{m} \quad \lambda_{m+1}\\ 0 \quad \mu_{2} \quad \cdots \quad 0\end{bmatrix}\right)$$

and this is 0 since 0 appears twice in the bottom row. The lemma is proved.

Lemma 2.7. In the setup of Lemma 2.6, if (*) holds, then

$$\sharp(k \in \{1, 2, \dots, m\}: \mu_k = even) = (m^2 + m)/2 \mod 2.$$

Since (*) holds, the left-hand side is equal to the number of pairs

 $(0, 2m), (1, 2m-1), (2, 2m-2), \dots, (m-1, m+1),$

in which both components are even. This equals m/2 if *m* is even and (m + 1)/2 if *m* is odd. Hence it has the same parity as m(m + 1)/2. The lemma is proved.

2.8. Let m, n be as in Section 2.5. Let $z \in W_n$ be an element which has no eigenvalue 1 in the reflection representation of W_n . Then $z = z_1 z_2 \dots z_k$ with $k \ge m$, $z_j \in W_n$ for all $j \in [1, k]$, and the image of z_j under the imbedding $W_n \subset S_{2n}$ is a $(2a_j)$ -cycle where $a_1 \ge a_2 \ge \dots \ge a_k$. According to [GP, 3.4],

If z has minimal length in its conjugacy class,
then
$$l(z) = a_1 + 3a_2 + 5a_3 + \dots + (2k-1)a_k$$
. (2.8a)

Let $a_j^0 = 2m - 2j + 2$ for $j \in [1, m]$, and $a_j^0 = 0$ for $j \in [m + 1, k]$.

Lemma 2.9. In the setup of Sections 2.5 and 2.8, assume that

$$\operatorname{tr}\left(z, \begin{bmatrix} \lambda_1 & \lambda_2 & \cdots & \lambda_{m+1} \\ \mu_1 & \mu_2 & \cdots & \mu_m \end{bmatrix}\right) \neq 0$$

(a) For any $j \in [1, k]$ we have $a_1 + a_2 + \dots + a_j \leq a_1^0 + a_2^0 + \dots + a_j^0$.

(b) We have $a_1 + 3a_2 + 5a_3 + \dots + (2k-1)a_k \ge a_1^0 + 3a_2^0 + 5a_3^0 + \dots + (2k-1)a_k^0$ with strict inequality if $(a_1, a_2, \dots, a_k) \ne (a_1^0, a_2^0, \dots, a_k^0)$.

Using repeatedly Lemma 2.4, we see that there exists $f:[1,k] \rightarrow [1,m]$ such that the multiset $\{0, 1, 2, ..., m - 1, m, m - 1, ..., 2, 1, 0\}$ coincides with the multiset

$$\left\{ 0, 1, 2, \dots, m-1, m, m+1 - \sum_{h \in f^{-1}(1)} a_h, m+2 - \sum_{h \in f^{-1}(2)} a_h, \dots, 2m - \sum_{h \in f^{-1}(m)} a_h \right\}.$$

It follows that there exists a permutation σ of 1, 2, ..., m such that

$$r - \sum_{h \in f^{-1}(r)} a_h = -\sigma(r)$$

for all $r \in [1, m]$. For $j \in [1, k]$ we have

$$a_1 + a_2 + \dots + a_j \leqslant \sum_{r \in f[1,j]} \sum_{h \in f^{-1}(r)} a_h$$

hence

$$a_1 + a_2 + \dots + a_j \leq \sum_{r \in f[1,j]} (r + \sigma(r)).$$

Since f[1, j] consists of at most j elements in [1, m], we have

$$\sum_{\substack{r \in f[1,j]}} r \leqslant m + (m-1) + \dots + (m-j+1),$$
$$\sum_{r \in f[1,j]} \sigma(r) \leqslant m + (m-1) + \dots + (m-j+1),$$

if $j \in [1, m]$, and

$$\sum_{\substack{r \in f[1,j]}} r \leqslant m + (m-1) + \dots + 1,$$
$$\sum_{r \in f[1,j]} \sigma(r) \leqslant m + (m-1) + \dots + 1,$$

if $j \in [m+1, k]$. Thus,

$$a_1 + a_2 + \dots + a_j \leq 2(m + (m-1) + \dots + (m-j+1))$$
 if $j \in [1, m]$,

and

$$a_1 + a_2 + \dots + a_j \leq 2(m + (m - 1) + \dots + 1)$$
 if $j \in [m + 1, k]$.

This proves (a).

We prove (b). From (a) we see that

$$(a_1 + a_2 + \dots + a_k) + 2(a_1 + a_2 + \dots + a_{k-1}) + \dots + 2a_1$$

$$\leq (a_1^0 + a_2^0 + \dots + a_k^0) + 2(a_1^0 + a_2^0 + \dots + a_{k-1}^0) + \dots + 2a_1^0,$$

hence

$$(2k-1)a_1 + (2k-3)a_2 + \dots + a_k \leq (2k-1)a_1^0 + (2k-3)a_2^0 + \dots + a_k^0.$$

Since $a_1 + a_2 + \dots + a_k = a_1^0 + a_2^0 + \dots + a_k^0$, it follows that

$$a_1 + 3a_2 + 5a_3 + \dots + (2k-1)a_k \ge a_1^0 + 3a_2^0 + 5a_3^0 + \dots + (2k-1)a_k^0.$$

If this is an equality, we must have $a_1 = a_1^0$, $a_1 + a_2 = a_1^0 + a_2^0$, ..., hence $a_1 = a_1^0$, $a_2 = a_2^0$, The lemma is proved.

2.10. Let $m \in \mathbb{N}$, $m \ge 1$, and let $n = m^2$. Let $w'_m \in W_n$ be an element whose image under the imbedding $W_n \subset S_{2n}$ is a product of cycles $(2)(6)(10) \dots (4m-2)$. Let

$$\lambda_1 < \lambda_2 < \dots < \lambda_m \quad \text{and} \quad \mu_1 < \mu_2 < \dots < \mu_m \tag{2.10a}$$

be two sequences of integers such that $\lambda_1, \lambda_2, ..., \lambda_m, \mu_1, \mu_2, ..., \mu_m$ is a permutation of 0, 1, 2, ..., 2m - 1. Then (2.3a) holds (with a = b = m and $n = m^2$). Let

$$N = \sharp (k \in \{1, 2, \dots, m\}; \ \mu_k \ge m). \tag{2.10b}$$

Consider the property

$$\lambda_i + \lambda_j \neq 2m - 1 \quad \text{for any } i \neq j \quad \text{and} \\ \mu_i + \mu_j \neq 2m - 1 \quad \text{for any } i \neq j. \tag{**}$$

Lemma 2.11. In the setup of Section 2.10, if (**) holds, then

$$\operatorname{tr}\left(w'_{m}, \begin{bmatrix}\lambda_{1} & \lambda_{2} & \cdots & \lambda_{m}\\ \mu_{1} & \mu_{2} & \cdots & \mu_{m}\end{bmatrix}\right) = (-1)^{N+m(m-1)/2}$$

If (**) does not hold, then

$$\operatorname{tr}\left(w'_{m}, \begin{bmatrix} \lambda_{1} & \lambda_{2} & \cdots & \lambda_{m} \\ \mu_{1} & \mu_{2} & \cdots & \mu_{m} \end{bmatrix}\right) = 0.$$

We argue by induction on *m*. The result is clear when m = 1. Assume now that m > 1. We can assume that $w'_m = (4m - 2)w'_{m-1} \in W_{2m-1} \times W_{n-2m+1} \subset W_n$ where $w'_{m-1} \in W_{n-2m+1}$ is defined in a similar way to w'_m . We apply Lemma 2.4 with $w = w'_m$, k = 2m - 1, $w' = w'_{m-1}$. Note that in the formula in Lemma 2.4 at most one term is non-zero, namely, the one in which k = 2m - 1 is substracted from the largest of entries λ_i or μ_i (the other terms are zero since they contain some < 0 entry). We are in one of the four cases below.

Case 1 $(2m - 1 = \lambda_m, 0 = \mu_1)$. Using Lemma 2.4, we have

$$A = \operatorname{tr}\left(w'_{m}, \begin{bmatrix}\lambda_{1} \quad \lambda_{2} \quad \cdots \quad \lambda_{m} \\ \mu_{1} \quad \mu_{2} \quad \cdots \quad \mu_{m}\end{bmatrix}\right)$$

$$= \operatorname{tr}\left(w'_{m-1}, \begin{bmatrix}\lambda_{1} \quad \lambda_{2} \quad \cdots \quad \lambda_{m-1} \quad 0 \\ 0 \quad \mu_{2} \quad \cdots \quad \mu_{m}\end{bmatrix}\right)$$

$$= (-1)^{m-1} \operatorname{tr}\left(w'_{m-1}, \begin{bmatrix}0 \quad \lambda_{1} \quad \lambda_{2} \quad \cdots \quad \lambda_{m-1} \\ 0 \quad \mu_{2} \quad \cdots \quad \mu_{m}\end{bmatrix}\right)$$

$$= (-1)^{m-1} \operatorname{tr}\left(w'_{m-1}, \begin{bmatrix}\lambda_{1} - 1 \quad \lambda_{2} - 1 \quad \cdots \quad \lambda_{m-1} - 1 \\ \mu_{2} - 1 \quad \mu_{3} - 1 \quad \cdots \quad \mu_{m} - 1\end{bmatrix}\right).$$

Now the induction hypothesis is applicable to sequences

$$\lambda_1 - 1 < \lambda_2 - 1 < \dots < \lambda_{m-1} - 1$$
 and
 $\mu_2 - 1 < \mu_3 - 1 < \dots < \mu_m - 1$ (2.11a)

instead of sequences (2.10a). (Clearly, (2.10a) satisfies (**) if and only if (2.11a) satisfies the analogous condition.) Let N' be defined as N in (2.10b), in terms of (2.11a). Then N' = N. If (2.10a) satisfies (**), then

$$A = (-1)^{m-1} (-1)^{(m-1)(m-2)/2} (-1)^{N'} = (-1)^{m(m-1)/2} (-1)^{N}$$

as required. If (2.10a) does not satisfy (**), then $A = (-1)^{m-1}0 = 0$, as required.

Case 2 $(2m - 1 = \lambda_m, 0 = \lambda_1)$. Using Lemma 2.4, we have

$$\operatorname{tr}\left(w'_{m}, \begin{bmatrix}\lambda_{1} \quad \lambda_{2} \quad \cdots \quad \lambda_{m}\\ \mu_{1} \quad \mu_{2} \quad \cdots \quad \mu_{m}\end{bmatrix}\right) = \operatorname{tr}\left(w'_{m-1}, \begin{bmatrix}0 \quad \lambda_{2} \quad \cdots \quad \lambda_{m-1} \quad 0\\ \mu_{1} \quad \mu_{2} \quad \cdots \quad \mu_{m}\end{bmatrix}\right)$$

and this is 0 since 0 appears twice in the top row.

Case 3 $(2m - 1 = \mu_m, 0 = \lambda_1)$. Using Lemma 2.4, we have

$$A = \operatorname{tr}\left(w'_{m}, \begin{bmatrix}\lambda_{1} & \lambda_{2} & \cdots & \lambda_{m}\\ \mu_{1} & \mu_{2} & \cdots & \mu_{m}\end{bmatrix}\right)$$
$$= -\operatorname{tr}\left(w'_{m-1}, \begin{bmatrix}0 & \lambda_{2} & \cdots & \lambda_{m} \\ \mu_{1} & \mu_{2} & \cdots & \mu_{m-1} & 0\end{bmatrix}\right)$$
$$= (-1)^{m} \operatorname{tr}\left(w'_{m-1}, \begin{bmatrix}0 & \lambda_{2} & \cdots & \lambda_{m} \\ 0 & \mu_{1} & \mu_{2} & \cdots & \mu_{m-1}\end{bmatrix}\right)$$
$$= (-1)^{m} \operatorname{tr}\left(w'_{m-1}, \begin{bmatrix}\lambda_{2} - 1 & \cdots & \lambda_{m} - 1 \\ \mu_{1} - 1 & \mu_{2} - 1 & \cdots & \mu_{m-1} - 1\end{bmatrix}\right).$$

Now the induction hypothesis is applicable to sequences

$$\lambda_2 - 1 < \lambda_3 - 1 < \dots < \lambda_m - 1$$
 and
 $\mu_1 - 1 < \mu_2 - 1 < \dots < \mu_{m-1} - 1$ (2.11b)

instead of sequences (2.10a). (Clearly, (2.10a) satisfies (**) if and only if (2.11b) satisfies the analogous condition.) Let N' be defined as N in (2.10b), in terms of (2.11b). Then N' = N - 1. If (2.10a) satisfies (**), then

$$A = (-1)^{m} (-1)^{(m-2)(m-1)/2} (-1)^{N'} = (-1)^{m(m-1)/2} (-1)^{N}$$

as required. If (2.10a) does not satisfy (**), then $A = (-1)^m 0 = 0$, as required.

Case 4 $(2m - 1 = \mu_m, 0 = \mu_1)$. Using Lemma 2.4, we have

$$\operatorname{tr}\left(w'_{m}, \begin{bmatrix}\lambda_{1} \quad \lambda_{2} \quad \cdots \quad \lambda_{m}\\ \mu_{1} \quad \mu_{2} \quad \cdots \quad \mu_{m}\end{bmatrix}\right) = -\operatorname{tr}\left(w'_{m-1}, \begin{bmatrix}\lambda_{1} \quad \lambda_{2} \quad \cdots \quad \lambda_{m}\\ 0 \quad \mu_{2} \quad \cdots \quad 0\end{bmatrix}\right)$$

and this is 0 since 0 appears twice in the bottom row. The lemma is proved.

Lemma 2.12. Assume that we are in the setup of Lemma 2.11, that (**) holds, and that m = 2m' for some integer m' > 0. Then

$$\sharp(k \in \{1, 2, ..., m\}: \mu_k \ge m) - \sharp(k \in \{1, 2, ..., m\}: \mu_k \text{ even})$$

= m' mod 2, (2.12a)
$$\sharp(k \in \{1, 2, ..., m\}: \mu_k \text{ even}) = N + m(m-1)/2 \mod 2.$$
 (2.12b)

Among the m' pairs (0, 4m' - 1), (2, 4m' - 3), ..., (2m' - 2, 2m' + 1) there are, say, α pairs with the first component of form λ_i and second component of form μ_j and β pairs with the first component of form μ_j , and second component of form λ_i . Clearly, $\alpha + \beta = m'$. Among the m' pairs

$$(1, 4m'-2), (3, 4m'-4), \dots, (2m'-1, 2m')$$

there are, say, γ pairs with the first component of form λ_i and second component of form μ_j , and δ pairs with the first component of form μ_j and second component of form λ_i . Clearly, $\gamma + \delta = m'$. From the definitions we have

$$\sharp(k \in \{1, 2, \dots, 2m'\}: \mu_k \ge 2m') = \alpha + \gamma,$$

$$\sharp(k \in \{1, 2, \dots, 2m'\}: \mu_k \text{ even}) = \beta + \gamma.$$

Hence the left-hand side of (2.12a) is equal to $\alpha + \gamma - (\beta + \gamma) = \alpha - \beta$, which has the same parity as $\alpha + \beta = m'$. This proves (2.12a). Now (2.12b) follows from (2.12a) since $m' = 2m'(2m' - 1)/2 \mod 2$. The lemma is proved.

Proposition 2.13. Assume that G in Section 0.1 is of type B_n or C_n where $n = m^2 + m$, $m \in \mathbb{N}$, $m \ge 1$. We identify the Weyl group W of G with W_n (see Section 2.3) in the standard way. (The simple reflections of W become the permutations $s_i = (i, i + 1)(i', (i + 1)')$, $i \in [1, n - 1]$, and $s_n = (n, n')$ in W_n .) Let $w = w_m$, see Section 2.5. Let $\rho \in U^0$. Then $(\rho : R_w) = 1$.

For any subset J of cardinal m of $I = \{0, 1, 2, \dots, 2m\}$ let

$$E_J = \begin{bmatrix} \lambda_1 & \lambda_2 & \cdots & \lambda_{m+1} \\ \mu_1 & \mu_2 & \cdots & \mu_m \end{bmatrix}$$

(an irreducible representation of *W*), where $\mu_1 < \mu_2 < \cdots < \mu_m$ are the elements of *J* in increasing order, and $\lambda_1 < \lambda_2 < \cdots < \lambda_{m+1}$ are the elements of I - J in increasing order; let $f(J) = \sharp(j \in J: j \text{ even})$. By [L3, 4.23],

$$(\rho, R_w) = 2^{-m} \sum_J (-1)^{f(J)} \operatorname{tr}(w_m, E_J)$$
(2.13a)

where J runs over all subsets of I of cardinal m. Using Lemmas 2.6 and 2.7 we see that (2.13a) equals $2^{-m} \sharp (J: J \cap (2m - J) = \emptyset) = 1$. The proposition is proved.

Proposition 2.14. Assume that G in Section 0.1 is of type D_n where $n = m^2$, $m = 2m', m' \in \mathbb{N}, m' \ge 1$. We identify the Weyl group W of G with the subgroup of W_n generated by $s_1, s_2, \ldots, s_{n-1}, s_n s_{n-1} s_n$ (a Coxeter subgroup on these generators). Let $w = w'_m$, see Section 2.10. (We have $w'_m \in W$.) Let $\rho \in U^0$. Then $(\rho : R_w) = 1$.

For any subset J of cardinal m of $I = \{0, 1, 2, ..., 2m - 1\}$ let E_J be the restriction of

$$\begin{bmatrix} \lambda_1 & \lambda_2 & \cdots & \lambda_{m+1} \\ \mu_1 & \mu_2 & \cdots & \mu_m \end{bmatrix}$$

from W_n to W (an irreducible representation of W), where $\mu_1 < \mu_2 < \cdots < \mu_m$ are the elements of J in increasing order, and $\lambda_1 < \lambda_2 < \cdots < \lambda_m$ are the elements of I - J in increasing order; let $f(J) = \sharp(j \in J)$: j even). Note that $E_J = E_{I-J}$ and f(J) = f(I - J). By [L3, 4.23],

$$(\rho: R_w) = 2^{-m} \sum_J (-1)^{f(J)} \operatorname{tr}(w_m, E_J), \qquad (2.14a)$$

where *J* runs over all subsets of *I* of cardinal *m*. Using Lemmas 2.11 and 2.12 we see that (2.14a) equals $2^{-m} \sharp (J: J \cap (2m - J) = \emptyset) = 1$. The proposition is proved.

2.15. Let m, n, W be as in Proposition 2.14. Let $z \in W_n$ be an element which has no eigenvalue 1 in the reflection representation of W_n . Then $z = z_1 z_2 \dots z_k$ with $k \ge m, z_j \in W_n$ for all $j \in [1, k]$, and the image of z_j under the imbedding $W_n \subset S_{2n}$ is a $(2a_j)$ -cycle where $a_1 \ge a_2 \ge \dots \ge a_k$. Assume also that $M = \sharp (j \in [1, k]; a_j > 0)$ is even. Then $z \in W$. According to [GP, 3.4],

If z has minimal length in its conjugacy class in W,
then
$$l(z) = a_1 + 3a_2 + 5a_3 + \dots + (2k-1)a_k - M.$$
 (2.15a)

Let $a_j^0 = 2m - 2j + 1$ for $j \in [1, m]$ and $a_j^0 = 0$ for $j \in [m + 1, k]$.

Lemma 2.16. In the setup of Sections 2.10 and 2.15, assume that

$$\operatorname{tr}\left(z, \begin{bmatrix} \lambda_1 & \lambda_2 & \cdots & \lambda_m \\ \mu_1 & \mu_2 & \cdots & \mu_m \end{bmatrix}\right) \neq 0$$

(a) For any $j \in [1,k]$ we have $a_1 + a_2 + \dots + a_j \leq a_1^0 + a_2^0 + \dots + a_j^0$. If $m \leq j < M$, we have $a_1 + a_2 + \dots + a_j \leq a_1^0 + a_2^0 + \dots + a_j^0 - 1$.

(b) We have
$$a_1 + 3a_2 + 5a_3 + \dots + (2k-1)a_k - M \ge a_1^0 + 3a_2^0 + 5a_3^0 + \dots + (2k-1)a_k^0 - m$$
 with strict inequality if $(a_1, a_2, \dots, a_k) \ne (a_1^0, a_2^0, \dots, a_k^0)$.

Using repeatedly Lemma 2.4, we see that there exists $f:[1,k] \rightarrow [1,m]$ such that the multiset $\{0, 1, 2, \dots, m-1, m-1, \dots, 2, 1, 0\}$ coincides with the multiset

$$\left\{0, 1, 2, \dots, m-1, m-\sum_{h\in f^{-1}(1)}a_h, m+1-\sum_{h\in f^{-1}(2)}a_h, \dots, 2m-1-\sum_{h\in f^{-1}(m)}a_h\right\}.$$

It follows that there exists a permutation σ of 1, 2, ..., *m* such that

$$r-1-\sum_{h\in f^{-1}(r)}a_h=-\sigma(r)$$

for all $r \in [1, m]$. For $j \in [1, k]$ we have

$$a_1+a_2+\cdots+a_j\leqslant \sum_{r\in f[1,j]}\sum_{h\in f^{-1}(r)}a_h,$$

hence

$$a_1+a_2+\cdots+a_j \leq \sum_{r\in f[1,j]} (r+\sigma(r)-1).$$

Since $\sharp(f[1, j]) = j'$ where $j' \leq \min(j, m)$, we have

$$\sum_{r \in f[1,j]} r \leqslant m + (m-1) + \dots + (m-j'+1),$$

$$\sum_{r \in f[1,j]} \sigma(r) \leqslant m + (m-1) + \dots + (m-j'+1),$$

$$a_1 + a_2 + \dots + a_j \leqslant (2m-1) + (2m-3) + \dots + (2m-2j'+1).$$

Thus,

$$a_1 + a_2 + \dots + a_j \leq (2m - 1) + (2m - 3) + \dots + (2m - 2j + 1)$$

if $j \in [1, m]$

and

$$a_1 + a_2 + \dots + a_j \leq (2m - 1) + (2m - 3) + \dots + 1$$
 if $j \in [m + 1, k]$.

If M > m, then for $j \in [m, M - 1]$ we have $a_{j+1} \ge 1$ hence $a_{j+1} + a_{j+2} + \cdots + a_k \ge 1$. Since $a_1 + a_2 + \cdots + a_k = a_1^0 + a_2^0 + \cdots + a_k^0$, we have, for any $j \in [m, M - 1]$:

$$a_1 + a_2 + \dots + a_j = a_1^0 + a_2^0 + \dots + a_k^0 - (a_{j+1} + a_{j+2} + \dots + a_m)$$

= $a_1^0 + a_2^0 + \dots + a_j^0 - (a_{j+1} + a_{j+2} + \dots + a_k)$
 $\leqslant a_1^0 + a_2^0 + \dots + a_j^0 - 1.$

This proves (a).

We shall prove (b). Assume first that $M \leq m$. From (a) we see that

$$(a_1 + a_2 + \dots + a_k) + 2(a_1 + a_2 + \dots + a_{k-1}) + \dots + 2a_1$$

$$\leq (a_1^0 + a_2^0 + \dots + a_k^0) + 2(a_1^0 + a_2^0 + \dots + a_{k-1}^0) + \dots + 2a_1^0$$

hence

$$(2k-1)a_1 + (2k-3)a_2 + \dots + a_k \leq (2k-1)a_1^0 + (2k-3)a_2^0 + \dots + a_k^0.$$

Since $a_1 + a_2 + \dots + a_k = a_1^0 + a_2^0 + \dots + a_k^0$, it follows that

$$a_1 + 3a_2 + 5a_3 + \dots + (2k-1)a_k \ge a_1^0 + 3a_2^0 + 5a_3^0 + \dots + (2k-1)a_k^0.$$

Hence

$$a_1 + 3a_2 + 5a_3 + \dots + (2k-1)a_k - M$$

$$\geq a_1^0 + 3a_2^0 + 5a_3^0 + \dots + (2k-1)a_k^0 - m.$$

If this is an equality, we must have $a_1 = a_1^0$, $a_1 + a_2 = a_1^0 + a_2^0$, ..., hence $a_1 = a_1^0$, $a_2 = a_2^0$,

Assume next that M > m. From (a) we see that

$$(a_1 + a_2 + \dots + a_k) + 2(a_1 + a_2 + \dots + a_{k-1}) + \dots + 2a_1$$

$$\leq (a_1^0 + a_2^0 + \dots + a_k^0) + 2(a_1^0 + a_2^0 + \dots + a_{k-1}^0) + \dots + 2a_1^0$$

$$- \sharp [m, M - 1]$$

hence

$$(2k-1)a_1 + (2k-3)a_2 + \dots + a_k$$

$$\leq (2k-1)a_1^0 + (2k-3)a_2^0 + \dots + a_k^0 - 2(M-m).$$

Since $a_1 + a_2 + \dots + a_k = a_1^0 + a_2^0 + \dots + a_k^0$, it follows that $a_1 + 3a_2 + 5a_3 + \dots + (2k - 1)a_k$ $\ge a_1^0 + 3a_2^0 + 5a_3^0 + \dots + (2k - 1)a_k^0 + 2(M - m),$

hence

$$a_1 + 3a_2 + 5a_3 + \dots + (2k - 1)a_k - M$$

> $a_1^0 + 3a_2^0 + 5a_3^0 + \dots + (2k - 1)a_k^0 - m$

The lemma is proved.

We return to the general case.

T-1.1. 1

2.17. Let $\rho \in \mathcal{U}^0$. We attach to ρ a conjugacy class C_ρ in W as follows. If G is of type B_n or C_n , $n = m^2 + m$, let C_ρ be the conjugacy class of w_m (see Section 2.5). If G is of type D_n , $n = m^2$, m even, let C_ρ be the conjugacy class of w'_m (see Section 2.10). If G is of exceptional type, C_ρ is the conjugacy class of w whose characteristic polynomial |w| in the reflection representation of W (a product of cyclotomic polynomials Φ_d) is described in Table 1 where we specify also the minimum length l(w) for $w \in C_\rho$.

Here ρ is specified by the notation $\rho = \rho_{\mathcal{F},y,\sigma} = \rho_{y,\sigma}$ (we omit writing \mathcal{F}), where for the pairs (y, σ) we use the notation of [L3, 4.3]. The information on l(w) is taken from [GP, Appendix].

Туре	w	ρ	l(w)
E_6	$\Phi_{12}\Phi_3$	$\rho_{g_2,\theta^{\pm 1}}$	6
E_7	$\Phi_{18}\Phi_2$	$\rho_{g_2,1}, \rho_{g_2,\epsilon}$	7
E_8	Φ_{30}	$\rho_{g_5,\zeta j}, j = 1, 2, 3, 4; \rho_{g_6,\theta^{\pm 1}}$	8
	Φ_{24}	$\rho_{o_A j \pm 1}$	10
	$\Phi_{18}\Phi_6$	$\rho_{g_2,\epsilon\theta}^{84,\epsilon} \pm 1$	14
	Φ_{12}^{2}	$\rho_{g'_2,\epsilon}$	20
	$\Phi_{12}\Phi_{6}^{2}$	$\rho_{g_2,-\epsilon}$	22
	Φ_{6}^{4}	$\rho_{1\lambda^4}$	40
F_4	Φ_{12}^{0}	$\rho_{g_3,\theta^{\pm 1}}, \rho_{g_4,i^{\pm 1}}$	4
	Φ_8	$\rho_{g_2,\epsilon}$	6
	Φ_{6}^{2}	$\rho_{g'_2,\epsilon}$	8
	Φ_4^2	$\rho_{1,\lambda}$	12
G_2	Φ_6	$\rho_{g_2,\theta} \pm 1, \rho_{g_2,\epsilon}$	2
_	Φ_3	ρ_{1,λ^2}	4

Remark. The cases E_8 , F_4 , G_2 , $C = C_{\rho}$ for ρ equal to ρ_{1,λ^4} , ρ_{1,λ^3} , ρ_{1,λ^2} , respectively, have the following properties:

- the length function is constant on *C*;
- the cardinal of C is equal to the number of left cells in the two-sided cell c of W attached to ρ.

This suggests that $C \subset \mathbf{c}$ and that any left cell in \mathbf{c} contains a unique element of *C*.

Theorem 2.18. Let $\rho \in \mathcal{U}^0$. Let w be an element of minimal length in C_{ρ} .

- (a) We have $(\rho : R_w) = (-1)^{r(G)}$.
- (b) If $z \in W$ satisfies l(z) < l(w), then $(\rho : R_z) = 0$.
- (c) If $z \in W$ satisfies l(z) = l(w) and $z \notin C_{\rho}$, then $(\rho : R_z) = 0$.

Let W^0 be the set of all $z \in W$ such z has no eigenvalue 1 in the reflection representation of W.

We prove (a). In view of Propositions 2.13 and 2.14, we may assume that *G* is of exceptional type. In each case, one can compute $(\rho_{y,\sigma} : R_w)$ using [L3, 4.23]; for the computation we need the character table of *W* and the explicit entries of the non-abelian Fourier transform [L3, pp. 110–113]. The result in each case is $(-1)^{r(G)}$. This proves (a).

We prove (b), (c) assuming that *G* is of type B_n or C_n , $n = m^2 + m$. Let $z \in W$ be such that $(\rho : R_z) \neq 0$. Since $\rho \in \mathcal{U}^0$, it follows that $z \in W^0$. Define $a_1 \ge a_2 \ge \ldots \ge a_k$ in terms of *z* as in Section 2.8. Let z_0 be an element of minimal length in the conjugacy class of *z*. From our assumption it follows that

$$\operatorname{tr}\left(z_0, \begin{bmatrix} \lambda_1 & \lambda_2 & \cdots & \lambda_{m+1} \\ \mu_1 & \mu_2 & \cdots & \mu_m \end{bmatrix}\right) \neq 0$$

for some $\lambda_1, \lambda_2, ..., \lambda_{m+1}, \mu_1, \mu_2, ..., \mu_m$ as in Section 2.5. By Lemma 2.9(b) we have (using (2.8a)) that either z_0 is conjugate to w and $l(z_0) = l(w)$, or that $l(z_0) > l(w)$. Since $l(z) \ge l(z_0)$, we have that either z is conjugate to w and $l(z) \ge l(w)$ or that l(z) > l(w). Hence (b), (c) are proved in our case.

The proof of (b), (c) in the case where G is of type D_n , $n = m^2$, m even, is entirely similar; it uses (2.15a) and Lemma 2.16(b) instead of (2.8a) and Lemma 2.9(b).

Assume now that *G* is of an exceptional type. We can make an explicit list of the conjugacy classes *z* in *W* other than C_{ρ} , such that $z \in W^0$ and such that the minimum length of an element in this conjugacy class is $\leq l(w)$ (to do this we use [GP, Appendix]). For each *z* in this list, we compute $(\rho : R_z)$ using again [L3, 4.23] (we again need the character table of *W* and the explicit entries of the non-abelian Fourier transform). The result in each case is 0. This proves (b) and (c).

Remark. For $w \in W$ let $K_w = K_w^{\mathcal{L}}$ be as in [L4, 2.4] with $\mathcal{L} = \overline{\mathbb{Q}}_l$ (a constructible complex of *l*-adic sheaves on *G*). For any character sheaf *A* on *G* let $(A : K_w)$

be the alternating sum of multiplicities of *A* in the various perverse cohomology sheaves of K_w . According to [L5], if *p* is not too small, the cuspidal character sheaves *A* of *G* such that $(A : K_w) \neq 0$ for some *w* are in natural bijection $A \leftrightarrow \rho$ with \mathcal{U}^0 so that $(A : K_w) = (\rho : R_w)$. Hence the theorem has the following consequence for cuspidal character sheaves.

Corollary. Let A be as above. Then $\{w \in W: (A : K_w) \neq 0, l(w) \text{ is minimum possible}\}$ is contained in a single conjugacy class of W (namely C_ρ , where ρ corresponds to A as above); moreover, for $w \in C_\rho$ we have $(A : K_w) = (-1)^{r(G)}$.

2.19. In this subsection we assume that *G* is non-split over F_q . The action of Frobenius on *W* is now given by an automorphism $\gamma : W \to W$ of order c > 1 and we may form the corresponding semidirect product \widetilde{W} of *W* with $\mathbb{Z}/c\mathbb{Z}$ (whose generator is again denoted by γ). The reflection representation of *W* extends naturally to a representation of \widetilde{W} ; hence for $w \in W$, the characteristic polynomial $|w\gamma|$ of $w\gamma$ is defined. To any $\rho \in \mathcal{U}^0$ we associate a subset C_{ρ} of *W* such that $C_{\rho}\gamma$ is a single orbit for the conjugation action of *W* on \widetilde{W} , as follows.

If *G* is of type A_{n-1} where *n* is a triangular number and w_0 is the longest element of $W = S_n$, C_ρ consists of all *w* such that ww_0 is a product of cycles $(1)(5)(9) \dots$ or $(3)(7)(11) \dots$

If *G* is of type D_n where $n = m^2$, *m* odd, and c = 2, we identify $W\gamma = W_n - W$ (see Proposition 2.14) in the standard way; C_ρ consists of the elements of *w* such that the image of $w\gamma$ under the imbedding $W_n \subset S_{2n}$ is a product of cycles (2)(6)(10)...(4m - 2).

If G is of type D_4 and c = 3, we have $\mathcal{U}^0 = \{\rho_1, \rho_2\}$. Then C_{ρ_1} consists of all w such that $|w\gamma| = \Phi_{12}$ and C_{ρ_2} consists of all w such that $|w\gamma| = \Phi_6^2$. We arrange the notation so that $(\rho_1, R_w) = 1$ for $w \in C_{\rho_1}$.

If G is of type E_6 , we have $\mathcal{U}^0 = \{\rho_1, \rho_2, \rho_3\}$ where $\rho_1 \notin \widetilde{\mathcal{U}}_{\mathbb{Q}}, \rho_2 \notin \widetilde{\mathcal{U}}_{\mathbb{Q}}, \rho_3 \notin \widetilde{\mathcal{U}}_{\mathbb{Q}}$. Then $C_{\rho_1} = C_{\rho_2}$ consists of all w such that $|w\gamma| = \Phi_{18}$ and C_{ρ_3} consists of all w such that $|w\gamma| = \Phi_6^3$.

The statement of Theorem 2.18 continues to hold in the present case. The proof is along similar lines as in the split case (but we use [GKP] instead of [GP]). (The equality $(\rho : R_w) = (-1)^{r(G)}$ for *G* non-split of type *A* with $\rho \in U^0$, $w \in C_\rho$, appeared in [Oh].)

2.20. A statement like Theorem 2.18(a) was made without proof in [L3, p. 356] (for not necessarily split *G*). In that statement, the assumption that ρ is cuspidal was missing. That assumption is in fact necessary, as Lemma 2.21(ii) (for *G* of type C_4) shows.

Lemma 2.21. (i) Let $\epsilon: W_2 \times W_2 \rightarrow \{\pm 1\}$ be a character. Then

$$\operatorname{tr}\left(w,\operatorname{ind}_{W_{2}\times W_{2}}^{W_{4}}(\epsilon)\right)\in 2\mathbb{Z}$$
(2.21a)

for all $w \in W_4$.

(ii) Let $E = \begin{bmatrix} 1 & 2 \\ 2 & -2 \end{bmatrix}$ (an irreducible representation of W_4). Then R_E is of the form tr_{ρ} for some $\rho \in \mathcal{U}$ and $(\rho : R_w)$ is even for any $w \in W = W_4$.

The residue class mod 2 of the left-hand side of (2.21a) is clearly independent of the choice of ϵ . Hence to prove (2.21a) we may assume that $\epsilon = 1$. Let $\pi: W_4 \to S_4$ be the canonical homomorphism. We have

$$\operatorname{tr}\left(w,\operatorname{ind}_{W_{2}\times W_{2}}^{W_{4}}(1)\right) = \operatorname{tr}\left(\pi(w),\operatorname{ind}_{S_{2}\times S_{2}}^{S_{4}}(1)\right).$$

But if $y \in S_4$, then tr(y, ind $S_4 S_2 \times S_2(1)$) is 6 if y = 1, is 2 if y has order 2, and is 0 otherwise; in particular, it is even for any y. This proves (i).

In (ii), the multiplicity of ρ in R_w is tr(w, E), that is, the left-hand side of (2.21a) for a suitable ϵ . Hence it is even by (i). The lemma is proved.

We now shall prove anew the following special case of Theorem 0.2 and Corollary 1.12.

Theorem 2.22. (a) Assume that $\rho \in \widetilde{\mathcal{U}}_{\mathbb{Q}} \cap \mathcal{U}^{0}$. Then $\rho \in \mathcal{U}_{\mathbb{Q}}$. (b) If G is of type B, C or D and $\rho \in \mathcal{U}^{0}$, then $\rho \in \mathcal{U}_{\mathbb{Q}}$.

Before starting the proof, note that for any $x \in W$:

- (c) $(\rho: \sum_{j} (-1)^{j} \mathbf{H}^{j}(\overline{X}_{x}, \mathbb{Q}_{l})) = (\rho: \sum_{j} (-1)^{j} H_{c}^{j}(X_{x}, \mathbb{Q}_{l})) + an integer linear combination of <math>(\rho: \sum_{j} (-1)^{j} H_{c}^{j}(X_{x'}, \mathbb{Q}_{l}))$ for various x' with l(x') < l(x).
- (d) the G^F -modules $\mathbf{H}^j(\overline{X}_x, \mathbb{Q}_l), \mathbf{H}^{2l(x)-j}(\overline{X}_x, \mathbb{Q}_l)$ are mutually dual, hence they contain ρ with the same multiplicity (recall that ρ is self-dual).

We prove (a). Let $w \in C_{\rho}$, so that $(\rho : R_w) = (-1)^{r(G)}$ (see Theorem 2.18(a)). We assume that w has minimal length in C_{ρ} . In our case, $(-1)^{r(G)} = 1$. Since R_w is the character of a virtual representation defined over \mathbb{Q}_l , it follows that ρ is defined over \mathbb{Q}_l (here l is any prime $\neq \rho$). Using the Hasse principle it is then enough to show that ρ is defined over \mathbb{R} . Using Theorem 2.18(b) and (c) for x = w, it follows that $(\rho : \sum_j (-1)^j \mathbf{H}^j(\overline{X}_w, \mathbb{Q}_l)) = 1$. Using (d) and the first sentence in the proof of Lemma 1.4, we deduce that $(\rho : \mathbf{H}_c^{l(w)}(X_w, \mathbb{Q}_l)) = 1$ and that l(w) is even. Since $\mathbf{H}_c^{l(w)}(X_w, \mathbb{Q}_l)$ admits a symmetric, non-degenerate, G^F -invariant \mathbb{Q}_l -bilinear form with values in \mathbb{Q}_l with ρ self-dual and $(\rho : \mathbf{H}^{l(w)}(\overline{X}_w, \mathbb{Q}_l)) = 1$, it follows that ρ itself (regarded as a $\mathbb{Q}_l[G^F]$ -module) admits a symmetric, non-degenerate, σ^F -invariant \mathbb{Q}_l -bilinear form with values in \mathbb{Q}_l -bilinear form with values in \mathbb{Q}_l . Hence ρ is defined over \mathbb{R} .

In the setup of (b), ρ is unique up to isomorphism, hence it is automatically in $\widetilde{\mathcal{U}}_{\mathbb{O}}$. Thus, (a) is applicable and $\rho \in \mathcal{U}_{\mathbb{O}}$. The theorem is proved.

2.23. In this subsection we assume that G is of type F_4 , that p = 2 and that q is an odd power of 2. Then $F: G \to G$ admits a square root $F': G \to G$ so that

 $G^{F'}$ is a Ree group. The concepts in Section 0.1 are well defined for $G^{F'}$ (instead of G^{F}). It is known [L3] that there is a unique $\rho \in \mathcal{U}^0$ such that $(\rho : R_w)$ is even for all $w \in W$. We necessarily have $\rho \in \widetilde{\mathcal{U}}_{\mathbb{Q}}$ but the methods of this paper do not allow to decide whether ρ is defined over \mathbb{Q}_l or \mathbb{R} .

3. An example in SO₅

3.1. In this section we assume that $p \neq 2$ and that G = SO(V) where V is a 5-dimensional **k**-vector space with a fixed F_q -rational structure and a fixed nondegenerate symmetric bilinear form (,) defined over F_q . Let C be the set of all $g \in G$ such that g = su = us where $-s \in O(V)$ is a reflection and $u \in SO(V)$ has Jordan blocks of sizes 2, 2, 1. Then C is a conjugacy class in G and F(C) = C. A line L in $V(F_q)$ is said to be of type 1 if $(x, x) \in F_q^2 - 0$ for any $x \in L - \{0\}$ and of type -1 if $(x, x) \in F_q - F_q^2$ for any $x \in L - \{0\}$. Let \mathcal{L}_1 (respectively \mathcal{L}_{-1}) be the set of lines of type 1 (respectively -1) in $V(F_q)$. For $\epsilon, \delta \in \{1, -1\}$, let $C^{\epsilon, \delta}$ be the set of all $g \in C^F$ such that the line L in $V(F_q)$ such that $g|_L = 1$ is in \mathcal{L}_{ϵ} and any line L in $V(F_q)$ such that $g|_L = -1$ and $(L, L) \neq 0$ is in \mathcal{L}_{δ} . Then $C^{\epsilon, \delta}$ is a conjugacy class of G^F and C^F is union of the four conjugacy classes $C^{1,1}$, $C^{1,-1}$, $C^{-1,-1}$, $C^{-1,-1}$. We define a class function $\phi: G^F \to \mathbb{Z}$ by $\phi(g) = 2\delta q$ if $g \in C^{\epsilon, \delta}$ and $\phi(g) = 0$ if $g \in G - C^F$. (This is the characteristic function of a cuspidal character sheaf on G.)

Let O_+ (respectively O_-) be the stabilizer in G of a 4-dimensional subspace of V defined over F_q on which (,) is non-degenerate and split (respectively nonsplit). Let det: $O_+ \to \{\pm 1\}$ (respectively det: $O_- \to \{\pm 1\}$) be the unique nontrivial homomorphism of algebraic groups. The restriction of det to O_+^F or O_-^F is denoted again by det. Consider the virtual representation

$$\Phi = \operatorname{ind}_{O_{+}^{F}}^{G^{F}}(1) - \operatorname{ind}_{O_{+}^{F}}^{G^{F}}(\det) - \operatorname{ind}_{O_{-}^{F}}^{G^{F}}(1) + \operatorname{ind}_{O_{-}^{F}}^{G^{F}}(\det)$$

of G^F . For $g \in G^F$ we have

$$\operatorname{tr}(g, \Phi) = 2 \sharp (L \in \mathcal{L}_1; g|_L = -1) - 2 \sharp (L \in \mathcal{L}_{-1}; g|_L = -1).$$

It follows easily that $tr(g, \Phi) = \phi(g)$.

Let θ be the unique unipotent cuspidal representation of G^F . Then $(\theta : \phi) = 1$. It follows that $(\theta : \Phi) = 1$. Since tr_{θ} is \mathbb{Q} -valued and Φ is a difference of two representations defined over \mathbb{Q} , it follows that θ is defined over \mathbb{Q} . Thus we have proved the rationality of θ without using the Hasse principle.

3.2. Assume now that q = 3. Then SO(V) is isomorphic to a Weyl group W of type E_6 while O_+^F is isomorphic to a Weyl group of type F_4 and O_-^F is isomorphic to a Weyl group of type $A_5 \times A_1$ (imbedded in the standard way in the W). Now θ corresponds to the 6-dimensional reflection representation of W (Kneser).

Its restriction to the Weyl group of type F_4 contains no one-dimensional invariant subspace while its restriction to the Weyl group of type $A_5 \times A_1$ splits into a 5-dimensional irreducible representation and a non-trivial 1-dimensional representation. Since $(\theta : \Phi) = 1$ (see Section 3.1) it follows that $(\theta : \operatorname{ind}_{OF}^{G^F}(\operatorname{det})) = 1$.

References

- [BBD] A.A. Beilinson, J. Bernstein, P. Deligne, Faisceaux pervers, Astérisque 100 (1982).
- [DL] P. Deligne, G. Lusztig, Representations of reductive groups over finite fields, Ann. of Math. 103 (1976) 103–161.
- [GP] M. Geck, G. Pfeiffer, Characters of Finite Coxeter Groups and Iwahori–Hecke Algebras, Clarendon Press, Oxford, 2000.
- [GKP] M. Geck, S. Kim, G. Pfeiffer, Minimal length elements in twisted conjugacy classes of finite Coxeter groups, J. Algebra 229 (2000) 570–600.
- [L1] G. Lusztig, Coxeter orbits and eigenspaces of Frobenius, Invent. Math. 38 (1976) 101–159.
- [L2] G. Lusztig, Lecture at the US-France Conference on Representation Theory, Paris, 1982, unpublished.
- [L3] G. Lusztig, Characters of Reductive Groups Over a Finite Field, in: Ann. of Math. Stud., Vol. 107, Princeton University Press, 1984.
- [L4] G. Lusztig, Character sheaves, I, Adv. Math. 56 (1985) 193-237.
- [L5] G. Lusztig, Character sheaves, V, Adv. Math. 61 (1986) 103-155.
- [Oh] Z. Ohmori, The Schur indices of the cuspidal unipotent characters of the finite unitary groups, Proc. Japan Acad. Ser. A Math. Sci. 72 (1996) 111–113.
- [Weil] A. Weil, Basic Number Theory, Springer-Verlag, 1967.
- [Weyl] H. Weyl, The Classical Groups, Princeton University Press, 1939.