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Introduction

0.1. Letk be an algebraic closure of a finite fiefj with g elements. LeG be a
connected simple algebraic group of adjoint type dvevith a fixed F, -rational
structure; letF : G — G be the corresponding Frobenius map and {€t) be the
F,-rank of G. The fixed point seG’ is a finite group. LetV be the Weyl group
of G. Forw € W let R,, be the character of the virtual representati®riw) of
GF defined in [DL, 1.5]. (The definition oR,, is in terms of/-adic cohomology
but in factR,, has integer values and is independent,afee [DL, 3.3].) For an
irreducible representatignof G overC we denote by iy the character of. We
say thatp is unipotentif (o : Ry,), the multiplicity of p in Ry, is # 0 for some
w € W (see [DL, 7.8]). Letd be the set of isomorphism classes of unipotent
representations of©. Let LN{@ ={pel tr,(g) eQVg e GF}). Let Ug be the
set of all p € U such thatp is defined overQ (that is, it can be realized by a
QIGT1-module). We havely C ﬁ@ cU. Letld®={p eU: p cuspida).

Unless otherwise specified, we assume thas split over ;. The following
is one of our results.

Theorem 0.2. We have{g = .
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0.3. We will also show (see Corollary 1.12) thatifis of typeA, B, C or D, then

Ug =U. (The analogous statement is false for exceptional types.) The rationality
of certain unipotent cuspidal representations connected with Coxeter elements has
been proved in [L1]. The method of [L1] has been extended in [L2, unpublished]
to determine explicithiAgy in the general case (including non-split groups). The
case wher&s is non-split of typeA has been also considered by Ohmori [Oh],
another extension of the method [L1].

Our study of rationality of unipotent representations is based on the statement
that a given unipotent representation appears with multiplicity 1 in some (possibly
virtual) representatiorR defined using-adic cohomology and then using the
Hasse principle. In the first method (that of [L2],is a particular intersection
cohomology space of a variety; see Section 1. In the second method (which
applies only in the cuspidal cas&),will be one of theRr,, above; see Section 2.

In one case@ = SG; with ¢ odd), we give an elementary approach to rationality
(without using the Hasse principle); see Section 3.

1. First method

1.1. Let p be the characteristic af,. For any prime numbefr# p, we choose
an imbedding of the field@;, the/-adic numbers, int&. This allows us to regard
any representation @’ overQ; as one ove€. Let X be the flag manifold of5;
let F: X — X be the map induced b¥ : G — G. Forw € W let O,, be the set
of all (B, B") € X x X that are in relative positiom. As in [DL], foranyw € W,
let X, = {B € X: (B, F(B)) € 0,}; let X,, be the closure oKX, in X. Then
X, X, are stable under the conjugation actiorGdf on X. Hence for anyj € Z
there is an induced action 6f" on thel-adic cohomology with compact support
H! (X, Q) and on thd-adic intersection cohomolody’ (X, Q;). (Note that
X, has pure dimensiol{w) wherel : W — N is the length function.) Recall that
R,, is the character of the virtual representat@;ez(—l)ch’ (Xw, Q) of GF.

Lemm‘a_1.2. Let p € U. There existsx € W and j € [0,/(x)] such that
(p:H/(Xx, Q) =1

The proof is based on results of [L3]. For amye W let A, be the virtual
representation i defined in [L3, pp. 154, 156]. For any virtual representation
of W we setRg = |W| 1 Y wew tr(w, E)R,, (aQ-valued class function o6 ).
Thus,R 4, is defined. Letz: W — N be as in [L3, p. 178]. Assume that

xeWissuchthat (p:(=1)/®™R, ) =1. (1.2a)

Then from [L3, 6.15, 6.17(i), 5.13(i)] we dedugp : H'®~2™ (X, Q) = 1.
(Actually, in [L3], ¢ is assumed to be sufficiently large; but this assumption is
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removed later in [L3].) Thus, to prove the lemma it is enough to show that (1.2a)
holds for somer € W. Now in [L3], the multiplicities of unipotent representations

in (=1)!/®=4aR 4 have been explicitly described for many(See the tables in
[L3, pp. 304-306] for type&'s, F4, and the results in [L3, Chapter 9] for classical
types.) In particular, we see that (1.2a) holds for saneeW .

Lemma 1.3. Letp € ﬁ@. Let!/ be a prime number invertible ik. Letx, j be as
in Lemmal.2.

(a) p is defined ovef);.
(b) p is defined oveR if and only if j is even.
(c) If j is even thep € Up.

Clearly, (a) follows from Lemma 1.2. We prove (b). Let H%(X,,, Q) be
the Chern class of an ample line bundleXp (we ignore Tate twists); we may
assume that this line bundle is the restriction of a line bundl&oSinceG”
acts trivially on H2(X, Q) it follows that ¢ is G -invariant. Hence the map
H/ (X, Q) - HZW=i(X,, Q) given by > ¢!™~J/¢ is compatible with the
G*-action. This map is an isomorphism, by the Hard Lefschetz Theorem [BBD,
5.4.10]. Let(,) :H/ (X, Q) x H¥®~Ji(X,, Q;) be the Poincaré duality pairing.
(We again ignore Tate twists.) Théng’ — (&, /¥ ~J¢’) is a(—1)/-symmetric,
non-singularG ¥ -invariant bilinear formH/ (X, Q;) x H/(X,, Q;) — Q. This
restricts to a—1)/-symmetric,G’ -invariant bilinear form on the-isotypic part
of H/ (X, Q;), which is non-singular, since is isomorphic to its dual (recall
thatp € ﬁ@). This p-isotypic part is isomorphic tp and (b) follows. Under the
assumption of (c), we see from (a), (b), using the Hasse principle for division
algebras with centr® [Weil, Theorem 2, Chapter XI-2] that is defined ovefQ.
(The Hasse principle is applicable even when information is missing at one place,
in our case ap-adic numbers, see [Weil, Theorem 2, Chapter Xl11-3].) The lemma
is proved.

Lemma1l.4. Letp eﬁ@. Letx, j be asin Lemma.2. Thenj is even.

It is known [L3] that the parity of an integgrsuch that(p : H/ (X, Q;)) # 0
for somex € W, is an invariant ofo. Moreover,j is even except if5 is of type
E7 andp € U°, or G is of type Eg and p is a component of the representation
induced by a unipotent cuspidal representations of a parabolic ofEypsee
[L3, Chapter 11]). In these exceptional cases, we hagté?@, as one sees using
[L3, 11.2]. The lemma is proved.

1.5. Now Theorem 0.2 follows immediately from Lemmas 1.3(c) and 1.4.
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1.6. Let X be the set of all triplegF, y, o) whereF is a “family” [L3, 4.2]
of irreducible representations d¥ (with an associated finite grou@r, see
[L3, Chapter 4]),y is an element ofjr defined up to conjugacy, and is an
irreducible representation of the centralizeyadf G~ defined up to isomorphism.
For(F,y,0) € X, letA, , be the scalar by whick acts ono (a root of 1). Let
X1 be the set of allF, y,0) € X such that|F| # 2 andi, , =+1. If g is a
square, lett> be the set of allF, y, o) € X such thaiF| =2,y =1. If g is not
a square, left; = @. In any cased’ is empty unless; is of type E7 or Eg. Let
X@ =X U AX>.
In[L3, 4.23], X is putin a bijection

(F, yﬂU) (_)pf,y,ﬂ (16a)
with /.

Lemma 1.7. Assume that(F,y,o) € X, (F'.y',0’) € X are distinct. Let
P =pF,yo: P =pF e Thenthere exists € W such that

(01 (~DOTIIR L) # (0" (DO TIIR Y.

As mentioned in the proof of Lemma 1.2, the multiplicities of various unipotent
representations ii—1)/®) =4 R 4 have been explicitly computed in [L3] for
manyx € W. From this the lemma follows easily.

Lemma18.Letp = pr, ,, Where(F, y, o) € Xg. Thenp € Uy.

Let y € Gal(C/Q). Theny (tr,) = tr,, for somep’ € U. Since the character
of (=1)/W=a™R 4 is an integer valued, it is fixed by. (Here x is any
elementof.) Hencep, p’ have the same multiplicity it—1)/®) =4 R 4 . From
Lemma 1.7 it follows thap = p’. Thus,y (tr,) =tr, for anyy € GalC/Q), so
that tr, has rational values. The lemma is proved.

Lemma1.9. Letp = pr, ,, Where(F, y, o) ¢ Xg. Thenp ¢ Ug.

Assume first thak, , # 1. Theni, , ¢ Q hence there existg € Gal(C/Q)
such thaty (1y,0) # Ay,0. Using the interpretation of, , given in [L3, 11.2],
it follows thaty (tr,) # tr,. Hencep ¢ Ug. Next assume that, , = £1. Then
|F| = 2. Moreover, ifg is a square, thery # 1. Let o’ be the character of
Gr =7/2Z other tharw . Let p’ = pr , ,. If y # 1, then by the results of [L1],
tr, is carried to ty by an element of GaC/Q) that takes,/—¢ to —/—q. If
y =1, then by the known construction of representations of Hecke algebras in
terms of W-graphs, t is carried to tf by an element of GaC/Q) that takes

/g to —./q. Hence agaim ¢ Ug.
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Proposition 1.10. Under the bijectiont < U in (1.6a) the subseLN{Q of U
corresponds to the subséty of X'

This follows immediately from Lemma 1.9.
Combining the proposition with Theorem 0.2, we obtain:

Corollary 1.11. Under the bijectionX <« U in (1.6a) the subsetiyp of U
corresponds to the subséty of X'

If G is of type A, B,C or D, then for any familyF we have|F| # 2
and the grour is an elementary abelian 2-group, henge, = +1 for any
(F,y,0) € X. Thus, we havely = X and we obtain:

Corollary 1.12.If G is of typeA, B, C or D, thenllg =U.

1.13. If G is non-split, the analogues of Lemmas 1.2 and 1.3 continue to hold but
that of Lemma 1.4 does not (it does in typebut not in typeA). Also, if G is
non-split of typeD, thenly =U. If G is non-split of typeA we haveﬁ@ =U

but in generaldg #U.

2. Second method

21.Letn e N. LetAs, A2, ..., A, be a sequence of integers such that

Z,\i =n+ <;) (2.1a)

We define a virtual representatighs, Ao, ..., A,] of the symmetric grougs,
as follows. If 0< A1 < A2 < --- < Aq, then[Ag, Ao, ..., A,] IS the irreducible
representation af,, corresponding to the partition <A2—1<---<Ap—a+1
ofn,asin[L3, p. 81]. IfA1, A2, ..., A, are inN and are distinct, then

(A1, A2, ..o\ Aa] = SONO) [Ao(1)s Ao @) - - - Ao (a)]

whereo is the unique permutation of 2, ..., a such thatis (1) < As2) < -+ <
Ao@)- If A1, X2,..., A, are not distinct, or if at least one of them4s0, we set
[A1, A2, ..., Aq] = 0. From the definition we see easily that

A1, A2, ..., Al =10, A1+ 1L A0 4+1,..., A, + 1]

for any sequence of integexs, A2, ..., A, such that (2.1a) holds.
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Lemma 2.2. Let A1, A2, ..., A, be a sequence of integers such tfatla)holds.
Letw = (k)w’ € Sk x S, C S, where(k) denotes &-cycle inS; andw’ € S,,_x.
We have

tr(w, [)"la )"25 L] )\a])

a
= Ztr(w’, [A1, A2, ooy Aim1y A — Ky Aigds - vy Agl). (2.2a)
i=1

If ; are not distinct or if at least one of them<s0 then both sides of (2.2a) are 0.
We may assume thatQ A1 < A2 < --- < A4. In this case, (2.2a) can be seen to
be equivalent to Murnaghan'’s rule, see [Weyl].

2.3.Forn > 0 let W,, be the group of all permutations of4, ..., n,n’,..., 2,1
which commute with the involution< i’ fori =1, ..., n (we haveWy = {1}).
Given two sequences of integers ..., A, andu1, u2, ..., up such that

a b
Tos Sumns () +(3)
we define a virtual representation

[“ oo X“} (2.3b)
K1 M2 e Mp
of W,, as follows. IfA; are not distinct or ifu; are not distinct or if at least one
of A; or u; is < 0, we define (2.3b) to be 0. Assume now that N are distinct,
and thatu; € N are distinct. Them, 7 defined by

Sh=rt(y) Lw=i+(3)
1 1

satisfyr, 7 € N, r +7 = n. We identify W, x W; with a subgroup of¥,, asin [L3,

p. 82]. The virtual representatidis, A2, ..., Aq] X [p1, 2, ..., up] of S, x S;
may be regarded as a virtual representatiowpf W; via the obvious projection
W, x Wz — S, x S; (see [L3, p. 82]). We tensor this with the one-dimensional
character oW, x W; which is the identity on théV,-factor and is the restriction
of x : W, — {£1} (see [L3, p. 82]) on th&/;-factor. Inducing the resulting virtual
representation fronW, x W; to W,, we obtain the virtual representation (2.3b)
of W,. Note that if A1 < A2 <--- <A, and pu1 < pu2 < --- < up, then this

is an irreducible representation; d¢f is a permutation of 12,...,a andg’ is

a permutation of 12, ..., b, then

[%m ho@ %w)]:sgrra)sgrta’)[
Ho'(1) MHo'(2) -+ Ho'(b)

From the definition we see easily that

[,\1 YRS ,\a}_[o A+l A+l - Aa+1]
mr p2 ..oy | |0 pm1+l ow2+1 o0 opp+1)

)Ll }\‘2 )La
M1 p2 . Mp |
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Lemma2.4. Leti1, A2, ..., Ay andus, uo, ..., up be two sequences of integers
such that(2.3a)holds. Letw = (2k) x w’' € Wy x W,,_ C W, where0 < k <n,
(2k) denotes an element d¥; whose image under the obvious imbedding
Wy C Sy is a2k-cycle andw’ € W,,_;. We have

(e 02 )
M1 (2 e M
a
:Ztr(w’ [?»1 A2 s A
= Lmr op2 o e
a
—th(w/ [Al b2 ha
par L om2 - opmica

This follows from Lemma 2.2, using the definitions.

Ai—k Ay

wi—k i1

2.5. Letm € N and letn = m? 4+ m. Let w,, € W, be an element whose image
under the imbeddindy,, C Sy, is a product of cycle$4)(8)(12)...(4m). Let

M<A2< - <Apyr and upui<uz <--- < (2.5a)

be two sequences of integers such thatio, ..., Apmi1, 1, 42, ..., m IS
a permutation of 01,2, 3,...,2m. Then (2.3a) holds (witlk =m + 1, b = m,
andn = m? 4+ m). Consider the property

Mi+rj#2m foranyi#j and pu;+pj#2m foranyi#£j. (%)

Lemma 2.6. In the setup of Sectiob, if (x) holds, then

B
tr(wm, _Mll

A2
Mn2

l’Lm

)\,m+1-> _ (_1)(m2+m)/2.

If (x) does not hold, then

tr(wm, M

A2
w2

[

)\m+l_ -0
| 11 '

We argue by induction om. The result is clear whem = 0. Assume now
thatm > 0. We can assume that,, = (4m)w,,_1 € Wo,, x W,,_2,, C W, where
wm—1 € Wy—_2, is defined in a similar way tav,,. We apply Lemma 2.4 with
W= Wy, k=2m, w = w,_1. Note that in the formula in Lemma 2.4, at most
one term is non-zero, namely, the one in whick 2m is substracted from the
largest of entrieg; or u; (the other terms are zero since they contain sente
entry). We are in one of the four cases below.

Casel (2m = Ay41, 0= u1). Using Lemma 2.4, we have
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A:tr(wm,[’\l A2 e /\m+1]>
Ui K2t m
A A2 oo A, O
= tr{ w;,—1,
( m-1 [O M2 o MUm :|>
0O M X2 -+ Anm
= (=1)"tr 1,
o3 3 L)

AM—1 -1 -+ Ap-—1
= (=D™"tr -1, .
=1 <wm ! |:M2_1 uz—1 - I/Lm_l:|>

Now the induction hypothesis is applicable to sequences
M—1l<ir—1<---<Ap,—1 and
u2—1l<puz—1<---<um—1 (2.6a)

instead of sequences (2.5a). (Clearly, (2.5a) satigfigsf and only if (2.6a)
satisfies the analogous condition.) Hence, if (2.5a) satisfieghen

A= (_1)m(_1)(m2—m)/2 — (_1)(m2+m)/2

as required. If (2.5a) does not satigfy, thenA = (—1)"0 =0, as required.
Case2 (2m = Apy+1, 0= A1). Using Lemma 2.4, we have
tr(wm, [/\1 Ay e )»m+1D _ tr<wm1, [ 0 Ay - Am OD
M1 2 - Mm M1 M2 o Mm
and this equals 0 since 0 appears twice in the top row.

Case 3 (2m = y, 0= 11). Using Lemma 2.4, we have

A:tr(wm,[’\l A2 e /\m+1D
K1 g2t hm
0 A2 e Am )Lerl
= —1tr{ wy -1,
( mot |:/*L1 m2 o Um—1 0
0 A2 -+ A Am+1
= (—=D)™tr _1, m m
=D <wm ! [0 m1 M2t Pm—l
-1 Am—1 Apy1—1
= (=D"tr| wy—1, .
- <’”1[u1—1 pe—1 o a1

Now the induction hypothesis is applicable to sequences
r—1l<-i<Aipy—1l<ip1—1 and
u1—1l<pur—1<---<pumo1-—1 (2.6b)

instead of sequences (2.5a). (Clearly, (2.5a) satigfigsf and only if (2.6b)
satisfies the analogous condition.) Hence, if (2.5a) satisfigghen
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A= (_1)m (_1)(m2—m)/2 — (_1)(1n2+m)/2

as required. If (2.5a) does not satigfy), thenA = (—1)"0=0, as required.

Case4 (2m = w;,, 0= p1). Using Lemma 2.4, we have
tr(wm, [/\1 A2 e )»m+1D
m1r 2 - Mm

— s [ 2 g )

and this is 0 since 0 appears twice in the bottom row. The lemma is proved.

Lemma 2.7. In the setup of Lemm26, if (x) holds, then
t(ke€{1,2,...,m}: ux =even) = (m?+m)/2 mod 2

Since(x) holds, the left-hand side is equal to the number of pairs
©0,2m), 1,2n-1), 2,2n—-2), ..., m—-1m+1),

in which both components are even. This equal? if m is even andm + 1)/2
if m is odd. Hence it has the same paritysa@n + 1)/2. The lemma is proved.

2.8. Let m,n be as in Section 2.5. Let € W,, be an element which has no
eigenvalue 1 in the reflection representationVgf. Thenz = z1z2...zx with
k>m, zj € W, for all j € [1,k], and the image ot; under the imbedding
W, C S2, is @(2aj)-cycle wherery > ap > - - - > ay. According to [GP, 3.4],

If z has minimal length in its conjugacy class

then I(z) =a1+3a2+5a3+ -+ (2k — Day. (2.8a)

Leta)=2m —2j+2for j € [1,m],anda? =0 for j € [m + 1, k].
Lemma 2.9. In the setup of Sectiors5 and2.8, assume that
(i e ] o
(a) Forany; e [1, k] we haveu; +az+--- +a; <a9+ag+...+a9.

(b) We haver, +3az+5a3+ - - -+ (2%k — Dag > af+3ad+5a3+- - -+ (2k — 1)a?
with strict inequality if(as, az, ..., ax) # (@2, a3, ..., aD).

Using repeatedly Lemma 2.4, we see that there e¥is{4, k] — [1, m] such
that the multiset{0,1,2,...,m — 1, m,m — 1,...,2,1,0} coincides with the
multiset



10 G. Lusztig / Journal of Algebra 258 (2002) 1-22
{O,l,Z,...,m—l,m,m—i—l— Z ap,m-+2— Z ap, ...,

hef~1(1) hef~1(2
2m — Z ah}.

hef~1(m)
It follows that there exists a permutatienof 1, 2, ..., m such that
r— Z ap=—o(r)
hef~1(r)
forall r € [1, m]. Forj € [1, k] we have
aitax+---+a; < Z Z ap
reflL,jlhef=1(r)
hence
ai+ax+---+aj< Z (r+o@).
refl1,jl
Since f[1, j] consists of at most elements if1, m], we have
Yor<mAtm—D+-4m—j+1),
refl1,j]
Y oy <m+m—D+--+m—j+1),
re fIL.j1
if j €[1,m],and
dor<mAm-D+-+1,
re fIL.j1
Z or)s<m+m-—-1)+---+1,
refl1,j]
if j € [m+ 1, k]. Thus,

artaz+-+a;<2m+m—-D+---+@m—j+1) if je[lm],
and

al—i-az—l—uo—i—ajSZ(m+(m—l)+~~+l) if jelm+ 1 k]

This proves (a).
We prove (b). From (a) we see that

(ar+az+-+a)+2a1+az+-- +a-1)+-- +2a1
<(ad+ad+--+ad) +2ad+ad+--+ad )+ 424,
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hence
(2k — Day + (2%k — ag + - - -+ ax < (2k — Dad + (2k — 3)ad +-- -+ a.
Sinceay +az + -+ +ax =ad +ad + - +a?, it follows that

a1+ 3az+5az+ -+ (2k — Dag > af + 3a3 +5a3 + - - + (2k — Day.

If this is an equality, we must have = a2, a1 +a2 = a?+aJ, ..., hencar; = a?,

az=a3, .... The lemma s proved.

2.10.Letm € N,m > 1, and lets = m?. Letw,, € W, be an element whose image

under the imbeddin®/,, C S, is a product of cycle§?)(6)(10)...(4m — 2). Let
M<Aa<-o<Ay and pr<puz<---<ppm (2.10a)

be two sequences of integers such thatio, ..., Ay, 11, U2, ..., Wy IS a per-
mutation of 01, 2, ..., 2m — 1. Then (2.3a) holds (with = b = m andn = m?).
Let

N:ﬁ(ke{l, 2,...,m}. ug >m). (2.10b)
Consider the property

Ai+Ar;#2m—1 foranyi#j and

wi+upj#2m—1 foranyi# j. (%)

Lemma 2.11. In the setup of Sectica 10, if (xx) holds, then

tr(w;n, Al A2 oo Ap ) — (_1)N+m(mfl)/2'
| M1 M2 o Um |
If (xx) does not hold, then
tf(w,’n, AoAz e A ) =0.
| M1 M2 o Mm |

We argue by induction om. The result is clear when = 1. Assume now that
m > 1. We can assume that,, = (4m — 2w/, _; € Wap_1 X Wy_2,11 C W,
wherew! ;€ W,_2,+1 is defined in a similar way ta;, . We apply Lemma 2.4
with w = w;,, k =2m — 1, w’ = w),_,. Note that in the formula in Lemma 2.4
at most one term is non-zero, namely, the one in whieh2m — 1 is substracted
from the largest of entries; or u; (the other terms are zero since they contain

some< 0 entry). We are in one of the four cases below.

Casel(2m — 1= Ay, 0= u1). Using Lemma 2.4, we have
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A:tr(w/ Mok Am)
™l op2 o Mm
=tr(w’ Al A2 oo Apy—1 O )
mU1 0 g2 o
_ 0O XM A2 -+ Ap-1
= (D" tr(w ., "
s 3 )

_ AM—1 -1 -+ Apo1-—1
= 0" tr(w ., )
b <’”_1 [Hz—l uz—1 - Mm—1D

Now the induction hypothesis is applicable to sequences

M—1l<ir—1l<---<Ap-1—1 and
u2—1l<puz—1<---<um—1 (2.11a)

instead of sequences (2.10a). (Clearly, (2.10a) satigfiosf and only if (2.11a)
satisfies the analogous condition.) L’ét be defined a®v in (2.10b), in terms of
(2.11a). ThenV' = N. If (2.10a) satisfieg+x*), then

as required. If (2.10a) does not sati$fyx), thenA = (—1)" 10 =0, as required.

Case2(2m — 1= x,, 0=11). Using Lemma 2.4, we have

tr(w;,l,[/\l b2 - Asztr(w;nl,[o $2 e OD
m1 H2 o MU m1 K2 o MUm

and this is 0 since 0 appears twice in the top row.

Case3(2m — 1= iy, 0=11). Using Lemma 2.4, we have
S G P
=[S )
=<—1>mtr<w:nl,[8 o umlb

=1 o Agm—1
= (=D"tr| w ., m )
b < m=1 [Hl—l p2—1 - Mml—lD

Now the induction hypothesis is applicable to sequences

Mm—1l<iz—1<---<Ai,—1 and
u1—1l<pur—1<---<pumo1-—1 (2.11b)
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instead of sequences (2.10a). (Clearly, (2.10a) satigfiesf and only if (2.11b)
satisfies the analogous condition.) 12ét be defined a®v in (2.10b), in terms of
(2.11b). TherW’ = N — 1. If (2.10a) satisfieg«x*), then

as required. If (2.10a) does not satighx), thenA = (—1)"0= 0, as required.

Case4 (2m — 1=y, 0= p1). Using Lemma 2.4, we have

AM A2 e A / Al A2 o A
tr( w’ , =—tr ,
(w’" [Ml I I Ym0 up .- 0

and this is 0 since 0 appears twice in the bottom row. The lemma is proved.

Lemma 2.12. Assume that we are in the setup of Lentril, that (%) holds,
and thatm = 2m' for some integem’ > 0. Then

fke{l,2,....,m}: ux =2m) —ti(ke{l,2,...,m}: u, even
=m’ mod2 (2.12a)
fkef{l,2,...,m}: upeven =N +m(m —1)/2 mod 2 (2.12b)

Among them’ pairs(0, 4m’ — 1), (2,4m’ —3), ..., (2m’ — 2,2m’ + 1) there
are, sayp pairs with the first component of fortty and second component of
form p; andg pairs with the first component of form;, and second component
of form ;. Clearly,a + 8 = m’. Among them’ pairs

1,4m' —2), (3,4m'—4), ..., (@m' —1,2m")

there are, sayy pairs with the first component of forix) and second component
of form u;, and § pairs with the first component of formu; and second
component of form,;. Clearly,y + § = m’. From the definitions we have

fke{l,2,....2m"}: e =2m')=a+y,
f(ke{l,2,....,2m"}: preven =B +y.

Hence the left-hand side of (2.12a) is equakte- y — (8 + y) = a — 8, which
has the same parity ast+ 8 = m’. This proves (2.12a). Now (2.12b) follows from
(2.12a) sincen’ = 2m’(2m’ — 1)/2 mod 2. The lemma is proved.

Proposition 2.13. Assume thatG in Section0.1 is of type B, or C,, where
n=m?+m, meN, m>1 We identify the Weyl grou¥ of G with W,
(see Sectiorz.3) in the standard way(The simple reflections a¥ become the
permutations; = (i,i + 1)(’, (i +1)),i € [1,n — 1], ands, = (n,n’) in W,,.)
Letw = w,,, see Sectio.5. Letp € 4°. Then(p : R,) = 1.
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For any subsef of cardinalm of I ={0,1,2,...,2m} let

E, = Al A2 o Apgd
M1 M2 fm

(anirreducible representation Bf), whereu; < u2 < --- < u,, are the elements
of J in increasing order, anth < A2 < --- < Aj,4+1 are the elements df — J in
increasing order; lef (J) =4(j € J: j even. By [L3, 4.23],

(0. Ru)=27") (=17 tr(wm, Ey) (2.13a)
J
where J runs over all subsets of of cardinalm. Using Lemmas 2.6 and 2.7
we see that (2.13a) equals2(J: J N (2m — J) = ) = 1. The proposition is
proved.

Proposition 2.14. Assume that in Section0.1 is of type D, wheren = m?,
m=2m',m € N, m’ > 1. We identify the Weyl grouy of G with the subgroup
of W, generated bysq, s2,...,s,—1,sn5,—15, (@ Coxeter subgroup on these
generatory. Letw = w/,, see Sectiof.10. (We havew,, € W.) Let p € 4°. Then
(0:Ry)=1

For any subset/ of cardinalm of I ={0,1,2,...,2m — 1} let E; be the
restriction of

Al A2 o Amql
H1 M2 fm

from W,, to W (an irreducible representation @f), whereus < w2 < -+ <
are the elements ofin increasing order, anth < A2 < - -+ < A, are the elements
of I — J inincreasing order; lef (J) =(j € J: j even. Note thatE; = E;_;
andf(J)= f(I —J).By][L3, 4.23],

(0:Rw)=27") (=1 tr(wn, Ey), (2.14a)
J

whereJ runs over all subsets df of cardinalm. Using Lemmas 2.11 and 2.12
we see that (2.14a) equals"2i(J: J N (2m — J) = ) = 1. The proposition is
proved.

2.15. Let m,n, W be as in Proposition 2.14. Lete W, be an element which
has no eigenvalue 1 in the reflection representatioWpf Thenz = z1z2...zx
with k > m, z; € W, for all j € [1, k], and the image of; under the imbedding
Wy C S2n isa(2a;j)-cycle whereiy > ap > - -+ > ax. Assume also thal =fi(j €
[1,k]: a; > 0) is even. Then € W. According to [GP, 3.4],

If z has minimal length in its conjugacy classlin
then I(z)=a1+3a2+5a3+ -+ (2k — D)ax — M. (2.15a)
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Leta?=2m —2j + 1 forj e [1,m] anda® =0 for j € [m + 1, k].
J J

Lemma 2.16. In the setup of Sectior’is10and2.15, assume that
tr(z,[kl A2 - ’\’"D;AO.
M1 M2 ot
(a) For any j € [1,k] we havea; + a2 + - +a; <af + a3 + - + af. If
mgj<M,Wehavez1+a2+---+ajéa?—i—ag—i—---—}—a?—l.
(b) We haver; + 3a2 + 5az + -+ + (2k — Dax — M > a9 + 3a3 + 5a3 + - - +

(2k — D)a? — m with strict inequality if(a1, az, ..., ax) # (a2, ad, ..., a).

Using repeatedly Lemma 2.4, we see that there e¥is{4, k] — [1, m] such
that the multisef0,1,2,...,m—1,m—1,..., 2,1, 0} coincides with the multiset

{0,1,2,...,m—1,m— Z ap,m+1— Z ap, ...,

hef~1(1) he =12
2m —1— Z ah}.
he f=1(m)
It follows that there exists a permutatienof 1, 2, ..., m such that
r—1-— Z ap=—o(r)
he f~1(r)
forall r € [1,m]. Forj € [1, k] we have
artazx+---+a; < Z Z an,
refll.jl he f=1(r)
hence
ai+ax+---+a; < Z (r+a(r)—l).
refl1,jl
Sincet(f[1, j1) = j’ wherej’ < min(j, m), we have
Z r<m+m—-1+---+m—j +1),
refll,j1

Y o <mAm=D+-+m—j +1),
refl1,j]
artaz+--+a;<@n—-1)+@2m—-3)+---+@2n—-2j'+1).

Thus,
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ata+-+a;<@n-1D)+@m—-3)+---+@2m—-2j+1)
if j e[1,m]

and

artazt-ta; <@m—D4+@Cm—3)+---+1 if jelm+1kl

If M > m,then forj € [m, M — 1] we havea;;1 > 1 henceaj 1+ aji2+

ctag > 1. Sincea1+a2+---+ak:a?+ag+---+a,‘3, we have, for any
jelm,M—1]:

ait+ay+---+a; = a(l)—i—ag—i—---—}—a,?—(aj+1+aj+2+---+am)
af+ag+-+a¥—(@jp+aj2+-+ap)

< a?—i—ag—i-uo—i—a?—l.

This proves (a).
We shall prove (b). Assume first thaf < m. From (a) we see that

(ar+ax+---+ar)+2ai+ax+---+a—1)+---+2a;
<(af+ad+- +ad) +2(a+az+---+ap_y)+ - +2a]
hence
(2k — a1 + 2k — Jazg+ -+ -+ ar < (2k — Vad + (2k — 3ad + - - -+ a.
Sinceay +az + - +ax =a +a3 + - +a?, it follows that
a1+ 3az +5az+ - -+ (2k — Dag > af + 3a3 +5a3 + - - - + (2% — D)ay.
Hence
a1+ 3az +5a3+ -+ (2k — Day — M
>af + 343 +5a3 + - + (2% — Da) — m.

If this is an equality, we must have = a2, a1 +a2 =a?+aJ, ..., hencary = a?,

azzag,....

Assume nextthaM > m. From (a) we see that
(ar+az+-+a)+2a1+az+-- +a-1)+--+2a1
<(a)+ad+--+ad)+2(a) +ad+---+ad )+ + 247
—flm, M —1]
hence
2k —Vay+ (2k —az+ -+ -+ ax
< (2k—Dad + (2k — ad + -+ al — 2(M — m).
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Sinceay +az + - +axy =ad +ad + - +a?, it follows that

a1+ 3a2+5az3+ -+ (2k — D)ay
>af +3a3+5a3 + - + (2k — Dal + 2(M — m),
hence

a1+ 3az2+5a3+ -+ (2k — Day — M
>a?+3ag+5a(3)+o~+(2k—l)a,?—m.

The lemma is proved.
We return to the general case.

2.17. Let p € 4°. We attach te a conjugacy clas€, in W as follows. IfG is of
typeB, or C,,n =m?+m, let C, be the conjugacy class af, (see Section 2.5).
If G is of type D,,, n = m?, m even, letC, be the conjugacy class of), (see
Section 2.10). IfG is of exceptional typeC, is the conjugacy class ab whose
characteristic polynomidl| in the reflection representation & (a product of
cyclotomic polynomialsp,) is described in Table 1 where we specify also the
minimum length (w) for w € Cp,.

Here p is specified by the notation = pr , » = py.o (We omit writing F),
where for the pairgy, o) we use the notation of [L3, 4.3]. The information on
[(w) is taken from [GP, Appendix].

Table 1
Type  |w| o I(w)
Eg  P12P3 Pgs p%1 6
E7 P18P2 Pgo.1s Pgo.e 7
Eg &30 P i i =1 2340, g1 8
P24 Pog il 10
P18%6 Pgg c6%L 14
?2, Pehe 20
P103 Pgg,—e 22
‘Dé P14 40
Fp o 212 Pgq,0%Ls Py, il 4
Pg Pgo.e€ 6
(Pg 'Og/z,é 8
‘Dz% P13 12
G2 bg /)ggﬂgztl: Pgo,€ 2
@3 P12 4

Remark. The casesEg, Fi, G2, C = C, for p equal t0p; ;4, p1;3, p1 ;2
respectively, have the following properties:
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o the length function is constant art
e the cardinal ofC is equal to the number of left cells in the two-sided calff
W attached t.

This suggests that c ¢ and that any left cell irc contains a unique element
of C.

Theorem 2.18. Let p € U°. Letw be an element of minimal length @,.

(@) We havep : R,) = (—1)" (@,
(b) If z € W satisfied(z) < I(w), then(p: R;) =0.
(c) If z e W satisfied(z) =I(w) andz ¢ Cp, then(p : R;) =0.

Let WO be the set of alt € W suchz has no eigenvalue 1 in the reflection
representation oW .

We prove (a). In view of Propositions 2.13 and 2.14, we may assumétlsat
of exceptional type. In each case, one can computg : R,,) using [L3, 4.23];
for the computation we need the character tabl&oé&nd the explicit entries of
the non-abelian Fourier transform [L3, pp. 110-113]. The result in each case is
(—1)"©) This proves (a).

We prove (b), (c) assuming that is of type B, or C,, n = m? + m. Let
z € W be such thatp : R.) # 0. Sincep € U9, it follows thatz € W°. Define
a1 >az > ...> ai interms ofz as in Section 2.8. Lef be an element of minimal
length in the conjugacy class of From our assumption it follows that

Al A2 o Amga
tr( zo, 0
(ZO [Hl m2 e Mm 7

for someiq, A2, ..., A1, U1, M2, ..., Ly @S IN Section 2.5. By Lemma 2.9(b)
we have (using (2.8a)) that eithgy is conjugate tav andi(zg) = /(w), or that
I(z0) > l(w). Sincel(z) > I(z0), we have that eithet is conjugate tow and
[(z) > l(w) orthatl(z) > [(w). Hence (b), (c) are proved in our case.

The proof of (b), (c) in the case wher@ is of type D,, n = m?, m even,
is entirely similar; it uses (2.15a) and Lemma 2.16(b) instead of (2.8a) and
Lemma 2.9(b).

Assume now thag is of an exceptional type. We can make an explicit list of
the conjugacy classesin W other thanC,,, such that. € W° and such that the
minimum length of an element in this conjugacy clasis(w) (to do this we
use [GP, Appendix]). For eachin this list, we computép : R;) using again [L3,
4.23] (we again need the character tablétbfind the explicit entries of the non-
abelian Fourier transform). The result in each case is 0. This proves (b) and (c).

Remark. Forw € W let K, = K be asin [L4, 2.4] withC = Q; (a constructible
complex ofl-adic sheaves o). For any character shedfon G let (A : Ky)
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be the alternating sum of multiplicities &f in the various perverse cohomology
sheaves of,,. According to [L5], if p is not too small, the cuspidal character
sheavesi of G such thai(A : K,)) # 0 for somew are in natural bijectiod < p
with ¢9 so that(A : K,,) = (p : Rw). Hence the theorem has the following con-
sequence for cuspidal character sheaves.

Corollary. Let A be as above. Thefw € W: (A : Ky,) # 0, I[(w) iS minimum
possiblg is contained in a single conjugacy class Wt (namelyC,, where p
corresponds tot as abovg moreover, forw € C, we have(A : K,,) = (—1)"(@),

2.19. In this subsection we assume thGtis non-split overF,. The action of
Frobenius oW is now given by an automorphispn: W — W of orderc > 1 and
we may form the corresponding semidirect prodcbf W with Z/cZ (whose
generator is again denoted pY. The reflection representation Bf extends nat-
urally to a representation o ; hence forw € W, the characteristic polynomial
|lwy| of wy is defined. To any € ¢4° we associate a subs€}, of W such that
C,v is asingle orbit for the conjugation action Bf on W, as follows.

If G is of type A,_1 wheren is a triangular number andy is the longest
element ofW = §,,, C,, consists of allw such thatwwg is a product of cycles
@D®)(9)...or((N(AY)....

If G is of typeD,, wheren = m?, m odd, and: = 2, we identifyWy = W, — W
(see Proposition 2.14) in the standard way, consists of the elements af
such that the image afy under the imbeddindy, C S», is a product of cycles
(2)(6)(10)...(4m — 2).

If G is of type D4 andc = 3, we havel{? = {p1, p2}. Then C,, consists of
all w such thajwy| = ®12 andC,, consists of alw such thajwy| = dﬁg. We
arrange the notation so th@i;, R,,) =1 forw € C,,,. ~ ~

If G is of type Es, we haveld® = {p1, p2. p3} where p1 ¢ Uy, p2 ¢ Uy,
p3 € Uy. ThenC,, = C,, consists of al such thatwy | = @13 andC, consists
of all w such thatwy| = ®3.

The statement of Theorem 2.18 continues to hold in the present case. The proof
is along similar lines as in the split case (but we use [GKP] instead of [GP]). (The
equality (p : R,,) = (—=1)"(@ for G non-split of typeA with p € U°, w € C,,
appeared in [Oh].)

2.20. A statement like Theorem 2.18(a) was made without proof in [L3, p. 356]
(for not necessarily spliG). In that statement, the assumption tphas cuspidal
was missing. That assumption is in fact necessary, as Lemma 2.21(ily (6br
type C4) shows.

Lemma 2.21. (i) Lete : Wo x W> — {£1} be a character. Then
tr(w, ind%xm(e)> €2z (2.21a)

for all w € Wy.



20 G. Lusztig / Journal of Algebra 258 (2002) 1-22

(i) Let E=[3 ?] (anirreducible representation d¥s). ThenRg is of the
formtr, for somep € U and(p : Ry,) is even for anyw € W = Wa.

The residue class mod 2 of the left-hand side of (2.21a) is clearly indepen-
dent of the choice of. Hence to prove (2.21a) we may assume thatl. Let
7 : Wq — S4 be the canonical homomorphism. We have

tr((w, indy?, (@ ) =tr(ww), ind, g, (D).

But if y € S4, then t(y, indg‘z‘xsz(l)) is6ify=1,is 2ify has order 2, and is O
otherwise; in particular, it is even for any This proves (i).

In (ii), the multiplicity of p in Ry, is tr(w, E), that is, the left-hand side of
(2.214a) for a suitable. Hence it is even by (i). The lemma is proved.

We now shall prove anew the following special case of Theorem 0.2 and Corol-
lary 1.12.

Theorem 2.22. (a) Assume thap e U NU°. Thenp € Ug.
(b) If G is of typeB, C or D andp € U°, thenp € Uy.

Before starting the proof, note that for anyg W:

() (p: Zj(_l)jHj(}_(Xv Q) = (,0} Zj(_l)jHCj(XXv Q) + aninteger linear
combination of p : Zj(—l)j H! (X, Qp)) for variousx’ with [(x") < [(x).

(d) the GF-modulesH/ (X, Q;), HZW=J(X,,Q;) are mutually dual, hence
they containo with the same multiplicityrecall thatp is self-dual).

We prove (a). Let € C,, so that(p : Ry,) = (—1)"©) (see Theorem 2.18(a)).
We assume that has minimal length irC,,. In our case(—1)"(%) = 1. Sincer,,
is the character of a virtual representation defined @yeit follows thatp is de-
fined overQ; (herel is any prime# p). Using the Hasse principle it is then enough
to show thatp is defined ovefR. Using Theorem 2.18(b) and (c) far=w, it
follows that(p : Zj(—l)fo(}_(w, Q) = 1. Using (d) and the first sentence in

the proof of Lemma 1.4, we deduce that: ch(“’)(Xw, Q) =1 and that/(w)
is even. Since-lé(“’)(xw, Q) admits a symmetric, non-degenerai,-invariant
Q;-bilinear form with values irQ; with p self-dual andp : H'™ (X,,, Q) =1,
it follows that p itself (regarded as @;[G]-module) admits a symmetric, non-
degenerate; © -invariantQ;-bilinear form with values irQQ;. Hencep is defined
overR.

In the setup of (b)p is unique up to isomorphism, hence it is automatically
in ﬂ@. Thus, (a) is applicable angle Ug. The theorem is proved.

2.23. In this subsection we assume th@tis of type Fy, that p = 2 and thaly
is an odd power of 2. TheR : G — G admits a square rodt’: G — G so that
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GF' isaRee group. The concepts in Section 0.1 are well defineﬁ‘?b(instead
of GF). Itis known [L3] that there is a unique € U0 such that(p : R,,) is even
for all w € W. We necessarily have € Ug but the methods of this paper do not
allow to decide whethes is defined ovef); or R.

3. An examplein SOs

3.1. In this section we assume that£ 2 and thatG = SQ(V) whereV is

a 5-dimensionak-vector space with a fixe#, -rational structure and a fixed non-
degenerate symmetric bilinear forfn) defined overF,. Let C be the set of all
g € G such thatg = su = us where—s € O (V) is areflection anad € SQ'V) has
Jordan blocks of sizes, 2, 1. ThenC is a conjugacy class itr and F(C) = C.
Aline L in V(F,) is said to be of type 1 ifx, x) € qu —0foranyx € L —{0}and
of type—1if (x,x) € F, — qu foranyx € L — {0}. Let L1 (respectively._1) be
the set of lines of type 1 (respectivelyl) in V(F,). Fore, § € {1, -1}, let ce?
be the set of alg € CF such that the lind. in V (F,) such thatg|, =1 isin L.
and any lineL in V(F,) such thafg|;, = —1 and(L, L) # 0is in L. ThenC¢?

is a conjugacy class a&’ andC* is union of the four conjugacy class€$-!,
cl-1 ¢c-11 c—1-1 We define a class functiop: G — Z by ¢(g) = 28g

if geC%® andp(g) =0if g € G — CF. (This is the characteristic function of
a cuspidal character sheaf 6h)

Let O4 (respectivelyO_) be the stabilizer irG of a 4-dimensional subspace
of V defined overF, on which(, ) is non-degenerate and split (respectively non-
split). Let det:0 — {£1} (respectively detO_ — {+1}) be the unique non-
trivial homomorphism of algebraic groups. The restriction of deﬂﬁ)or ofis
denoted again by det. Consider the virtual representation

@ = indgg(l) - indgg (det — indg;(l) + indgg (deb

of GF. Forg e G we have
tr(g, ®)=21(L € L1: glo =-1) —28(L e L 1: glL =—D).

It follows easily that tfg, @) = ¢ (g).

Let# be the unique unipotent cuspidal representatio©f Then(d : ¢) = 1.
It follows that (6 : @) = 1. Since tg is Q-valued and® is a difference of two
representations defined ov@r it follows thaté is defined ovefQ. Thus we have
proved the rationality of without using the Hasse principle.

3.2. Assume now thay = 3. ThenSQ(V) is isomorphic to a Weyl groupy of
type Es while Of is isomorphic to a Weyl group of typgy andOf is isomor-
phic to a Weyl group of typels x A1 (imbedded in the standard way in thé).
Now 6 corresponds to the 6-dimensional reflection representatiéin @géneser).
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Its restriction to the Weyl group of typg,4 contains no one-dimensional invari-
ant subspace while its restriction to the Weyl group of tygex A1 splits into
a 5-dimensional irreducible representation and a non-trivial 1-dimensional repre-

sentation. Sincéd : @) = 1 (see Section 3.1) it follows th&t : indgi(deo) =1.
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