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Adynamic bone in patients with chronic kidney disease (CKD)

is a clinical concern because of its potential increased risk for

fracture and cardiovascular disease (CVD). Prevalence rates

for adynamic bone are reportedly increased, although the

variance for its prevalence and incidence is large. Differences

in its prevalence are largely attributed to classification and

population differences, the latter of which constitutes

divergent groups of elderly patients having diabetes and

other comorbidities that are prone to low bone formation.

Most patients have vitamin D deficiency and the active form,

1,25-dihydroxyvitamin D, invariably decreases to very low

levels during CKD progression. Fortunately, therapy with

vitamin D receptor activators (VDRAs) appears to be useful in

preventing bone loss, in part, by its effect to stimulate bone

formation and in decreasing CVD morbidity, and should be

considered as essential therapy regardless of bone turnover

status. Future studies will depend on assessing

cardiovascular outcomes to determine whether the risk/

reward profile for complications related to VDRA and CKD

is tolerable.
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The history of adynamic bone had its origins in the 1980s
during the concern about aluminum overload. Initially, this
form of low bone turnover was designated ‘aplastic’ bone,
since it had the appearance of inert bone devoid of apparent
bone cell activity.1,2 The association of adynamic bone with
aluminum overload made it seem likely that this was a
clinically significant bone disease because of numerous
examples of aluminum-induced fractures and associated
morbidity.3,4 Over time, it became apparent that adynamic
bone or low bone formation exists without aluminum
overload and that the presence of fractures was not a
common feature.5–7

With its growing awareness, adynamic bone ultimately
became associated with abnormal calcium balance8 and
possible links to calcific arteriolopathy9 and cardiovascular
disease (CVD).10 As a consequence, recommended guidelines
and protocols11 have included provisions, which limit some
forms of therapy based on whether adynamic bone might be
present, the ‘diagnosis’ of which is usually made by a
relatively low or normal parathyroid hormone (PTH) level.
In particular, intravenous vitamin D therapy is one treatment
that has received attention as being inappropriate in the
setting of adynamic bone, owing to its assumed potential to
further lower bone formation rates.12 This issue has become
relevant not only because of the possible increasing
prevalence of adynamic bone but also because of the recent
observations that intravenous vitamin D therapy is associated
with improved survival in dialysis patients13–17 and hence the
need to consider vitamin D receptor activator (VDRA)
therapy in every patient receiving dialysis.

The goal of this review will be to re-examine the clinical
significance of adynamic bone in patients with chronic
kidney disease (CKD) and to determine how the presence of
this type of low bone formation should be reconciled with
emerging data, suggesting that patients with relatively low
PTH levels appear to have a survival advantage14,18–20 when
compared to dialysis patients who have high bone turnover
and its attendant increased mortality risk.16

DEFINITION AND PREVALENCE

Adynamic bone is defined by the presence of low or absent
bone formation as determined by tetracycline uptake into
bone, in conjunction with a paucity of bone-forming osteoblasts
and bone-resorbing osteoclasts.7,20 While measurements of
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tetracycline uptake into bone allow for precise quantification
of bone formation, one inherent problem with the definition
is in determining what constitutes normal bone formation.
Because the range of bone formation in the iliac crest of
normal subjects can include patients with very low or even
absent tetracycline labels,21–30 it becomes difficult to know
exactly how to use this parameter to define adynamic bone.
The same is true for the quantification of bone cell numbers,
especially osteoblast number. Consequently, there are multi-
ple variations of the definition of adynamic bone in the
literature, some of which appropriately use ‘in-house’ normal
biopsies to determine the range of normal bone forma-
tion,4,21,31–36 while others have used the less stringent
measure of historical controls to make their comparisons.
Moreover, the recent identification of minimodeling, which
represents localized areas of bone formation within generali-
zed adynamic bone,36 further complicates the diagnostic
accuracy and assessment of its clinical importance.

Because of the lack of a common definition, the true
prevalence of adynamic bone in CKD is unknown. In patients
with stages 3 and 4 CKD, a prevalence range of 5–40% has
been reported, while in stage 5 dialysis patients, the reported
prevalence varies from 10 to 50%. Higher percentages of
adynamic bone have been reported in peritoneal dialysis
(PD) patients (40–70%) compared to patients on hemodia-
lysis (20–50%). Data from one laboratory using the same
classification system over the past 10 years suggest that the
prevalence of adynamic bone in dialysis patients has been
increasing.20 In addition to there being several different
arbitrary standards for adynamic bone, the multiple causes of
low bone formation make it clear that its diagnosis depends
largely on the population profile.

RISK FACTORS

There is a common misperception that low or normal serum
PTH is a cause of adynamic bone when in fact what is meant
is that there is a resistance to the bone stimulatory effect of
PTH in CKD. Thus, PTH levels two- to fourfold above
normal are more often associated with normal bone
formation in many but not all dialysis patients4,33,35 and a
range of intact PTH of 150–300 pg ml�1 has been the
suggested target during treatment of secondary hyperpar-
athyroidism.11 Bone resistance to PTH appears to be unique
to CKD, since non-CKD patients with idiopathic hypopar-
athyroidism have preserved or increased bone mass during
calcium and vitamin D therapy.37–41

The causes of low bone formation in CKD are multi-
factorial (Table 1) and include such remedial causes as
vitamin D deficiency,42 high serum phosphate,43 metabolic
acidosis,44 elevated circulating cytokine levels (interleukin
(IL)-I, tumor necrosis factor (TNF)),45–47 and low estrogen
and testosterone levels.48–50 PTH receptor downregulation is
one potential mechanism to explain the bone resistance
effect to PTH51 due, in part, to persistently elevated
PTH (PTH downregulates its own receptor) and to low
1,25-dihydroxyvitamin D levels.42 Other potential mechanisms

of low bone formation include decreased osteoblast prolif-
eration from the direct effect of accumulated uremic
inhibitors,52 and decreased circulating insulin-like growth
factor (IGF)-I activity either from low IGF-I and/or IGF-
binding protein (IGFBP)-5 levels or from excess IGFBPs that
inhibit the action of IGF-I53 (Table 1). Circulating levels of
the bone anabolic factor, IGF-I, correlate directly with bone
formation in dialysis patients, independent of PTH54 and low
IGFBP-5 levels53 may contribute to low bone formation, since
IGFBP-5 stimulates bone formation by both IGF-dependent
and -independent mechanism.55,56

Three important clinical conditions are associated with
low bone formation: diabetes, aging, and malnutrition. The
apparent increase in the prevalence of patients with low bone
formation, with or without adynamic bone,20 may be due to
the increase in the prevalence of diabetic and elderly patients
who develop CKD and go on to require dialysis. This may
also partially explain the variance in its prevalence among
different dialysis units. The role of malnutrition in causing
low bone formation may be most apparent when comparing
PD patients to those who receive hemodialysis. Serum
albumin levels are typically lower in PD patients, because
of protein loss through the peritoneal membrane. While
decreased serum albumin levels correlate with low bone
formation,57 it is still unclear how malnutrition reduces bone
formation, particularly in the dialysis patient who often has
concomitant inflammation and elevated cytokine levels.
Reduced circulating IGF-I activity in malnourished PD
patients may have a role in causing low bone formation in

Table 1 | Causes and proposed mechanisms of decreased
bone formation in patients with CKD

Cause Mechanism of k osteoblast Activity

(1) Low serum 1,25-D k Osteoblast differentiation
k Osteoblast lifespan

(2) Metabolic acidosis k 1,25D production
k Collagen synthesis

(3) High serum phosphate k 1,25D production
(4) Calcium loading/

hypercalcemia
k 1,25D production and m 1,25D
degradation (CaSR mediated)

(5) High serum IL-1, IL-6, TNF k Osteoblast lifespan
(6) Low serum IGF-I activity k IGF-I and IGFBP-5 levels

m Inhibitory IGFBPs (2, 4, 6) levels
k Osteoblast lifespan

(7) Malnutrition, proteinuria k IGF-I; k 25D levels
(8) Diabetes k 25D & 1,25D levels;

m AGE; k osteoblast lifespan
(9) Age-related m AGE;

k Osteoblast lifespan
(10) Hypogonadal

Women (k E and m SHBG) k Osteoblast lifespan
Men (k T and m SHBG) k Osteoblast lifespan

(11) Uremic toxins (uric acid) k 1,25D production, k VDR activity
k Osteoblast proliferation

(12) Aluminum toxicity k Osteoblast activity

AGE, advanced glycemic end-product; CKD, chronic kidney disease; IGF, insulin-like
growth factor; IGFBP, IGF-binding protein; IL, interleukin; TNF, tumor necrosis factor;
VDR, vitamin D receptor; E, estrogen; SHB6, sex hormone binding globulin.
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this setting.58 Certainly, the PD patient has other risk
factors for low bone formation: high dialysate calcium
concentration59 and possibly increased glucose levels.60 These
two factors, along with malnutrition, may also promote
normal or low PTH levels, which function to unmask the
adynamic lesion. Interestingly, despite the presence of long-
standing adynamic bone, not all PD patients show low bone
density or evidence of bone loss,61 raising the question about
the clinical significance of fracture risk in adynamic bone that
is not due to aluminum loading (see below).

MECHANISMS

Multiple circulating factors contribute to low bone formation
by interfering with VDR-dependent pathways, by decreasing
PTH-receptor-dependent stimulation of bone formation, or
by other mechanisms (Table 1). Low 1,25-dihydroxyvitamin
D levels promote decreased VDR expression62,63 and recent
studies in VDR knockout mice have identified the VDR as
being crucial in maintaining normal bone formation64 and
bone mineralization65 by directly enhancing osteoblast
differentiation. VDR activation of the osteoblast also
functions to prevent apoptosis through genotropic (VDRE-
dependent) as well as non-genotropic activation of Src
kinase.66 Transduction of kinase-mediated signals by these
mechanisms is similar to those recently discovered for the
estrogen and androgen receptors in their function to prevent
apoptosis of osteoblasts and osteocytes.67 In addition,
osteoblasts contain the 1a-hydroxylase enzyme and can
produce 1,25-dihydroxyvitamin D from circulating 25-
hydroxyvitamin D68 presumably to function in an auto-
crine/paracrine manner to maintain bone formation. Ele-
vated PTH is known to downregulate the VDR,63,69 which
could contribute to further lowering of bone formation.
Elevated phosphate lowers circulating 1,25-dihydroxyvitamin
D70 by downregulating renal expression of 1a-hydroxylase in
stage 4 CKD and potentially contributing to reduced VDR
expression in bone and parathyroid cells. Metabolic acidosis
lowers 1,25-dihydroxyvitamin D levels by its inhibitory effect
on renal 1a-hydroxylase activity,71–73 while also having a
direct effect on osteoblast function to decrease collagen
synthesis,44 a necessary component for normal bone forma-
tion. Metabolic acidosis also stimulates bone resorption by
directly activating osteoclast activity.44 Thus, in all patients
with CKD progression, the plasma accumulation of
phosphate and acid may further suppress already low 1,25-
dihydroxyvitamin D levels, which may suppress bone
formation by directly lowering osteoblast activity. Increased
bone turnover, however, may occur in some patients in
response to the direct effects of elevated PTH. The presence
of diabetes can accentuate the vitamin D-deficient state74,75

and may be one of the mechanisms for low bone formation
in this disorder. Another potential mechanism for low bone
formation in diabetes relates to the accumulation of
advanced glycemic end products (AGEs) and their effect to
induce osteoblast apoptosis (see Osteoblast apoptosis
section below).

Circulating cytokines, such as IL-1, IL-6, and TNFa, are
intermittently elevated in dialysis patients45 and may act to
directly inhibit osteoblast function by mechanisms that are
PTHR and VDR independent through pathways that
promote Runx2 transcription factor degradation46,76 and
inhibit Runx2 expression.77 The fact that these cytokines
circulate at higher levels in stage 5 dialysis patients compared
to patients with stage 3 or 4 CKD may partly explain
the higher prevalence of adynamic bone in the dialysis
population (Table 2).

Low IGF-I levels may be one of the mechanisms by which
malnutrition contributes to low bone formation.58 Diabetic
patients in particular are prone to malnourishment in early
stage CKD if heavy proteinuria is present. Proteinuria of this
magnitude is associated with profound 25-hydroxyvitamin D
deficiency and low bone formation78 and its presence would
likely add to the vitamin D deficiency that is more commonly
seen in the diabetic CKD patient. The mechanisms for the
age-related reduction in bone formation are incompletely
understood, although several potential candidates include
reduced growth hormone (GH) activity,79 decreased expres-
sion of the Klotho gene,80 reduced circulating
sex-steroids,49,50,81 oxidative stress,82 and accumulation of
AGE.83 One therapeutic benefit common to estrogens,67

androgens,84 and activated vitamin D66 is their effect to
prolong the osteoblast lifespan by preventing apoptosis to
improve bone formation (see Osteoblast apoptosis section
below).

Reductions in serum estradiol in women and testosterone
in men are associated with bone loss.81 Women who are post-
menopausal have an increased risk of CVD,85,86 independent
of the presence of CKD, and one apparent mechanism for
this increased risk is accelerated aortic calcification as a result
of accelerated bone loss from estrogen deficiency.87 Interest-
ingly, new data reveal that women who receive estradiol
replacement therapy have reduced coronary artery calcifica-
tion compared to women not taking estrogen,88 presumably
due to its effect to decrease bone loss by decreasing excessive
bone resorption, although a direct protective effect on

Table 2 | Relative contribution of factors that reduce bone
formation according to CKD stage in patients not treated
with active vitamin D

Factors Stage 3 Stage 4 Dialysis

Low serum 1,25D + ++ +++
Metabolic acidosis +/� + ++
High serum phosphate No +/� +++
Calcium loading No +/� +++
High serum IL-1, TNF No No +++
Low serum IGF activity No No ++
Malnutrition No No ++
Uremic toxins ? ? ++
Diabetes Yes Yes Yes
Age-related Yes Yes Yes
Hypogonadism Yes Yes Yes

CKD, chronic kidney disease; IGF, insulin-like growth factor; IL, interleukin; TNF,
tumor necrosis factor.
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vascular calcification may also be a contributing factor.
Studies are needed in patients with CKD to determine
whether similar correlations exist between vascular calcifica-
tion and sex steroid deficiencies and whether estrogen
therapy may mitigate vascular calcification.

Dialysis patients represent the end result of serum
accumulation of many compounds that have the potential
to suppress bone formation. Uric acid accumulation is
known to suppress 1,25-dihydroxyvitamin D production89

and uremic ultrafiltrate contains accumulated substances that
interfere with VDR function.90 Other inhibitors of osteoblast
function have also been found,52 although their exact
identification remains for future study. While aluminum
use as a phosphate binder is largely confined to the dialysis
population, the recognition that aluminum accumulation
causes low bone formation and fractures, through its effect to
directly decrease osteoblast activity,91 has not been sufficient
to completely eradicate its use. For example, recent bone
biopsy studies looking at the association of low bone
formation and arterial calcification have been confounded
by the presence of significant bone aluminum accumulation,
which may also be important in the development of vascular
calcification.10

OSTEOBLAST APOPTOSIS

The regulation of osteoblast apoptosis is now recognized as a
major mechanism for determining rates of bone formation. It
is estimated that 60–90% of osteoblasts within a remodeling
unit die by apoptosis with the remainder becoming either
osteocytes or bone lining cells.92 Antiapoptotic proteins active
in osteoblasts include TGFb,93 Wnt,94 IGF-I,95 FGF-2,96 PTH-
rP,97 and IL-698 and antiapoptotic hormones include estro-
gen,67 androgens,84 and vitamin D analogues.66 Intermittent
injections of PTH also serve an antiapoptotic function to
increase bone formation and bone mass99 in contrast to
continuous PTH infusions, which cause bone loss.100

Circulating proapoptotic proteins that are relevant to the
CKD patient include TNFa, IL-1, bone morphogenetic proton
(BMP)-2,101 and AGE.83 Oxidative stress, as a component of
aging,82 and glucocorticoids, when used as therapy,102 also
potently stimulate apoptosis of osteoblasts and osteocytes.
Thus, several clinically important causes of adynamic bone in
patients with CKD have osteoblast apoptosis as the potential
mechanism for reductions in bone formation (Table 1).
Elevated levels of AGE, as seen with diabetes and aging,
decreased sex steroids in idiopathic and secondary hypogo-
nadism (also as part of aging), glucocorticoid therapy, GH
resistance or IGF-I insufficiency, excess TNF exposure, and
vitamin D deficiency or inadequate vitamin D therapy are all
common occurrences in patients with CKD, and they likely
play a role in suppressing bone formation by inhibiting the
number of osteoblasts that can form bone.

CLINICAL SIGNIFICANCE AND DIAGNOSIS

The clinical relevance and diagnosis of adynamic bone in the
CKD population ultimately depends on the number of risk

factors present at the time of assessment. This in turn
depends on whether the patient has diabetes and/or is elderly
as well as on the severity of CKD (Table 2). Thus, the extent
of depressed bone formation can be thought of as a
continuum, which becomes reduced from normal to absent
(true adynamic bone), as more risk factors are present.
Progression of CKD adds to this risk profile as levels of
1,25-dihydroxyvitamin D become markedly reduced and
the accumulation of phosphate and acid further suppresses
1,25-dihydroxyvitamin D production.

Among the studies that have identified fractures and
fracture risk in patients with CKD, none have identified
biopsy proven adynamic bone as a risk factor for fracture.
Instead, surrogate markers of low bone turnover, mainly PTH
levels, have been the comparator to define who is at risk for
fracture, using relatively low or normal PTH as the identifier
of fracture risk.103,104 Unfortunately, low PTH is also
associated with low protein intake and may be a risk factor
for malnutrition,105,106 which itself has been associated with
low bone formation. Moreover, in CKD patients receiving
dialysis, the histologic cause of hip fracture has never been
identified, although the assumption that hip fractures in
dialysis patients result from osteopenia or osteoporosis.
However, b-2 amyloid deposition in the femoral neck is a
common cause of hip fracture in patients who have received
dialysis for more than 5 years.107 Older age and a longer time
on dialysis are risk factors for developing amyloid bone
disease,108 which are also risk factors for developing fractures
and CV events.

Because of confounding by association of time on dialysis
and age, it becomes difficult to know how the impact of low
PTH contributes to fracture risk in this setting. Hip fracture
rates were recently shown to be higher in dialysis patients
compared to a matched cohort of non-CKD patients and
PTH levels were not predictive of fracture.109 To further
complicate this interpretation, a recent analysis of dialysis
patients who had undergone a parathyroidectomy showed
that parathyroid ablation is associated with increased survival
(relative risk lower by 15–35%) when compared to matched
patients not having had the surgery.19 A more recent analysis
of this patient group indicates that parathyroidectomy is
associated with a lower risk for fracture,110 a finding that
corroborates earlier literature defining low risk of bone loss
after long-term follow-up of patients who received total
parathyroidectomy.111 Thus, normal or relatively low PTH
levels may be the preferred long-term goal to effectively
reduce fracture and mortality rates.

With the progression of CKD, the number of risk factors
for the development of low bone formation increases
(Table 2). Diabetes, aging, and hypogonadism are expected
to have an impact throughout all stages of CKD. As patients
approach stage 4 CKD, the accumulation of phosphate and
organic acids is an additional contributor to suppressed
bone formation. Stage 5 dialysis patients are the most
severely affected by excess phosphate accumulation, retention
of uremic toxins, high circulating cytokine levels, and
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heightened catabolic rate, which leads to malnutrition.
Finally, excess calcium loading from the use of calcium-
based phosphate binders has been associated with suppres-
sion of bone formation,112 bone loss,113 accelerated vascular
calcification,114–116 and increased mortality.116

The diagnosis of adynamic bone ultimately is made by
bone biopsy. However, because most patients are unwilling to
undergo this invasive procedure, non-invasive diagnostic
methods continue to be used most of the time. Risk
stratification (Table 1) is helpful in defining susceptible
patient populations. For example, a diabetic male older than
60 with hypogonadism will be more likely to have adynamic
bone than a 40-year-old patient without diabetes. The
presence of malnutrition/inflammation (for example, low
serum albumin levels; high C-reactive protein), metabolic
acidosis or calcium loading from calcium-containing phos-
phate binders, would further distinguish susceptible patients.

As a single serum test, PTH has been the most extensively
used non-invasive method, employing assays that measure
intact PTH plus PTH fragments or newer assays that measure
only intact PTH. Early reports, suggesting that the use of
both assays to quantify the amount of retained PTH
fragments to predict bone histology,117 have not been
corroborated by subsequent studies.118,119 This is likely due
to the fact that serum PTH is not a product of bone and,
because it is not the only regulator of bone formation, it will
never have excellent predictability as a sole measurement. In
contrast, serum bone alkaline phosphatase has very good
predictive value in separating high from low bone turn-
over.120,121 Serum bone alkaline phosphatase has also been
useful when combined with PTH levels to identify patients
with low bone formation (for example, bone alkaline
phosphatase o20, PTHo100 pg ml�1).121

TREATMENT
Calcium intake

Dialysis patients with adynamic bone are less able to
incorporate a calcium load into bone compared to those
with normal or high bone turnover8 and consequently they
are at an increased risk for soft-tissue and vascular
calcification during periods of calcium and aluminum
loading.10 London et al. recently demonstrated that bone
biopsy evidence of low bone formation correlated with higher
calcification scores in a population that was receiving calcium
and aluminum as the phosphate binders. Interestingly, those
patients who had substantial bone aluminum accumulation
tended to show a better correlation between bone formation
and vascular calcification than those without aluminum
deposits,10 suggesting that aluminum itself may have had a
role in promoting calcification. Whether the binding of
aluminum to the calcium sensing receptor122 is partly
responsible for enhanced calcification remains to be deter-
mined. Appropriate treatments for a patient with suspected
adynamic bone include: (1) stopping all forms of excess
calcium loading by not exceeding a dialysate calcium
concentration 42.5 mEq l�1 and by limiting total oral

elemental calcium intake to 1.0–1.4 g day�1,123 (2) achieving
optimal phosphate control using non-calcium-based phos-
phate binders, (3) optimizing dialysis to more effectively
remove accumulated toxins and acids and to decrease
inflammatory cytokine levels (daily dialysis to achieve a
higher weekly Kt/v (for example, 424 h week�1 of hemodia-
lysis)),124 and (4) improving bone formation with VDRA
therapy. Other potentially useful forms of therapy to
stimulate bone formation include testosterone and estrogen
or estrogen analogues (selective estrogen-receptor modula-
tors).

Vitamin D receptor activation

VDRA has only recently been appreciated to be an effective
treatment of adynamic bone owing to its stimulatory effect
on bone formation.64,125 The findings that VDR activation is
required for osteoblast development and normal bone
formation,64 as well as for normal mineralization,65 by
calcium-independent pathways are complemented by the
more recent demonstration that active vitamin D treatment
can decrease bone resorption by inhibiting osteoclast
production.126,127 Moreover, in vivo studies utilizing several
different active vitamin D compounds have corroborated the
stimulatory effect of active vitamin D on bone formation and
bone accretion.128 Especially, intriguing is the finding that
paricalcitol treatment of LDL receptor knockout mice
corrected low bone volume by enhancing bone mineraliza-
tion and by decreasing bone resorption directly.129 Treatment
of low 25-hydroxyvitamin D levels may also be important for
enhancing bone formation, since osteoblasts contain the 1a-
hydroxylase enzyme,65,68 which increases local production of
1,25-dihydroxyvitamin D. Interestingly, osteoblasts also
contain megalin receptors,68 which are known to function
as 25-hydroxyvitamin D acceptor proteins that incorporate
25-hydroxyvitamin D into the cell. The upregulation of
megalin130 and 25-hydroxyvitamin D incorporation into cells
by VDRA therapy131 suggests that concomitant VDRA may
be necessary with 25-hydroxyvitamin D therapy to optimize
intracellular uptake of 25-hydroxyvitamin D. Low
25-hydroxyvitamin D levels have been correlated with the
presence of low bone formation in dialysis patients132 and
treatment with ergocalciferol was recently shown to be
effective in a dialysis patient with osteomalacia.133

Clinical studies lend support to the notion that VDR
activation is anabolic for bone as seen in dialysis patients134

as well as in patients with early and late stage CKD.135,136 In
both reports, longitudinal measurements of bone mineral
density confirmed the ability of active vitamin D analogues to
not only stop bone loss but also increase bone density. While
bone biopsy evidence of bone formation was not present in
these studies, previous results in pre-dialysis patients with
adynamic bone showed that their bone formation rates
improved following treatment with active vitamin D.137

Thus, the VDRA-directed increase in bone mineral density
(BMD) most likely occurs from reduced bone resorption
(due to reduced PTH effects) and increased bone formation
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(from vitamin D stimulation of osteoblast function). Future
studies in CKD patients should evaluate the newer vitamin D
analogues for their effect on bone formation and bone
accretion.

Therapy with active vitamin D analogues to treat and
prevent low bone formation probably act through several
mechanisms (Table 3). The effect of vitamin D therapy to
upregulate VDR expression would be expected to stimulate
osteoblast activity directly. Treatment of dialysis patients with
IV calcitriol has been shown to effectively reduce elevated
levels of IL-1, IL-6, and TNFa,45 which are known inhibitors
of bone formation. While high phosphate levels are known to
interfere with the effectiveness of calcitriol therapy in dialysis
patients, the effectiveness of paricalcitol to suppress PTH
was not altered by high phosphate levels,138 suggesting that
this VDRA has selective effects on target tissues. This is
corroborated by the demonstration that paricalcitol, in
contrast to calcitriol and doxercalciferol, is less stimulatory
of bone resorption139 and intestinal calcium absorption140

and more stimulatory for bone formation in vitro.141 This
may be explained, in part, by the effect of VDRA therapy to
increase osteoblast production of IGF-I and IGFBP-5,142 both
of which enhance bone formation.55,143

Because of the recent finding that active vitamin D therapy
is associated with a survival benefit in dialysis13,14 as well as
pre-dialysis patients,144 there is a question about the
importance of active vitamin D treatment in all CKD
patients as a way to decrease CV mortality. Thus, determin-
ing the potential mechanisms for the apparent beneficial
effect of VDRA therapy will be important. Vitamin D
regulation of cytokine production may be an especially
beneficial way not only to ameliorate bone loss but also to
prevent or improve CVD.145–152 Elevated levels of IL-1, IL-6,
and TNFa are known risk factors for CVD,145–147 which are
suppressed by calcitriol treatment in dialysis patients.45 Low

levels of IL-10, in contrast, are associated with atherosclero-
sis147,148 and bone loss.149 Vitamin D deficiency is associated
with low IL-10 levels150 and calcitriol stimulates the
production of IL-10 in T lymphocytes.151 Thus, because
IL-10 expression by T lymphocytes is intimately associated
with the inhibition of atheroma formation,152 it is possible
that VDRA therapy may be useful in preventing or treating
atherosclerosis (Figure 1).

DIABETES

Diabetic patients with CKD have lower rates of bone
formation,153 a complication that often precedes their
development of CKD. Because patients with diabetes tend
to develop more profound vitamin D deficiency during the
progression of CKD, a potentially treatable cause of low bone
formation would be early treatment with an active vitamin D
analogue. Certainly, optimizing glucose control should be
expected to improve bone formation154 as well as decrease
the risk for vascular comorbidities.155

HYPOGONADISM

Men with CKD have about a 40% prevalence of hypogonad-
ism.156 Both primary and secondary hypogonadism have
been associated with uremia, thus LH levels may be either
high or low relative to a low free testosterone concentration.
Appropriate testosterone replacement therapy in men is
expected to stop bone loss and increase bone density,50,157

although studies are needed in patients with CKD to confirm
that androgen therapy stimulates bone formation and
reduces bone loss. Appropriate testing for prostate cancer
(digital rectal exam, serum prostate specific antigen (PSA)) is
recommended prior to long-term testosterone replacement
therapy.

Most women older than 45 years who receive dialysis are
post-menopausal.158 Identifying such patients is important
for risk assessment of CVD, since some, but not all,
menopausal women with osteoporosis have accentuated rates
of bone loss, which closely correlate with high rates of
vascular calcification.87 Optimal control of PTH levels is

Table 3 | Proposed effect of VDRA therapy to mitigate factors
that reduce bone formation

Factors
Positive
VDRA effect Mechanism of VDR effect

Low serum 1,25D Yes m Osteoblast activity
m Osteoblast lifespan

High serum phosphate Yes m Osteoblast VDR activity
High serum IL-1, TNF Yes k IL-1 and TNF levels

m Osteoblast lifespan
Low serum IGF activity Yes m IGF-I and IGFBP-5 (obl)

m Osteoblast lifespan
Malnutrition Possible k IL-1 and TNF levels

m IGF-I activity
Diabetes Possible m 1,25D levels

m Insulin sensitivity
Age-related Possible m Osteoblast lifespan

Hypogonadal
Women Possible m Osteoblast lifespan
Men Possible m Osteoblast lifespan

IGF, insulin-like growth factor; IGFBP, IGF-binding protein; IL, interleukin; TNF, tumor
necrosis factor; VDRA, vitamin D receptor activator.

Osteoblast apoptosis

Decreased bone formation

Adynamic bone

Diabetes Older age Uremia

Toxins

Insufficient VDRA therapy
Vitamin D deficiency

AGE AGEIGF-I

Hypogonadism

Metabolic acidosis

CaSRCytokines (TNFa)

Hypogonadism

Ca2+ or Al3+

loading

Figure 1 | Mechanisms of decreased bone formation in chronic
kidney disease.
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paramount for reduction of bone resorption and bone loss.
Whether the addition of raloxifene to active vitamin D
treatment would be additive protection from bone loss
remains to be determined. However, estrogen treatment can
enhance VDR expression in some tissues,159 and therefore it
may potentially enhance the anabolic effect of vitamin D on
bone. Moreover, estrogen treatment in the perimenopausal
period offers protection from coronary artery calcification.88

Studies are needed to determine the effectiveness of estrogen
or raloxifene on bone loss and CVD in women with CKD.

AGE-RELATED BONE LOSS

Pediatric patients have unique problems because CKD so
profoundly interferes with bone growth and mineraliza-
tion.160 Short stature is a common problem in pediatric CKD
patients,161 owing to the marked reduction in cartilage
growth plate development. Several mechanisms appear to
play a role in delayed growth, including decreased serum GH
and IGF-I activity, vitamin D deficiency, and metabolic
acidosis. Early treatment with GH162 and active vitamin D163

has been shown to improve growth velocity and bone mass.
The elderly suffer from reduced bone mass as a result of

decreased bone formation and increased bone resorption.164

While the exact mechanism of the age-related decrease in
bone formation remains undefined, the problem is likely to
be multifactorial, since serum levels of such stimulators of
bone formation as sex-hormones, GH, and IGF-I all become
reduced with advancing age while the accumulation of AGE
becomes prominent. An intrinsic defect of osteoblast
precursors may also play a role if it is true that only a finite
number of osteoblasts are available during a given lifespan.
Presumably, the addition of CKD enhances the rate of bone
loss by further decreasing bone formation, although limited
data are available to assess the effect of CKD longitudinally in
this population.

FUTURE STUDIES

Additional work is needed to clarify several issues relating to
the clinical consequences of low bone formation. The
development of a risk assessment protocol would be useful
to identify susceptible patients with CKD who are more
prone to developing low or absent bone formation and CVD.
Such studies would involve the concomitant measurement of
bone histology, bone loss, vascular calcification, and serum
markers of bone turnover. Clinical investigation of the
potential impact of BMP-7 deficiency as a cause of vascular
calcification and adynamic bone is now warranted, given the
preclinical findings that BMP-7 levels fall with reductions in
glomerular filtration rate and that BMP-7 treatment
stimulates bone formation and mitigates vascular calcifica-
tion.165–167 Finally, standardized criteria for adynamic bone
need to take into account not only the rate of bone formation
but also the extent of bone loss systemically. Such data will
enable researchers and clinicians to more fully appreciate the
likelihood of individual patient risk for developing adynamic
bone over time and how that relates to bone loss and CVD.

In this respect, novel markers of bone turnover still need to
be correlated with markers of vascular disease so that
susceptible patients can be identified and followed during
their progression with CKD.
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