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Listening to the Crowd: Neuronal Ensembles Rule
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In this issue of Neuron, Durstewitz and colleagues show that neuronal populations in the medial prefrontal
cortex (mPFC) of rats reflect abrupt changes in behavioral strategy as animals learn to act according to
new rules in a rule-switching task.
In animal learning experiments, changes

in performance are often seen as a gradual

process, where new associations or rules

are learned progressively over time by trial

and error. However, humans often report

specific moments of sudden insight,

‘‘a-ha!’’ moments, something that has

long fascinated psychologists and others.

Indeed, on closer examination, animal

studies also reveal abrupt changes in

performance, where learning appears to

occur over one or just a few trials (Gallistel

et al., 2004). It has been suggested

that this phenomenon is actually quite

common; the reason slow changes are

often reported may be simply that perfor-

mance is being estimated by averaging

across trials and animals. This averaging

inevitably smoothes out the true learning

curves of individual animals. By applying

appropriate statistical measures that

provide a more sensitive measure of

changes in a time series, abrupt changes

in performance can sometimes be re-

vealed (Gallistel et al., 2004; Suzuki and

Brown, 2005).

While the fact of abrupt learning

has gained acceptance as a behavioral

phenomenon, the neural substrates un-
derlying such changes remain quite

mysterious. Although some forms of

synaptic plasticity can be induced in

just a short period of high frequency

stimulation, most theoretical models,

such as reinforcement learning, usually

rely on slow and gradual changes in

synaptic connections to implement

learning (Dayan and Abbott, 2001), sug-

gesting that insight learning depends on

features of neural circuits that are not ac-

counted for in conventional models. A key

step toward unraveling this conundrum

would be to monitor the changes in circuit

activity as abrupt learning takes place.

In the current issue of Neuron,

Durstewitz and coworkers (2010) take

a step in this direction, using state-of-

the-art statistical analysis along with

multielectrode recordings in rats perform-

ing a rule-learning task to show a correla-

tion between rapid switches in behavioral

performance and rapid switches in medial

prefrontal cortex (mPFC) ensemble

activity.

Durstewitz and colleagues (2010)

trained rats on a ‘‘rule-switching’’ task

(Figure 1A). In this task, first the subject

must follow a ‘‘visual’’ rule in which the
light above a left or right lever signals

where reward is available. Once good

performance is achieved, the rule is

switched to a ‘‘spatial’’ rule: now reward

is delivered at one side only, independent

of which light is on. In rats, this task is

known to depend on an intact mPFC (Flor-

esco et al., 2009) and is considered to be

an analog of the Wisconsin card-sorting

test, a task used to study response flexi-

bility in humans. Rats acquired the new

rule rapidly, with performance increasing

abruptly in a few trials, as shown using

change point analysis, consistent with

the idea that animals go through an

‘‘a-ha!’’ moment when evidence is suffi-

cient to change response rules.

To investigate the neural mechanisms

that underlie abrupt rule switches, the

authors recorded the activity of up to 16

mPFC neurons simultaneously during

the performance of the rule-switching

task. The neuronal correlates of associa-

tive learning have been studied previously

at the single neuron level in several tasks

and brain areas, particularly in nonhuman

primates (Suzuki, 2008). In these studies,

the firing of single neurons (e.g., Chen

and Wise, 1996; Zach et al., 2008) or

https://core.ac.uk/display/81121282?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:zmainen@igc.gulbenkian.pt


Figure 1. Neuronal Ensembles Differentiate between Rules during a Rule-Switching Task
(A) Rule-switching task. At the beginning of the session, rats collect reward by pressing the lever signaled
by the light. When the rule is switched, rats learn by trial and error that reward is available at one location
only.
(B) Neuronal ensembles show distinct patterns when rats are performing the visual and spatial rules (left-
most and rightmost panels). During learning, ensemble activity goes through intermediate states, though
the switch between steady-states is usually very rapid.
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correlations between pairs of neurons

(Komiyama et al., 2010) reveal changes

wrought by learning.

Here, Durstewitz et al. (2010) first

compared the activity of neurons during

steady-state performance of both visual

and spatial rules (i.e., before and after

the rule switch) and found that single

mPFC neurons, despite their relatively

low firing rates, could sometimes differen-

tiate between the two steady states. This

type of selectivity can be interpreted as

a representation of the ongoing rule,

a finding that reinforces results from

studies of rule-encoding in primate

mPFC (Mansouri et al., 2006; Wallis

et al., 2001). Interestingly, these rule-

selective mPFC neurons showed differen-

tial activity throughout the trial rather than

locked to a particular event. This might

suggest that the network switched to

a different state, with a different overall

activity, according to the ongoing

strategy. Although the activity observed

is consistent with rule representation, to

further support this idea, it would be

important to know what happens if the

rules are switched back and forth.

Such single neuron analyses required

averaging over trials during each of the

two rules or, more generally, before and
after learning. Trial averaging gives statis-

tical power, but does not allow one to

address the precise origin of the neuronal

changes that give rise to rapid jumps in

behavioral performance. Although more

sophisticated analysis techniques such

as state-space generalized linear models

(Czanner et al., 2008; Suzuki and Brown,

2005) have been proposed as methods

for estimating neuronal changes in a finer

time scale, these techniques have not yet

been widely applied to the analysis of

neuronal processes during learning.

To analyze the neural activity in the

mPFC in a way that could give them esti-

mates of the network state on a trial-by-

trial basis, Durstewitz et al. (2010) took

advantage of the fact that they had

recorded from multiple neurons simulta-

neously. Simple averaging across

neurons, which are likely to show a variety

of different behavioral correlates, would

not be sufficient. Therefore, it was

necessary to apply more sophisticated

statistical approaches. The authors first

constructed population vectors for

describing the activity of neural ensem-

bles. Using a dimensionality-reduction

technique, they then visualized the

activity of the ensembles in two dimen-

sions. This revealed that the neuronal
Neuron
ensemble took on different states during

the two rules (Figure 1B, leftmost and

rightmost panels). Decoded in this way,

the population could provide more infor-

mation about the ongoing rule than was

possible by reading single neurons.

Having established that neural popula-

tions switch between two states that

reflect the current rule, it was then

possible to investigate the dynamics of

the transition from one state to the other

as the rats learned the new strategy over

a period of around 100 trials. The authors

found that during the learning phase the

activity of neural ensembles evolved

through intermediate states, in such

a manner that the distance to either of

the steady states associated with the

rules was directly correlated with the

ability to predict the rat’s choice—that

is, when the neuronal ensemble activity

was closer to that observed for the spatial

rule in steady state, the animal was more

likely to behave according to this rule,

and vice versa. Thus, the activity of the

population of neurons contained accurate

information about the rule the rat was

using to guide its behavior.

A few studies have previously explored

the dynamics of neuronal responses as

associative learning progresses at the

single neuron level. Among those, Wirth

et al. (2003) and Paton et al. (2006) are

noteworthy, as they show that changes

in single neuron firing rates occur around

the same time as changes in behavioral

performance, suggesting a causal rela-

tionship. Durstewitz et al. (2010), using

analyses based on simultaneously re-

corded ensembles rather than single

neurons, were able to take this approach

one step further and examine how the

mPFC encoding of rules changes on

a trial-by-trial basis. Using two different

approaches—hidden Markov models

and change point analysis—they could

show that, in about half of the recorded

ensembles, transitions from one rule to

the other occurred abruptly (less than

ten trials), a time scale very similar to

that observed for behavioral changes.

Thus, Durstewitz et al. (2010) reveal

state transitions in neuronal ensembles

that are sufficiently rapid to potentially

account for the rapid rule-switching

behavior observed in the same animals.

Moreover, the abrupt nature of the neural

transitions suggest that, at least in mPFC
66, May 13, 2010 ª2010 Elsevier Inc. 335
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and during this learning paradigm, the

learning process does not correspond to

a gradual process of accumulation of

evidence.

The results reported in this issue by

Durstewitz et al. (2010) suggest that

ensembles of mPFC neurons represent

the ongoing rule, possibly contributing in

this way to maintaining a memory of the

relevant strategy or a reference frame to

allow for detecting changes or violations,

consistent with the proposed role of PFC

in monitoring behavior (Ridderinkhof

et al., 2004).

A final important question that remains

elusive is to establish the causal relation-

ship between the observed neuronal

ensemble activity and the behavior.

Are the observed changes in neuronal

ensemble state responsible for the

change in behavioral strategy or are they

too reflections of a third underlying

cause? To begin to address this, the

authors took advantage of the fact that

the abrupt transitions in behavioral

strategy took place at highly variable

times during the learning process

depending on which animal was being

tested. Remarkably, there was a very

good match between the trials on which
336 Neuron 66, May 13, 2010 ª2010 Elsevier
the neural state and performance transi-

tions occurred across animals. However,

the changes in behavior preceded in

some cases the switches in neural states,

suggesting that even though changes in

neural activity occur in parallel to the

acquisition of the new rule, it may not be

those changes that drive the behavior.

Ultimately, answering the causality

question will require manipulating the

activity in populations of neurons that

are defined not necessarily by a common

cell type, but which may join forces as the

result of the unique set of experiences

which has shaped the structure of the

brain. While technically challenging, the

recent explosion of optogenetic tech-

nology suggests that such an experiment

may become reality in the not-too-distant

future.
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