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Abstract

An st-path is a path with the end-vertices s and t. An s-path is a path with an end-vertex s. The results of this paper in-
clude necessary and sufficient conditions for a {claw, net}-free graph G with s, t ∈ V (G) and e ∈ E(G) to have (1) a Hamil-
tonian s-path, (2) a Hamiltonian st-path, (3) a Hamiltonian s- and st-paths containing e when G has connectivity one, and
(4) a Hamiltonian cycle containing e when G is 2-connected. These results imply that a connected {claw, net}-free graph has
a Hamiltonian path and a 2-connected {claw, net}-free graph has a Hamiltonian cycle [D. Duffus, R.J. Gould, M.S. Jacob-
son, Forbidden subgraphs and the Hamiltonian theme, in: The Theory and Application of Graphs (Kalamazoo, Mich., 1980),
Wiley, New York, 1981, pp. 297–316]. Our proofs of (1)–(4) are shorter than the proofs of their corollaries in [D. Duffus, R.J. Gould,
M.S. Jacobson, Forbidden subgraphs and the Hamiltonian theme, in: The Theory and Application of Graphs (Kalamazoo,
Mich., 1980), Wiley, New York, 1981, pp. 297–316], and provide polynomial-time algorithms for solving the corresponding
Hamiltonicity problems.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

We consider simple undirected graphs. All notions on graphs that are not defined here can be found in [2,12].
A graph G is called H-free if G has no induced subgraph isomorphic to a graph H. A claw is a graph having exactly

four vertices and exactly three edges that are incident to a common vertex. A claw can be drawn as the letter Y. A net
is a graph obtained from a triangle by attaching to each vertex a new dangling edge.

There are many papers devoted to the study of Hamiltonicity of claw-free graphs, and, in particular, {claw, net}-free
graphs (e.g. [1,3,4,6–8,10,11]). The maximum independent vertex set problem for {claw, net}-free graphs was studied
in [5]. In this paper we establish some new Hamiltonicity results on {claw, net}-free graphs.
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An st-path is a path with the end-vertices s and t. An s-path is a path with an end-vertex s. Let G be a {claw, net}-free
graph, s, t ∈ V (G), s �= t , and e ∈ E(G). The results of this paper include necessary and sufficient conditions for G
to have:

a Hamiltonian s-path (see 4.3 and 4.9),
a Hamiltonian st-path when G has connectivity one (see 4.3),
a Hamiltonian st-path containing e if G has connectivity one (4.6),
a Hamiltonian s-path containing e when G has connectivity one (4.7), and
a Hamiltonian cycle containing e when G is 2-connected (4.9).

From the above mentioned results we have the following corollaries.

1.1 (Duffus et al. [3, Corollary of 4.3]). Every connected {claw, net}-free graph has a Hamiltonian path.

1.2 (Duffus et al. [3, Corollary of 4.9]). Every 2-connected {claw, net}-free graph has a Hamiltonian cycle.

Our proofs of 4.3 and 4.9 are shorter and more natural than the proofs of their corollaries 1.1 and 1.2 in [3]. They also
provide polynomial-time algorithms for solving the corresponding Hamiltonian problems for {claw, net}-free graphs.
In [1] a linear time algorithm was given for finding a Hamiltonian path and a Hamiltonian cycle (if any exist) in a
{claw, net}-free graph.

The known results on 3-connected {claw, net}-free graphs include the following.

1.3 (Shepherd [11]). A 3-connected {claw, net}-free graph has a Hamiltonian xy-path for every two distinct vertices
x and y.

1.4 (Kelmans [8]). Let G be a {claw, net}-free graph. If G is 3-connected, then every two non-adjacent edges
in G belong to a Hamiltonian cycle. If G is 4-connected, then every two edges in G belong to a Hamiltonian
cycle.

1.5 (Kelmans [8]). Let G be a 3-connected {claw, net}-free graph, e = uv ∈ E(G), and s, t ∈ V (G), s �= t . Then
G has a Hamiltonian st-path containing e if and only if either {s, t} ∩ {u, v} = ∅ or {s, t}\{u, v} = z ∈ V (G) and
G − {z, u, v} is connected.

1.6 (Kelmans [8]). Let G be a k-connected {claw, net}-free graph, k�3, L1 and L2 two disjoint paths in G, |V (L1)|+
|V (L2)|�k, and x1, x2 the end-vertices of L1, L2, respectively. Then the following are equivalent:

(c1) G has a Hamiltonian x1x2-path containing L1 and L2,
(c2) G has a Hamiltonian z1z2-path containing L1 and L2 for every end-vertices z1, z2 of L1, L2, respectively, and
(c3) G − (L1 ∪ L2) is connected.

1.7 (Kelmans [8]). Let G be a k-connected {claw, net}-free graph, k�2, L a path in G, and |V (L)|�k. Then G has a
Hamiltonian cycle containing L if and only if G − L is connected.

Obviously both 1.3 and 1.4 follow immediately from 1.5. More results on Hamiltonicity of k-connected {claw, net}-
free graphs can be found in [8].

The results of this paper form a part of a broader picture on Hamiltonicity of {claw, net}-free graphs and were
presented at the Discrete Mathematics Seminar at the University of Puerto Rico in November 1999 (see
also [6,8]).

2. Main notions and notation

We consider undirected graphs with no loops and no parallel edges. We use the following notation: V (G) and E(G)

are the sets of vertices and edges of a graph G, respectively, v(G) = |V (G)| and e(G) = |E(G)|, AvB is the union of
two graphs A and B having exactly one vertex v in common, and AvB = Avu if B is an edge vu.

An st-path (s-path) is a path with the end-vertices s and t (an end-vertex s, respectively). If a and b are vertices of
P, then aPb denotes the subpath of P with the end-vertices a and b. A path (a cycle) of G is called Hamiltonian if it
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contains each vertex of G. A Hamiltonian path of G is also called a trace of G. We introduce the term track of G for a
Hamiltonian cycle of G.

Let �(G) denote the vertex connectivity of a graph G. A graph G is called k-connected if �(G)�k.
Let H be a subgraph of G. We write simply G − H instead of G − V (H). A vertex x of H is called an inner vertex

of H if x is adjacent to no vertices in G − H , and a boundary vertex of H, otherwise. An edge e of H is called an inner
edge of H if e is incident to an inner vertex of H.

A block of G is either an isolated vertex or a maximal connected subgraph H of G such that H − v is connected for
every v ∈ V (H). A block B of G is called an end-block of G if B has exactly one boundary vertex, and an inner block,
otherwise.

3. The key lemma

First, we observe the following.

3.1. Let G be a graph. The following are equivalent:

(a1) G has no induced subgraph isomorphic to a claw or a net and
(a2) G has no connected induced subgraph with at least three end-blocks.

Proof. Obviously (a2) ⇒ (a1). We prove (a1) ⇒ (a2). If G is {claw, net}-free, then G − x is also {claw, net}-free
for every x ∈ V (G). Clearly, our claim is true if v(G) = 1. Let F be a counterexample with the minimum number
of vertices. Then (1) every end-block has exactly one edge, (2) F has exactly three end-blocks, (3) if x ∈ V (F) and
F − x is connected, then x is a leaf, and (4) F is not a claw and not a net. By (2) and (3), F is a tree or has exactly
one cycle which is a triangle. In both cases, by (4), F has a leaf z such that F − z is a smaller counterexample,
a contradiction. �

The following lemma is useful for analyzing Hamiltonicity of {claw, net}-free graphs.

3.2. Let G be a {claw, net}-free graph and z ∈ V (G). Suppose that G − z has an xy-trace P and there exists
ez = zp ∈ E(G), and so G is connected and p ∈ V (P ). Let ex and ey be the end-edges of P. Then G has an ab-trace
Q such that {a, b} ⊂ {x, y, z}, ez ∈ E(Q) and {ex, ey} ∩ E(Q) �= ∅.

Proof (uses 3.1). We define below a notion of a good path which is a special subpath of path P. Our goal is to show
that if G has no required trace, then G has a good path and a maximal good path is a subpath of a longer good path in
G, which is a contradiction.

By the assumption of our claim, p ∈ V (P ). Let X = pPx = x0x1 . . . xk−1xk and Y = pPy = y0y1 . . . yt , where
xk = x, yt = y, and x0 = y0 = p. Let Mr,s = xrPys , Ṁr,s denote the subgraph of G induced by V (Mr,s), and
M̄r,s = Ṁr,s ∪ {xrxr+1, ysys+1, zp}.

A subpath Mr,s is called good if
(x1) Ṁr,s has a pys-trace containing xr−1xr ,
(y1) Ṁr,s has a pxr -trace containing ys−1ys ,
(x2) if xr �= x, then for every v ∈ V (Mr,s)\xr , the graph Ṁr,s ∪ {xrxr+1, xr+1v} obtained from Ṁr,s by adding the

edge xrxr+1 and a new edge xr+1v has a pys-trace containing the path xrxr+1v,
(y2) if ys �= y, then for every v ∈ V (Mr,s)\ys , the graph Ṁr,s ∪ {ysys+1, ys+1v} obtained from Ṁr,s by adding the

edge ysys+1 and a new edge ys+1v has a pxr -trace containing the path ysys+1v, and
(z) for every v ∈ V (Mr,s)\p, the graph Ṁr,s ∪ {zp, zv} obtained from Ṁr,s by adding the edge zp and a new edge

zv has an xrys-trace (which clearly contains ez = zp and zv).
If p ∈ {x, y} or {x1z, y1z}∩E(G) �= ∅, then clearly G has a required trace. Therefore, let p /∈ {x, y} and {x1z, y1z}∩

E(G) = ∅. Since G has no induced claws, the claw in G with the edge set {px1, py1, pz} is not induced, and therefore
x1y1 ∈ E(G).

Clearly, Ṁ1,1 is a triangle and V (Ṁ1,1) = {p, x1, x2}. Now it is easy to check that M1,1 is a good path. Let Mr,s be
a maximal good path. Put A = {ex, ey, ez}.
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(p1) Suppose that xr = x. By (x1), Ṁr,s has a pys-trace L containing xr−1xr . Then zpLysPy is a yz-trace in G
containing A. Similarly, if ys = y, then G has an xz-trace containing A.

(p2) Now suppose that xr �= x and ys �= y. Then the subgraph M̄r,s of G has at least three end-blocks. Since G is
{claw, net}-free, by 3.1, there exists an edge ab in G such that a ∈ {xr+1, ys+1, z} and b ∈ V (M̄r,s − a).

(p2.1) Suppose that a = z and b ∈ V (Mr,s). By (z), M̄r,s ∪ zb has an xr+1ys+1-trace L containing ez. Then
xPxr+1Lys+1Py is an xy-trace in G containing A.

(p2.2) Suppose that a = z and b ∈ {xr+1, ys+1}. By symmetry, we can assume that b = xr+1. By (x1), Ṁr,s has a
pys-trace L. Then P ′ = xPxr+1zpLysPy is an xy-trace in G. If x �= xr+1, then P ′ contains A. If x = xr+1, then P ′
contains A\ex .

(p2.3) Now suppose that a ∈ {xr+1, ys+1} and b �= z. By symmetry, we can assume that a = xr+1. Then b ∈
V (Mr,s − xr) ∪ ys+1.

(p2.3.1) Suppose that xr+1 = x.
Suppose that b �= ys+1. By (x2), Mr,s ∪ xb has a zys-trace L containing ex = xrxr+1. Then zpLysys+1Py is a

yz-trace in G containing A.
Now suppose that b = ys+1. By (y1), Ṁr,s has a {p, xr}-trace L. Then P ′ = zpLxrxr+1ys+1Py is a zy-trace in G.

If ys+1 �= y, then P ′ contains A. If ys+1 = y, then P ′ contains A − ey .
(p2.3.2) Now suppose that xr+1 �= x. Our goal is to show that

(c1) if b �= ys+1, then M ′ = Mr+1,s is a good path and
(c2) if b = ys+1 (i.e., xr+1ys+1 ∈ E(G)), then M ′ = Mr+1,s+1 is a good path.

This will lead to a contradiction because Mr,s ⊂ M ′, and therefore a good path Mr,s will not be maximal. We recall
that we consider the case when xr �= x and ys �= y.

CASE (c1): Suppose that b �= ys+1. We want to prove that Mr+1,s is a good path.
(p.x1) Let us show that Mr+1,s satisfies (x1). By (x2) for Mr,s , the graph Ṁr,s ∪ {xrxr+1, xr+1b} has a pys-trace L

containing the path xrxr+1b. Then L is also a pys-trace in Ṁr+1,s containing xrxr+1.
(p.y1) Let us show that Mr+1,s satisfies (y1). By (y1) for Mr,s , the graph Ṁr,s has a pxr -trace L containing ys−1ys .

Then pLxrxr+1 is a pxr+1-trace in Ṁr+1,s containing ys−1ys .
(p.x2) Let us show that Mr+1,s satisfies (x2).
Consider graph Qv = Ṁ ∪ {xr+1xr+2, xr+2v}, where v ∈ V (Mr+1,s)\xr+1.
Suppose that v �= xr . By (x2) for Mr,s , graph Ṁr,s ∪{xrxr+1, vxr+1} has a pys-trace L containing the path xrxr+1v.

Then (L − vxr+1) ∪ (xr+1xr+2v) is a pys-trace in Qv containing path xr+1xr+2v.
Now suppose that v = xr . By (p.x1), Mr+1,s satisfies (x1), i.e., graph Ṁr+1,s has a pys-trace L containing xrxr+1.

Then (L − xrxr+1) ∪ (xr+1xr+2xr) is a pys-trace containing path xr+1xr+2v.
(p.y2) Let us show that Mr+1,s satisfies (y2).
Consider graph Qv = Ṁr+1,s ∪ {ysys+1, vys+1}, where v ∈ V (Mr+1,s)\ys . By (y2) for Mr,s , graph Ṁr,s ∪

{ysys+1, vys+1} has a pxr -trace L containing path ysys+1v. Then xr+1xrLz is a {p, xr+1}-trace in Qv containing
path ysys+1v.

(p.z) Let us show that Mr+1,s satisfies (z).
Consider graph Qv = Mr+1,s ∪ {zp, zv}, where v ∈ V (Mr+1,s)\p.
Suppose that v ∈ V (Mr,s)\p. By (z) for Mr,s , graph Mrs ∪ {zp, zv} has an xrys-trace L. Then xr+1xrLys is an

xr+1ys-trace in Mr+1,s ∪ {zp, zv}.
Now suppose that v = xr+1. By (x1) for Mr,s , graph Ṁr,s has a pys-trace L. Then xr+1zpLys is an xr+1ys-trace

in Qv .
CASE (c2): Now suppose that b = ys+1. We want to prove that Mr+1,s+1 is a good path. By symmetry, it suffices

to prove that Mr+1,s+1 satisfies (x1), (x2), and (z). Let us prove (x1). By (y1) for Mr,s , graph Ṁr,s has a pxr -trace
L. Then pLxrxr+1ys+1 is a pys+1-trace in Ṁr+1,s+1 containing xrxr+1. The proof of (x2) and (z) is similar to
CASE (c1). �

4. More on {claw, net}-free graph Hamiltonicity

Lemma 3.2 allows to give an easy proof of the following strengthening of 1.1.
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4.1. Let G be a connected {claw, net}-free graph. Then

(a1) G has a trace and
(a2) if sz ∈ E(G) and G − z is connected, then sz belongs to a trace of G.

Proof (uses 3.2). We prove our claim by induction on v(G). The claim holds if v(G) = 1. Since G is connected,
there exists z ∈ V (G) such that G − z is also connected. Let sz ∈ E(G). Since G is {claw, net}-free, clearly
G − z is also {claw, net}-free. Therefore by the induction hypothesis, G − z has a trace. Then by 3.2, G has a trace
containing sz. �

Here is another strengthening of 1.1 for graphs of connectivity one.

4.2. Let G be a connected {claw, net}-free graph, G=AaHbB, where A and B are end-blocks of G. Let a′ ∈ V (A−a),
b′ ∈ V (B − b), and a′x be an edge of A such that if v(A)�3, then x is an inner vertex of an end-block of G − a′.
Then

(a1) there exists an a′b′-trace in G and, moreover,
(a2) there exists an a′b′-trace in G containing edge a′x.

Proof. We prove our claim by induction on v(G). If v(G) = 3, then our claim is obviously true.
(p1) Suppose that v(A)�3. Then A is 2-connected. Let A′ = A − a′ and G′ = G − a′. Then G′ = A′aHbB and G′

is connected. Since G is {claw, net}-free, G′ is also {claw, net}-free. Since v(G′) < v(G), by the induction hypothesis,
G′ has an xb′-trace P. Then a′xPb′ is an a′b′-trace in G containing a′x.

(p2) Now suppose that v(A) = 2. Then a′x = a′a and there is b′z ∈ E(B) such that z is an inner vertex of an
end-block in G − b′. Hence by the arguments, similar to those in (p1), G has an a′b′-trace in G containing a′x
(as well as b′z). �

From 4.2 we have, in particular:

4.3. Let G be a {claw, net}-free graph, v(G)�3, �(G) = 1, and s, t ∈ V (G). Then G has an st-trace if and only if s
and t are inner vertices of different end-blocks of G.

From 4.1 and 4.2 it is easy to obtain the following stronger result.

4.4. Let G be a connected {claw, net}-free graph having k�2 blocks. Let Aj , j ∈ {1, 2}, be an end-block of G, a′
j

the boundary vertex of Aj , aj ∈ Aj − a′
j , and �j ∈ E(Aj ). Let Bi be an inner block of G and �i ∈ E(Bi). Let

U = {�1, �2} ∪ {�i : i = 1, . . . , k − 2}. Suppose that

(h1) �j = ajxj is such that if v(A)�3, then xj is an inner vertex of an end-block of Aj − a′
j , j ∈ {1, 2}, and

(h2) �i is an inner edge of Bi , if v(Bi)�3, i ∈ {1, . . . , k − 2}.

Then G has an a1a2-trace containing U.

Proof (uses 4.1 and 4.2). Since G is connected, for every end-block Aj of G there is an edge a′
jpj ∈ E(G)\E(Aj ).

Similarly, for every inner block Bi of G there are edges biqj , b
′
iq

′
j ∈ E(G)\E(Bi), where bi and b′

i are the

boundary vertices of Bi . Let Āj = Aja
′
jpj and B̄i = qibiBib

′
iq

′
j . Then all Āj ’s and B̄i’s are induced subgraphs

of G and, therefore, are {claw, net}-free. By 4.1, each B̄i has a trace qibiQib
′
iq

′
j containing �i . By 4.2,

each Āj has a trace ajPja
′
jpj containing�j . Then P1 ∪ Q1 . . . Qk−2 ∪ P2 is an a1a2-trace contain-

ing U. �

Let L denote the set of 4-tuples (G, s, t, uv) such that G is a graph, {s, t} ⊆ V (G), s �= t , uv ∈ E(G), and either
(1) {s, t} does not meet one of the components of G − {u, v} or (2) {s, t} ∩ {u, v} �= ∅, say t = u, and either G − {s, v}
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is not connected and the component containing t has at least two vertices or there is x ∈ V (G − {u, v}) such that {s, v}
avoids one of the components of G − {t, x}.

Obviously, if G has an st-trace containing uv, then (G, s, t, uv) /∈L. We will see that for {claw, net}-free graphs of
connectivity one the converse is also true.

4.5. Let G be a connected graph, s ∈ V (G), and xsG be a {claw, net}-free graph. Let C be the end-block of vsG

distinct from xs, c the boundary vertex of C, t ∈ V (C − c), and uv ∈ E(G). Then G has an st-trace containing uv if
and only if (G, s, t, uv) /∈L.

Proof (uses 4.2 and 4.4). By the above remark, it is sufficient to show that (G, s, t, uv) /∈L implies that G has an
st-trace containing uv. We prove our claim by induction on v(G). If uv /∈ E(C) or V (C)={u, v}, then our claim follows
from 4.4. Therefore, let uv ∈ E(C). In particular, if v(C) = 2, then our claim is true. Therefore, let v(C)�3, and so C
is 2-connected. Let G′ = G − t and C′ = C − t , and so C′ is connected.

(p1) Suppose that G − {u, v} is not connected. Since (G, s, t, uv) /∈L, vertices s and t belong in G − {u, v} to
different components, say S and T, respectively. Since C is 2-connected, T̄ = T ∪ uv is also 2-connected.

(p1.1) Suppose that v(T ) = 1, i.e., V (T ) = {t}. Then tu is an end-block of G − v. Since xsG is {claw, net}-free, by
4.2, G − v has an st-trace sPut. Then sPuvt is an st-trace in G containing uv.

(p1.2) Now suppose that v(T )�2. Since T̄ is 2-connected, either T̄ − t is 2-connected or t is adjacent in G to an inner
vertex z of the end-block of T̄ − t avoiding uv. In both cases, (G′, s, z, uv) /∈L, and so by the induction hypothesis,
G′ has a sz-trace P containing uv. Then sPzt is an st-trace containing uv.

(p2) Now suppose that G − {u, v} is connected. Since (G, s, t, uv) /∈L, {u, v} �= {s, t}. Since C is 2-connected,
t is adjacent to an inner vertex z of the end-block B of xsG′ which avoids x. If t ∈ {u, v}, say t = a, then since
(G, s, t, uv) /∈L, v is an inner vertex of B. Then by 4.2, G′ has an sv-trace P, and so sPba is an st-trace containing uv.
So let t /∈ {u, v}. Let D be the block of G′ containing uv. If D �= B, then since (G, s, t, uv) /∈L, also (G′, s, z, uv) /∈L,
and so by the induction hypothesis, G′ has a sz-trace P containing uv. If D = B, then (G, s, z, uv) /∈L because G has
no induced claw centered at z. So again by the induction hypothesis, G′ has a sz-trace P containing uv. In both cases
sPzt is an st-trace in G containing uv. �

From 4.4 and 4.5 we have:

4.6. Let G be a {claw, net}-free graph, v(G)�3, �(G) = 1, e ∈ E(G), and {s, t} ∈ V (G), s �= t . Then G has an
st-trace containing e if and only if s and t are inner vertices of different end-blocks of G and (G, s, t, e) /∈L.

From 4.6 we have:

4.7. Let G be a {claw, net}-free graph, v(G)�3, �(G)=1, s ∈ V (G), and e ∈ E(G). Then G has an s-trace containing
e if and only if s is an inner vertex of an end-block in G and (G, b, s, e) /∈L, where b is the boundary vertex of the
end-block avoiding s.

From 4.4 and 4.6 we have the following strengthening of 4.4.

4.8. Let G be a connected {claw, net}-free graph having k�2 blocks. Let Aj , j ∈ {1, 2}, be an end-block of G, a′
j

the boundary vertex of Aj , aj ∈ Aj − a′
j , and �j ∈ E(Aj ). Let Bi be an inner block of G and �i ∈ E(Bi). Let

U = {�1, �2} ∪ {�i : i = 1, . . . , k − 2}. Then G has an a1a2-trace containing U if and only if

(c1) (Aj , aj , a
′
j , �j ) /∈L, j ∈ {1, 2} and

(c2) �i is an inner edge of Bi if v(Bi)�3, i ∈ {1, . . . , k − 2}.

Let E denote the set of tuples (G, e) such that G is a 2-connected graph, e = x1x2 ∈ E(G), G = x1G1x2G2x1, and
Gi ∪ x1x2 is 3-connected or a triangle for some i ∈ {1, 2}.

Obviously, if e belongs to a track of G, then (G, e) /∈E. The following strengthening of 1.2 shows, in particular, that
for 2-connected {claw, net}-free graphs the converse is also true.
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4.9. Let G be a 2-connected {claw, net}-free graph and e = pz ∈ E(G). Then

(a1) G has a track,
(a2) the following are equivalent:

(c1) e belongs to a track of G,
(c2) (G, e) /∈E, and

(a3) if (G, e) ∈ E, then for every inner vertices s, t of the two different blocks S and T of G − z that contain p, there
is an st-trace of G containing e.

Proof (uses 3.2 and 4.2 (a1)). As we mentioned above, (c1) ⇒ (c2).
(p1) We prove (a1) and (c2) ⇒ (c1) by induction on v(G). The claim holds, if v(G) = 3 or G is a cycle. Therefore,

let v(G)�4 and G not a cycle. By (c2), (G, pz) /∈E.
(p1.1) Suppose that G−z is 2-connected. Since G is {claw, net}-free, clearly G−z is also {claw, net}-free. Therefore

by the induction hypothesis, G − z has a track C, and so p ∈ V (C). Since G is 2-connected, there is a vertex c in C
distinct from p and adjacent to z. Let x and y be the two vertices adjacent to c in C. Then G′ = G − c satisfies the
assumptions of 3.2, namely, G′ is connected and P = C − c is an xy-trace of G′ − z. By 3.2, G′ has an st-trace L such
that e ∈ E(L) and {s, t} ⊂ {x, y, z}. Since c is adjacent to x, y, and z, clearly csLtc is a track of G containing e.

(p1.2) Now suppose that G − z is not 2-connected. Let G − z = AaHbB, where A and B are end-blocks of G. Since
(G, pz) /∈E, p is an inner vertex of an end-block, say p ∈ V (A − a). Since G is 2-connected, (G, qz) /∈E for some
q ∈ V (B − b). By 4.2 (a1), G − z has a pq-trace P. Then zpPqz is a track in G containing e = pz.

(p2) Now we prove (a3). Let (G, pz) /∈E. Then G− z = SpT bB, where S is an end-block and T is a block of G− z.
Let s and t be inner vertices of S and T, respectively. Since G is 2-connected, G − S is connected. Since G is claw-free,
T − S is an end-block of G − S, and so t and z are inner vertices of different end-blocks of G − S. By 4.2 (a1), S has
an sp-path P and G − S has a zt-trace Q. Then sPpzQt is an st-trace of G containing e. �

From 4.9 we have, in particular:

4.10. Let G be a 2-connected {claw, net}-free graph. Then every edge in G belongs to a trace of G.

In [9] we gave a structural characterization of so-called ‘closed’ {claw, net}-free graphs. This structure theorem
together with the known properties of the Ryjác̆ek closure [10] can be used to provide alternative proofs for some of
the above Hamiltonicity results. In [7] we describe some graph closures that are stronger than the closure in [10] and
that can be applied to graphs having some induced claws. These results can be used to extend the picture, described in
this paper, for a wider class of graphs.
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