Communication

On Hamiltonicity of \{claw, net\}-free graphs

Alexander Kelmans ${ }^{\text {a }}$,
${ }^{a}$ University of Puerto Rico, San Juan, Puerto Rico
${ }^{\mathrm{b}}$ Rutgers University, New Brunswick, NJ, USA

Received 4 June 2004; received in revised form 26 March 2006; accepted 6 April 2006
Communicated by D.B. West

Abstract

An $s t$-path is a path with the end-vertices s and t. An s-path is a path with an end-vertex s. The results of this paper include necessary and sufficient conditions for a \{claw, net\}-free graph G with $s, t \in V(G)$ and $e \in E(G)$ to have (1) a Hamiltonian s-path, (2) a Hamiltonian $s t$-path, (3) a Hamiltonian s - and $s t$-paths containing e when G has connectivity one, and (4) a Hamiltonian cycle containing e when G is 2 -connected. These results imply that a connected \{claw, net\}-free graph has a Hamiltonian path and a 2 -connected \{claw, net\}-free graph has a Hamiltonian cycle [D. Duffus, R.J. Gould, M.S. Jacobson, Forbidden subgraphs and the Hamiltonian theme, in: The Theory and Application of Graphs (Kalamazoo, Mich., 1980), Wiley, New York, 1981, pp. 297-316]. Our proofs of (1)-(4) are shorter than the proofs of their corollaries in [D. Duffus, R.J. Gould, M.S. Jacobson, Forbidden subgraphs and the Hamiltonian theme, in: The Theory and Application of Graphs (Kalamazoo, Mich., 1980), Wiley, New York, 1981, pp. 297-316], and provide polynomial-time algorithms for solving the corresponding Hamiltonicity problems.

© 2006 Elsevier B.V. All rights reserved.

Keywords: Claw; Net; Graph; \{claw, net\}-free graph; Hamiltonian path; Hamiltonian cycle; Polynomial-time algorithm

1. Introduction

We consider simple undirected graphs. All notions on graphs that are not defined here can be found in [2,12].
A graph G is called H-free if G has no induced subgraph isomorphic to a graph H. A claw is a graph having exactly four vertices and exactly three edges that are incident to a common vertex. A claw can be drawn as the letter Y. A net is a graph obtained from a triangle by attaching to each vertex a new dangling edge.

There are many papers devoted to the study of Hamiltonicity of claw-free graphs, and, in particular, \{claw, net\}-free graphs (e.g. [1,3,4,6-8,10,11]). The maximum independent vertex set problem for \{claw, net\}-free graphs was studied in [5]. In this paper we establish some new Hamiltonicity results on \{claw, net\}-free graphs.

[^0]An $s t$-path is a path with the end-vertices s and t. An s-path is a path with an end-vertex s. Let G be a \{claw, net \}-free graph, $s, t \in V(G), s \neq t$, and $e \in E(G)$. The results of this paper include necessary and sufficient conditions for G to have:
a Hamiltonian s-path (see 4.3 and 4.9),
a Hamiltonian $s t$-path when G has connectivity one (see 4.3),
a Hamiltonian $s t$-path containing e if G has connectivity one (4.6),
a Hamiltonian s-path containing e when G has connectivity one (4.7), and
a Hamiltonian cycle containing e when G is 2-connected (4.9).
From the above mentioned results we have the following corollaries.
1.1 (Duffus et al. [3, Corollary of 4.3]). Every connected \{claw, net $\}$-free graph has a Hamiltonian path.
1.2 (Duffus et al. [3, Corollary of 4.9]). Every 2-connected \{claw, net\}-free graph has a Hamiltonian cycle.

Our proofs of $\mathbf{4 . 3}$ and $\mathbf{4 . 9}$ are shorter and more natural than the proofs of their corollaries $\mathbf{1 . 1}$ and $\mathbf{1 . 2}$ in [3]. They also provide polynomial-time algorithms for solving the corresponding Hamiltonian problems for \{claw, net\}-free graphs. In [1] a linear time algorithm was given for finding a Hamiltonian path and a Hamiltonian cycle (if any exist) in a \{claw, net\}-free graph.

The known results on 3-connected \{claw, net\}-free graphs include the following.
1.3 (Shepherd [11]). A 3-connected \{claw, net $\}$-free graph has a Hamiltonian xy-path for every two distinct vertices x and y.
1.4 (Kelmans [8]). Let G be a \{claw, net\}-free graph. If G is 3 -connected, then every two non-adjacent edges in G belong to a Hamiltonian cycle. If G is 4 -connected, then every two edges in G belong to a Hamiltonian cycle.
1.5 (Kelmans [8]). Let G be a 3 -connected \{claw, net $\}$-free graph, $e=u v \in E(G)$, and $s, t \in V(G), s \neq t$. Then G has a Hamiltonian st-path containing e if and only if either $\{s, t\} \cap\{u, v\}=\emptyset$ or $\{s, t\} \backslash\{u, v\}=z \in V(G)$ and $G-\{z, u, v\}$ is connected.
1.6 (Kelmans [8]). Let G be a k-connected $\{$ claw, net $\}$-free graph, $k \geqslant 3, L_{1}$ and L_{2} two disjoint paths in $G,\left|V\left(L_{1}\right)\right|+$ $\left|V\left(L_{2}\right)\right| \leqslant k$, and x_{1}, x_{2} the end-vertices of L_{1}, L_{2}, respectively. Then the following are equivalent:
(c1) G has a Hamiltonian $x_{1} x_{2}$-path containing L_{1} and L_{2},
(c2) G has a Hamiltonian $z_{1} z_{2}$-path containing L_{1} and L_{2} for every end-vertices z_{1}, z_{2} of L_{1}, L_{2}, respectively, and
(c3) $G-\left(L_{1} \cup L_{2}\right)$ is connected.
1.7 (Kelmans [8]). Let G be a k-connected $\{$ claw, net $\}$-free graph, $k \geqslant 2, L$ a path in G, and $|V(L)| \leqslant k$. Then G has a Hamiltonian cycle containing L if and only if $G-L$ is connected.

Obviously both $\mathbf{1 . 3}$ and $\mathbf{1 . 4}$ follow immediately from 1.5. More results on Hamiltonicity of k-connected \{claw, net\}free graphs can be found in [8].

The results of this paper form a part of a broader picture on Hamiltonicity of \{claw, net\}-free graphs and were presented at the Discrete Mathematics Seminar at the University of Puerto Rico in November 1999 (see also $[6,8]$).

2. Main notions and notation

We consider undirected graphs with no loops and no parallel edges. We use the following notation: $V(G)$ and $E(G)$ are the sets of vertices and edges of a graph G, respectively, $v(G)=|V(G)|$ and $e(G)=|E(G)|, A v B$ is the union of two graphs A and B having exactly one vertex v in common, and $A v B=A v u$ if B is an edge $v u$.

An st-path (s-path) is a path with the end-vertices s and t (an end-vertex s, respectively). If a and b are vertices of P, then $a P b$ denotes the subpath of P with the end-vertices a and b. A path (a cycle) of G is called Hamiltonian if it
contains each vertex of G. A Hamiltonian path of G is also called a trace of G. We introduce the term track of G for a Hamiltonian cycle of G.
Let $\kappa(G)$ denote the vertex connectivity of a graph G. A graph G is called k-connected if $\kappa(G) \geqslant k$.
Let H be a subgraph of G. We write simply $G-H$ instead of $G-V(H)$. A vertex x of H is called an inner vertex of H if x is adjacent to no vertices in $G-H$, and a boundary vertex of H, otherwise. An edge e of H is called an inner edge of H if e is incident to an inner vertex of H.

A block of G is either an isolated vertex or a maximal connected subgraph H of G such that $H-v$ is connected for every $v \in V(H)$. A block B of G is called an end-block of G if B has exactly one boundary vertex, and an inner block, otherwise.

3. The key lemma

First, we observe the following.

3.1. Let G be a graph. The following are equivalent:

(a1) G has no induced subgraph isomorphic to a claw or a net and
(a2) G has no connected induced subgraph with at least three end-blocks.
Proof. Obviously (a2) \Rightarrow (a1). We prove (a1) \Rightarrow (a2). If G is \{claw, net\}-free, then $G-x$ is also \{claw, net\}-free for every $x \in V(G)$. Clearly, our claim is true if $v(G)=1$. Let F be a counterexample with the minimum number of vertices. Then (1) every end-block has exactly one edge, (2) F has exactly three end-blocks, (3) if $x \in V(F)$ and $F-x$ is connected, then x is a leaf, and (4) F is not a claw and not a net. By (2) and (3), F is a tree or has exactly one cycle which is a triangle. In both cases, by (4), F has a leaf z such that $F-z$ is a smaller counterexample, a contradiction.

The following lemma is useful for analyzing Hamiltonicity of \{claw, net\}-free graphs.
3.2. Let G be a \{claw, net\}-free graph and $z \in V(G)$. Suppose that $G-z$ has an xy-trace P and there exists $e_{z}=z p \in E(G)$, and so G is connected and $p \in V(P)$. Let e_{x} and e_{y} be the end-edges of P. Then G has an ab-trace Q such that $\{a, b\} \subset\{x, y, z\}, e_{z} \in E(Q)$ and $\left\{e_{x}, e_{y}\right\} \cap E(Q) \neq \emptyset$.

Proof (uses 3.1). We define below a notion of a good path which is a special subpath of path P. Our goal is to show that if G has no required trace, then G has a good path and a maximal good path is a subpath of a longer good path in G, which is a contradiction.

By the assumption of our claim, $p \in V(P)$. Let $X=p P x=x_{0} x_{1} \ldots x_{k-1} x_{k}$ and $Y=p P y=y_{0} y_{1} \ldots y_{t}$, where $x_{\underline{k}}=x, y_{t}=y$, and $x_{0}=y_{0}=p$. Let $M_{r, s}=x_{r} P y_{s}, \dot{M}_{r, s}$ denote the subgraph of G induced by $V\left(M_{r, s}\right)$, and $\bar{M}_{r, s}=\dot{M}_{r, s} \cup\left\{x_{r} x_{r+1}, y_{s} y_{s+1}, z p\right\}$.

A subpath $M_{r, s}$ is called good if
(x1) $\dot{M}_{r, s}$ has a $p y_{s}$-trace containing $x_{r-1} x_{r}$,
(y1) $\dot{M}_{r, s}$ has a $p x_{r}$-trace containing $y_{s-1} y_{s}$,
(x2) if $x_{r} \neq x$, then for every $v \in V\left(M_{r, s}\right) \backslash x_{r}$, the graph $\dot{M}_{r, s} \cup\left\{x_{r} x_{r+1}, x_{r+1} v\right\}$ obtained from $\dot{M}_{r, s}$ by adding the edge $x_{r} x_{r+1}$ and a new edge $x_{r+1} v$ has a $p y_{s}$-trace containing the path $x_{r} x_{r+1} v$,
($\mathbf{y} \mathbf{2}$) if $y_{s} \neq y$, then for every $v \in V\left(M_{r, s}\right) \backslash y_{s}$, the graph $\dot{M}_{r, s} \cup\left\{y_{s} y_{s+1}, y_{s+1} v\right\}$ obtained from $\dot{M}_{r, s}$ by adding the edge $y_{s} y_{s+1}$ and a new edge $y_{s+1} v$ has a $p x_{r}$-trace containing the path $y_{s} y_{s+1} v$, and
(z) for every $v \in V\left(M_{r, s}\right) \backslash p$, the graph $\dot{M}_{r, s} \cup\{z p, z v\}$ obtained from $\dot{M}_{r, s}$ by adding the edge $z p$ and a new edge $z v$ has an $x_{r} y_{s}$-trace (which clearly contains $e_{z}=z p$ and $z v$).

If $p \in\{x, y\}$ or $\left\{x_{1} z, y_{1} z\right\} \cap E(G) \neq \emptyset$, then clearly G has a required trace. Therefore, let $p \notin\{x, y\}$ and $\left\{x_{1} z, y_{1} z\right\} \cap$ $E(G)=\emptyset$. Since G has no induced claws, the claw in G with the edge set $\left\{p x_{1}, p y_{1}, p z\right\}$ is not induced, and therefore $x_{1} y_{1} \in E(G)$.

Clearly, $\dot{M}_{1,1}$ is a triangle and $V\left(\dot{M}_{1,1}\right)=\left\{p, x_{1}, x_{2}\right\}$. Now it is easy to check that $M_{1,1}$ is a good path. Let $M_{r, s}$ be a maximal good path. Put $A=\left\{e_{x}, e_{y}, e_{z}\right\}$.
(p1) Suppose that $x_{r}=x$. By ($\left.\mathbf{x} \mathbf{1}\right), \dot{M}_{r, s}$ has a $p y_{s}$-trace L containing $x_{r-1} x_{r}$. Then $z p L y_{s} P y$ is a $y z$-trace in G containing A. Similarly, if $y_{s}=y$, then G has an $x z$-trace containing A.
(p2) Now suppose that $x_{r} \neq x$ and $y_{s} \neq y$. Then the subgraph $\bar{M}_{r, s}$ of G has at least three end-blocks. Since G is \{claw, net\}-free, by 3.1, there exists an edge $a b$ in G such that $a \in\left\{x_{r+1}, y_{s+1}, z\right\}$ and $b \in V\left(\bar{M}_{r, s}-a\right)$.
(p2.1) Suppose that $a=z$ and $b \in V\left(M_{r, s}\right)$. By (z), $\bar{M}_{r, s} \cup z b$ has an $x_{r+1} y_{s+1}$-trace L containing e_{z}. Then $x P x_{r+1} L y_{s+1} P y$ is an $x y$-trace in G containing A.
(p2.2) Suppose that $a=z$ and $b \in\left\{x_{r+1}, y_{s+1}\right\}$. By symmetry, we can assume that $b=x_{r+1}$. By ($\mathbf{x 1}$), $\dot{M}_{r, s}$ has a $p y_{s}$-trace L. Then $P^{\prime}=x P x_{r+1} z p L y_{s} P y$ is an $x y$-trace in G. If $x \neq x_{r+1}$, then P^{\prime} contains A. If $x=x_{r+1}$, then P^{\prime} contains $A \backslash e_{x}$.
(p2.3) Now suppose that $a \in\left\{x_{r+1}, y_{s+1}\right\}$ and $b \neq z$. By symmetry, we can assume that $a=x_{r+1}$. Then $b \in$ $V\left(M_{r, s}-x_{r}\right) \cup y_{s+1}$.
(p2.3.1) Suppose that $x_{r+1}=x$.
Suppose that $b \neq y_{s+1}$. By ($\mathbf{x 2}$), $M_{r, s} \cup x b$ has a $z y_{s}$-trace L containing $e_{x}=x_{r} x_{r+1}$. Then $z p L y_{s} y_{s+1} P y$ is a $y z$-trace in G containing A.

Now suppose that $b=y_{s+1}$. By $(\mathbf{y} \mathbf{1}), \dot{M}_{r, s}$ has a $\left\{p, x_{r}\right\}$-trace L. Then $P^{\prime}=z p L x_{r} x_{r+1} y_{s+1} P y$ is a $z y$-trace in G. If $y_{s+1} \neq y$, then P^{\prime} contains A. If $y_{s+1}=y$, then P^{\prime} contains $A-e_{y}$.
(p2.3.2) Now suppose that $x_{r+1} \neq x$. Our goal is to show that
(c1) if $b \neq y_{s+1}$, then $M^{\prime}=M_{r+1, s}$ is a good path and
(c2) if $b=y_{s+1}$ (i.e., $x_{r+1} y_{s+1} \in E(G)$), then $M^{\prime}=M_{r+1, s+1}$ is a good path.
This will lead to a contradiction because $M_{r, s} \subset M^{\prime}$, and therefore a good path $M_{r, s}$ will not be maximal. We recall that we consider the case when $x_{r} \neq x$ and $y_{s} \neq y$.

CASE (c1): Suppose that $b \neq y_{s+1}$. We want to prove that $M_{r+1, s}$ is a good path.
 containing the path $x_{r} x_{r+1} b$. Then L is also a $p y_{s}$-trace in $\dot{M}_{r+1, s}$ containing $x_{r} x_{r+1}$.
(p.y1) Let us show that $M_{r+1, s}$ satisfies ($\mathbf{(1 1)}$. By ($\left.\mathbf{y} \mathbf{1}\right)$ for $M_{r, s}$, the graph $\dot{M}_{r, s}$ has a $p x_{r}$-trace L containing $y_{s-1} y_{s}$. Then $p L x_{r} x_{r+1}$ is a $p x_{r+1}$-trace in $\dot{M}_{r+1, s}$ containing $y_{s-1} y_{s}$.
(p.x2) Let us show that $M_{r+1, s}$ satisfies ($\mathbf{x} 2$).

Consider graph $Q_{v}=\dot{M} \cup\left\{x_{r+1} x_{r+2}, x_{r+2} v\right\}$, where $v \in V\left(M_{r+1, s}\right) \backslash x_{r+1}$.
Suppose that $v \neq x_{r}$. By ($\mathbf{x} \mathbf{2}$) for $M_{r, s}$, graph $\dot{M}_{r, s} \cup\left\{x_{r} x_{r+1}, v x_{r+1}\right\}$ has a $p y_{s}$-trace L containing the path $x_{r} x_{r+1} v$. Then $\left(L-v x_{r+1}\right) \cup\left(x_{r+1} x_{r+2} v\right)$ is a $p y_{s}$-trace in Q_{v} containing path $x_{r+1} x_{r+2} v$.

Now suppose that $v=x_{r}$. By (p.x1), $M_{r+1, s}$ satisfies ($\mathbf{x 1}$), i.e., graph $\dot{M}_{r+1, s}$ has a $p y_{s}$-trace L containing $x_{r} x_{r+1}$. Then $\left(L-x_{r} x_{r+1}\right) \cup\left(x_{r+1} x_{r+2} x_{r}\right)$ is a $p y_{s}$ trace containing path $x_{r+1} x_{r+2} v$.
(p.y2) Let us show that $M_{r+1, s}$ satisfies ($\mathbf{y} 2$).

Consider graph $Q_{v}=\dot{M}_{r+1, s} \cup\left\{y_{s} y_{s+1}, v y_{s+1}\right\}$, where $v \in V\left(M_{r+1, s}\right) \backslash y_{s}$. By (y2) for $M_{r, s}$, graph $\dot{M}_{r, s} \cup$ $\left\{y_{s} y_{s+1}, v y_{s+1}\right\}$ has a $p x_{r}$-trace L containing path $y_{s} y_{s+1} v$. Then $x_{r+1} x_{r} L z$ is a $\left\{p, x_{r+1}\right\}$-trace in Q_{v} containing path $y_{s} y_{s+1} v$.
(p.z) Let us show that $M_{r+1, s}$ satisfies (\mathbf{z}).

Consider graph $Q_{v}=M_{r+1, s} \cup\{z p, z v\}$, where $v \in V\left(M_{r+1, s}\right) \backslash p$.
Suppose that $v \in V\left(M_{r, s}\right) \backslash p$. By (\mathbf{z}) for $M_{r, s}$, graph $M_{r s} \cup\{z p, z v\}$ has an $x_{r} y_{s}$-trace L. Then $x_{r+1} x_{r} L y_{s}$ is an $x_{r+1} y_{s}$-trace in $M_{r+1, s} \cup\{z p, z v\}$.

Now suppose that $v=x_{r+1}$. By ($\left.\mathbf{x} \mathbf{1}\right)$ for $M_{r, s}$, graph $\dot{M}_{r, s}$ has a $p y_{s}$-trace L. Then $x_{r+1} z p L y_{s}$ is an $x_{r+1} y_{s}$-trace in Q_{v}.

CASE (c2): Now suppose that $b=y_{s+1}$. We want to prove that $M_{r+1, s+1}$ is a good path. By symmetry, it suffices to prove that $M_{r+1, s+1}$ satisfies ($\left.\mathbf{x} \mathbf{1}\right)$, ($\mathbf{x} \mathbf{2}$), and (\mathbf{z}). Let us prove ($\left.\mathbf{x} 1\right)$. By ($\left.\mathbf{y} 1\right)$ for $M_{r, s}$, graph $\dot{M}_{r, s}$ has a $p x_{r}$-trace L. Then $p L x_{r} x_{r+1} y_{s+1}$ is a $p y_{s+1}$-trace in $\dot{M}_{r+1, s+1}$ containing $x_{r} x_{r+1}$. The proof of ($\mathbf{x} \mathbf{2}$) and (\mathbf{z}) is similar to CASE (c1).

4. More on \{claw, net\}-free graph Hamiltonicity

Lemma 3.2 allows to give an easy proof of the following strengthening of 1.1.

4.1. Let G be a connected $\{c l a w$, net $\}$-free graph. Then

(a1) G has a trace and
(a2) if $s z \in E(G)$ and $G-z$ is connected, then sz belongs to a trace of G.
Proof (uses 3.2). We prove our claim by induction on $v(G)$. The claim holds if $v(G)=1$. Since G is connected, there exists $z \in V(G)$ such that $G-z$ is also connected. Let $s z \in E(G)$. Since G is \{claw, net \}-free, clearly $G-z$ is also \{claw, net\}-free. Therefore by the induction hypothesis, $G-z$ has a trace. Then by 3.2, G has a trace containing $s z$.

Here is another strengthening of $\mathbf{1 . 1}$ for graphs of connectivity one.
4.2. Let G be a connected $\{$ claw, net $\}$-free graph, $G=A a H b B$, where A and B are end-blocks of G. Let $a^{\prime} \in V(A-a)$, $b^{\prime} \in V(B-b)$, and $a^{\prime} x$ be an edge of A such that if $v(A) \geqslant 3$, then x is an inner vertex of an end-block of $G-a^{\prime}$. Then
(a1) there exists an $a^{\prime} b^{\prime}$-trace in G and, moreover,
(a2) there exists an $a^{\prime} b^{\prime}$-trace in G containing edge $a^{\prime} x$.
Proof. We prove our claim by induction on $v(G)$. If $v(G)=3$, then our claim is obviously true.
(p1) Suppose that $v(A) \geqslant 3$. Then A is 2-connected. Let $A^{\prime}=A-a^{\prime}$ and $G^{\prime}=G-a^{\prime}$. Then $G^{\prime}=A^{\prime} a H b B$ and G^{\prime} is connected. Since G is \{claw, net\}-free, G^{\prime} is also \{claw, net\}-free. Since $v\left(G^{\prime}\right)<v(G)$, by the induction hypothesis, G^{\prime} has an $x b^{\prime}$-trace P. Then $a^{\prime} x P b^{\prime}$ is an $a^{\prime} b^{\prime}$-trace in G containing $a^{\prime} x$.
(p2) Now suppose that $v(A)=2$. Then $a^{\prime} x=a^{\prime} a$ and there is $b^{\prime} z \in E(B)$ such that z is an inner vertex of an end-block in $G-b^{\prime}$. Hence by the arguments, similar to those in ($\left.\mathbf{p} \mathbf{1}\right), G$ has an $a^{\prime} b^{\prime}$-trace in G containing $a^{\prime} x$ (as well as $b^{\prime} z$).

From 4.2 we have, in particular:
4.3. Let G be a $\{$ claw, net $\}$-free graph $v(G) \geqslant 3, \kappa(G)=1$, and $s, t \in V(G)$. Then G has an st-trace if and only if s and t are inner vertices of different end-blocks of G.

From 4.1 and 4.2 it is easy to obtain the following stronger result.
4.4. Let G be a connected $\{$ claw, net $\}$-free graph having $k \geqslant 2$ blocks. Let $A_{j}, j \in\{1,2\}$, be an end-block of G, a_{j}^{\prime} the boundary vertex of $A_{j}, a_{j} \in A_{j}-a_{j}^{\prime}$, and $\alpha_{j} \in E\left(A_{j}\right)$. Let B_{i} be an inner block of G and $\beta_{i} \in E\left(B_{i}\right)$. Let $U=\left\{\alpha_{1}, \alpha_{2}\right\} \cup\left\{\beta_{i}: i=1, \ldots, k-2\right\}$. Suppose that
(h1) $\alpha_{j}=a_{j} x_{j}$ is such that if $v(A) \geqslant 3$, then x_{j} is an inner vertex of an end-block of $A_{j}-a_{j}^{\prime}, j \in\{1,2\}$, and
(h2) β_{i} is an inner edge of B_{i}, if $v\left(B_{i}\right) \geqslant 3, i \in\{1, \ldots, k-2\}$.
Then G has an $a_{1} a_{2}$-trace containing U.
Proof (uses 4.1 and 4.2). Since G is connected, for every end-block A_{j} of G there is an edge $a_{j}^{\prime} p_{j} \in E(G) \backslash E\left(A_{j}\right)$. Similarly, for every inner block B_{i} of G there are edges $b_{i} q_{j}, b_{i}^{\prime} q_{j}^{\prime} \in E(G) \backslash E\left(B_{i}\right)$, where b_{i} and b_{i}^{\prime} are the boundary vertices of B_{i}. Let $\bar{A}_{j}=A_{j} a_{j}^{\prime} p_{j}$ and $\bar{B}_{i}=q_{i} b_{i} B_{i} b_{i}^{\prime} q_{j}^{\prime}$. Then all \bar{A}_{j} 's and \bar{B}_{i} 's are induced subgraphs of G and, therefore, are \{claw, net\}-free. By 4.1, each \bar{B}_{i} has a trace $q_{i} b_{i} Q_{i} b_{i}^{\prime} q_{j}^{\prime}$ containing β_{i}. By 4.2, each \bar{A}_{j} has a trace $a_{j} P_{j} a_{j}^{\prime} p_{j}$ containing α_{j}. Then $P_{1} \cup Q_{1} \ldots Q_{k-2} \cup P_{2}$ is an $a_{1} a_{2}$-trace containing U.

Let \mathscr{L} denote the set of 4-tuples $(G, s, t, u v)$ such that G is a graph, $\{s, t\} \subseteq V(G), s \neq t, u v \in E(G)$, and either (1) $\{s, t\}$ does not meet one of the components of $G-\{u, v\}$ or (2) $\{s, t\} \cap\{u, v\} \neq \emptyset$, say $t=u$, and either $G-\{s, v\}$
is not connected and the component containing t has at least two vertices or there is $x \in V(G-\{u, v\})$ such that $\{s, v\}$ avoids one of the components of $G-\{t, x\}$.

Obviously, if G has an $s t$-trace containing $u v$, then $(G, s, t, u v) \notin \mathscr{L}$. We will see that for \{claw, net\}-free graphs of connectivity one the converse is also true.
4.5. Let G be a connected graph, $s \in V(G)$, and $x s G$ be a $\{$ claw, net $\}$-free graph. Let C be the end-block of vs G distinct from xs, c the boundary vertex of $C, t \in V(C-c)$, and $u v \in E(G)$. Then G has an st-trace containing $u v$ if and only if $(G, s, t, u v) \notin \mathscr{L}$.

Proof (uses 4.2 and 4.4). By the above remark, it is sufficient to show that $(G, s, t, u v) \notin \mathscr{L}$ implies that G has an $s t$-trace containing $u v$. We prove our claim by induction on $v(G)$. If $u v \notin E(C)$ or $V(C)=\{u, v\}$, then our claim follows from 4.4. Therefore, let $u v \in E(C)$. In particular, if $v(C)=2$, then our claim is true. Therefore, let $v(C) \geqslant 3$, and so C is 2 -connected. Let $G^{\prime}=G-t$ and $C^{\prime}=C-t$, and so C^{\prime} is connected.
(p1) Suppose that $G-\{u, v\}$ is not connected. Since $(G, s, t, u v) \notin \mathscr{L}$, vertices s and t belong in $G-\{u, v\}$ to different components, say S and T, respectively. Since C is 2-connected, $\bar{T}=T \cup u v$ is also 2-connected.
(p1.1) Suppose that $v(T)=1$, i.e., $V(T)=\{t\}$. Then $t u$ is an end-block of $G-v$. Since $x s G$ is \{claw, net $\}$-free, by 4.2, $G-v$ has an st-trace $s P u t$. Then s Puvt is an $s t$-trace in G containing $u v$.
(p1.2) Now suppose that $v(T) \geqslant 2$. Since \bar{T} is 2-connected, either $\bar{T}-t$ is 2-connected or t is adjacent in G to an inner vertex z of the end-block of $\bar{T}-t$ avoiding $u v$. In both cases, $\left(G^{\prime}, s, z, u v\right) \notin \mathscr{L}$, and so by the induction hypothesis, G^{\prime} has a $s z$-trace P containing $u v$. Then $s P z t$ is an $s t$-trace containing $u v$.
(p2) Now suppose that $G-\{u, v\}$ is connected. Since $(G, s, t, u v) \notin \mathscr{L},\{u, v\} \neq\{s, t\}$. Since C is 2-connected, t is adjacent to an inner vertex z of the end-block B of $x s G^{\prime}$ which avoids x. If $t \in\{u, v\}$, say $t=a$, then since $(G, s, t, u v) \notin \mathscr{L}, v$ is an inner vertex of B. Then by 4.2, G^{\prime} has an $s v$-trace P, and so $s P b a$ is an $s t$-trace containing $u v$. So let $t \notin\{u, v\}$. Let D be the block of G^{\prime} containing $u v$. If $D \neq B$, then since $(G, s, t, u v) \notin \mathscr{L}$, also $\left(G^{\prime}, s, z, u v\right) \notin \mathscr{L}$, and so by the induction hypothesis, G^{\prime} has a $s z$-trace P containing $u v$. If $D=B$, then $(G, s, z, u v) \notin \mathscr{L}$ because G has no induced claw centered at z. So again by the induction hypothesis, G^{\prime} has a $s z$-trace P containing $u v$. In both cases $s P z t$ is an $s t$-trace in G containing $u v$.

From 4.4 and 4.5 we have:
4.6. Let G be a $\{$ claw, net $\}$-free graph, $v(G) \geqslant 3, \kappa(G)=1, e \in E(G)$, and $\{s, t\} \in V(G), s \neq t$. Then G has an st-trace containing e if and only ifs and t are inner vertices of different end-blocks of G and $(G, s, t, e) \notin \mathscr{L}$.

From 4.6 we have:
4.7. Let G be a $\{$ claw, net $\}$-free graph, $v(G) \geqslant 3, \kappa(G)=1, s \in V(G)$, and $e \in E(G)$. Then G has an s-trace containing e if and only if s is an inner vertex of an end-block in G and $(G, b, s, e) \notin \mathscr{L}$, where b is the boundary vertex of the end-block avoiding s.

From 4.4 and 4.6 we have the following strengthening of 4.4.
4.8. Let G be a connected $\{$ claw, net $\}$-free graph having $k \geqslant 2$ blocks. Let $A_{j}, j \in\{1,2\}$, be an end-block of G, a_{j}^{\prime} the boundary vertex of $A_{j}, a_{j} \in A_{j}-a_{j}^{\prime}$, and $\alpha_{j} \in E\left(A_{j}\right)$. Let B_{i} be an inner block of G and $\beta_{i} \in E\left(B_{i}\right)$. Let $U=\left\{\alpha_{1}, \alpha_{2}\right\} \cup\left\{\beta_{i}: i=1, \ldots, k-2\right\}$. Then G has an $a_{1} a_{2}$-trace containing U if and only if
(c1) $\left(A_{j}, a_{j}, a_{j}^{\prime}, \alpha_{j}\right) \notin \mathscr{L}, j \in\{1,2\}$ and
(c2) β_{i} is an inner edge of B_{i} if $v\left(B_{i}\right) \geqslant 3, i \in\{1, \ldots, k-2\}$.
Let \mathscr{E} denote the set of tuples (G, e) such that G is a 2-connected graph, $e=x_{1} x_{2} \in E(G), G=x_{1} G_{1} x_{2} G_{2} x_{1}$, and $G_{i} \cup x_{1} x_{2}$ is 3 -connected or a triangle for some $i \in\{1,2\}$.
Obviously, if e belongs to a track of G, then $(G, e) \notin \mathscr{E}$. The following strengthening of $\mathbf{1 . 2}$ shows, in particular, that for 2 -connected \{claw, net\}-free graphs the converse is also true.
4.9. Let G be a 2-connected $\{$ claw, net $\}$-free graph and $e=p z \in E(G)$. Then
(a1) G has a track,
(a2) the following are equivalent:
(c1) e belongs to a track of G,
(c2) $(G, e) \notin \mathscr{E}$, and
(a3) if $(G, e) \in \mathscr{E}$, then for every inner vertices s, t of the two different blocks S and T of $G-z$ that contain p, there is an st-trace of G containing e.

Proof (uses 3.2 and 4.2 (a1)). As we mentioned above, (c1) \Rightarrow (c2).
(p1) We prove (a1) and (c2) \Rightarrow (c1) by induction on $v(G)$. The claim holds, if $v(G)=3$ or G is a cycle. Therefore, let $v(G) \geqslant 4$ and G not a cycle. By (c2), $(G, p z) \notin \mathscr{E}$.
(p1.1) Suppose that $G-z$ is 2 -connected. Since G is $\{$ claw, net $\}$-free, clearly $G-z$ is also \{claw, net $\}$-free. Therefore by the induction hypothesis, $G-z$ has a track C, and so $p \in V(C)$. Since G is 2-connected, there is a vertex c in C distinct from p and adjacent to z. Let x and y be the two vertices adjacent to c in C. Then $G^{\prime}=G-c$ satisfies the assumptions of 3.2, namely, G^{\prime} is connected and $P=C-c$ is an $x y$-trace of $G^{\prime}-z$. By 3.2, G^{\prime} has an $s t$-trace L such that $e \in E(L)$ and $\{s, t\} \subset\{x, y, z\}$. Since c is adjacent to x, y, and z, clearly $c s L t c$ is a track of G containing e.
(p1.2) Now suppose that $G-z$ is not 2 -connected. Let $G-z=A a H b B$, where A and B are end-blocks of G. Since $(G, p z) \notin \mathscr{E}, p$ is an inner vertex of an end-block, say $p \in V(A-a)$. Since G is 2-connected, $(G, q z) \notin \mathscr{E}$ for some $q \in V(B-b)$. By 4.2 (a1), $G-z$ has a $p q$-trace P. Then $z p P q z$ is a track in G containing $e=p z$.
(p2) Now we prove (a3). Let $(G, p z) \notin \mathscr{E}$. Then $G-z=\operatorname{SpTbB}$, where S is an end-block and T is a block of $G-z$. Let s and t be inner vertices of S and T, respectively. Since G is 2-connected, $G-S$ is connected. Since G is claw-free, $T-S$ is an end-block of $G-S$, and so t and z are inner vertices of different end-blocks of $G-S$. By 4.2 (a1), S has an $s p$-path P and $G-S$ has a $z t$-trace Q. Then $s P p z Q t$ is an $s t$-trace of G containing e.

From 4.9 we have, in particular:

4.10. Let G be a 2-connected $\{$ claw, net $\}$-free graph. Then every edge in G belongs to a trace of G.

In [9] we gave a structural characterization of so-called 'closed' \{claw, net\}-free graphs. This structure theorem together with the known properties of the Ryjáček closure [10] can be used to provide alternative proofs for some of the above Hamiltonicity results. In [7] we describe some graph closures that are stronger than the closure in [10] and that can be applied to graphs having some induced claws. These results can be used to extend the picture, described in this paper, for a wider class of graphs.

References

[1] A. Brandstädt, F.F. Dragan, E. Köhler, Linear time algorithms for Hamiltonian problems on (claw, net)-free graphs, SIAM J. Comput. 30 (2000) 1662-1677.
[2] R. Diestel, Graph Theory, Springer, Berlin, 2005.
[3] D. Duffus, R.J. Gould, M.S. Jacobson, Forbidden subgraphs and the Hamiltonian theme, in: The Theory and Application of Graphs (Kalamazoo, Mich., 1980), Wiley, New York, 1981, pp. 297-316.
[4] R. Faudree, E. Flandrin, Z. Ryjáček, Claw-free graphs-a survey, Discrete Math. 164 (1997) 87-147.
[5] P.L. Hammer, N.V.R. Mahadev, D. De Werra, The struction of a graph: applications to $C N$-free graphs, Combinatorica 5 (1985) 141-147.
[6] A. Kelmans, On Hamiltonicity of claw- and net-free graphs, RUTCOR Research Report 18-99, Rutgers University, 1999.
[7] A. Kelmans, On graph closures, Discrete Math. 271 (2003) 141-168.
[8] A. Kelmans, On claw- and net-free graphs, RUTCOR Research Report 7-2004, Rutgers University, 2004.
[9] A. Kelmans, The structure of closed CN-free graphs, RUTCOR Research Report 18-2004, Rutgers University, 2004.
[10] Z. Ryjácek, On a closure concept in claw-free graphs, J. Combin. Theory B 70 (1997) 217-224.
[11] B. Shepherd, Hamiltonicity in claw-free graphs, J. Combin. Theory B 53 (1991) 173-194.
[12] D. West, Introduction to Graph Theory, Prentice-Hall, Englewood Cliffs, NJ, 2001.

[^0]: E-mail address: kelmans@rutcor.rutgers.edu.

