
H O S T E D  B Y Available online at www.sciencedirect.com

International Soil and Water Conservation Research 3 (2015) 282–290
http://dx.doi.org
2095-6339/& 20
Hosting by Else

nCorrespondin
E-mail addre
Peer review u
www.elsevier.com/locate/iswcr
Predicting the spatial distribution of soil erodibility factor using
USLE nomograph in an agricultural watershed, Ethiopia

Hailu Kendie Addisa,b,n, Andreas Klika
aInstitute of Hydraulics and Rural Water Management, University of Natural Resources and Life Sciences, Vienna, Austria

bGondar Agricultural Research Center, Soil and Water Management Directorate, Gondar, Ethiopia

Received 2 September 2015; received in revised form 25 November 2015; accepted 26 November 2015
Available online 8 December 2015
Abstract

Soil erosion in the northwestern Amhara region, Ethiopia has been a subject of anxiety, resulting in a major environmental
threat to the sustainability and productive capacity of agricultural areas. This study tried to estimate soil erodibility factor (K-
factor) using Universal Soil Loss Equation (USLE) nomograph, and evaluate the spatial distribution of the predicted K-factor in a
mountainous agricultural watershed. To investigate the K-factor, the 54 km2 study watershed was divided into a 500 m by 500 m
square grid and approximately at the center of each grid, topsoil samples (roughly 10 to 20 cm depth) were collected over 234
locations. Sand, silt, clay and organic matter (OM) percentage were analyzed, while soil permeability and structure class codes
were obtained using the United States Department of Agriculture (USDA) document. The resulting coefficient of variation (CV) of
the estimated K-factor was 0.31, suggesting a moderate variability. Meanwhile, the value of nugget to sill ratio of K-factor was
0.32, which categorized as moderate spatial autocorrelation. Prediction accuracy and model fitting effect of the Gaussian
semivariogram approach was best, suggesting that the Gaussian ordinary Kriging model was more appropriate for predicting K-
factor. The resulting value of the mean error (ME) was 0 and the mean squared deviation ratio (MSDR) was nearly 1, which
indicates the Gaussian model was unbiased and reproduced the experimental variance sufficiently. The values of K-factor were
smaller (0.0217 to 0.0188) in the northern part and gradually increased (0.0273 to 0.033 Mg h MJ�1 mm�1) towards the central
and south of the study watershed.
& 2015 International Research and Training Center on Erosion and Sedimentation and China Water and Power Press. Production
and Hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Globally, soil erosion is a principal degradative process (Zhu, Li, Li, Liu & Xue, 2010) resulting in a negative
impacts on different soil functions (food and other biomass production, water storing, filtering and transformation,
habitat and gene pool, physical and cultural environment for mankind, and source of raw materials) (Dorren et al.,
2004), which ultimately causes irreversible effect on the poorly renewable soil resource (Buttafuoco, Conforti,
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Aucelli, Robustelli & Scarciglia, 2012). Soil erosion is the major cause of soil degradation in Ethiopia, especially in
northwestern highlands of Amhara Region (Amare et al., 2014). In the Ethiopia highlands, soils are often more
exposed to erosion largely due to cultivation of the steep and fragile soils, limited recycling of dung and crop
residues, deforestation and overgrazing (Habtamu, Heluf, Bobe & Enyew, 2014), poor soil management (Amare et
al., 2013). Earlier research conducted by Girmay, Singh, Nyssen and Borrosen (2009) estimated that soil loss ranged
from 6 to 17.5 Mg ha�1 y�1 with soil and water conservation measures (SWC) and 15.5 to 56.7 Mg ha�1 y�1

without SWC measures on cultivated fields of the Ethiopian highland. The rate of soil erosion depend on erosivity
(caused by external factors, such as climatic, landscape features and land use system) (Buttafuoco et al., 2012), and
on the intrinsic properties of the soil’s response to rainfall and runoff erosivity (Rousseva & Stefanova, 2006;
Sanchis, Torri, Borselli & Poesen, 2008; Singh & Khera, 2008).

The soil’s resistance to rainfall and runoff erosivity is therefore, considered as the inherent susceptibility of soil to
be detached and translocated by erosion processes, such as splash erosion, surface runoff or both (Renard, Foster,
Weesies, McCool & Yoder, 1997; Parysow, Wang, Gertner & Anderson, 2003) and can be dignified as soil
erodibility factor (K-factor) (Parysow et al., 2003; Sanchis et al., 2008; Zhu et al., 2010). The concept of K-factor and
how to quantify such parameter is complicated since the soil susceptibility to erosion is affected by a large number of
physical, chemical, mechanical soil properties and hydrological processes (Bagarello, Di Stefano, Ferro, Giuseppe &
Iovino, 2009). Several studies (Wischmeier, Johnson & Cross, 1971; Roose, 1977; Wischmeier & Smith, 1978;
Laflen & Moldenhauer, 2003) describe K-factor as the rate of soil loss for unitary rainfall erosivity as measured on a
unit plot. The unit plot is 22.18 m long, has a 9% slope, and is continuously maintained in a clean fallow condition
with tillage performed upslope and downslope (Bagarello et al., 2009; Borselli, Cassi & Salvador Sanchis, 2009).
Since K-factor is widely considered as a significant parameter in soil erosion/sediment process simulation models
(Zhu et al., 2010), numerous attempt to simplify the K-factor evaluation procedure have been carried out in the past
and simplified relationships have been proposed for predicting K-factor (Bagarello et al., 2009). According to Roose
(1977) the USLE nomograph (Wischmeier et al., 1971) can be used to estimate K-factor of tropical soils
predominated by ferrallitic and ferruginous soils, with the exception of soils that were gravelly or covered with rocky
debris that acts as protective mulch.

Knowledge of the spatial patterns of K-factor is vital as it might guide us to prioritize and implement site‐specific
soil erosion control measures and during the past decade the spatial variability and correlation of K-factor at different
landscape has been intensively studied and evaluated using both classical statistics and geostatistical methods (Wang,
Gertner, Liu & Anderson, 2001; Veihe, 2002; Vaezi, Bahrami, Sadeghi & Mahdian, 2010; Buttafuoco et al., 2012;
Fig. 1. Overview of the study watershed and distribution of the soil sampling locations.
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Imani, Ghasemieh & Mirzavand, 2014). Geostatistics includes different methods that use Kriging algorithms for
estimating spatially continuous variables (Li & Heap, 2008) and it can be used for assessing spatial variability of K-
factor and have increasingly been utilized by soil scientists. Kriging is widely used for optimal estimation and spatial
interpolation of values at unsampled locations (Li & Heap, 2008).

The enormous deforestation of native forest for crop production has largely contributed to the accelerated rainfall
driven soil erosion and consequently to the wide agricultural productivity decline in the study watershed. Therefore,
spatial continuous data of K-factor can be an important tool for implementing possible approaches for improving soil
resistance in order to control erosion. At the moment, availability of information on the spatial variability of K-factors
in the Ethiopian highlands at a watershed scale is scarce and variability of K-factor depends on the specific area
examined however, such information for the study watershed is lacking. Therefore, the aims of this research were to
estimate K-factor using the USLE nomograph, and assess the spatial variability of the predicted K-factor in a
mountainous watershed.

2. Materials and methods

2.1. Descriptions of the study area

To investigate soil erodibility factor, a field survey was conducted in Gumara-Maksegnit watershed, located in the
northwestern Amhara region, Ethiopia, between 121 24’ and 121 31’ North and between 371 33’ and 371 37’ East
(Fig. 1) and this mountainous agricultural watershed has an area of 54 km2 (Addis, Klik & Strohmeier, 2015). The
main stream (Gumara-Maksegnit River) is a tributary of Lake Tana and originates in the north mountainous parts of
the watershed at more than 2800 m above sea level (a.s.l). Gumara-Maksegnit watershed could be representative of
wider sectors of the northern highlands of Ethiopia because of its geological, geomorphological and climatic features
similarity. The climate of the watershed falls within Weyna Dega (cool sub-humid, 1500–2300 m) and Dega (cool to
humid, 2300–3200 m), with average annual rainfall of 1170 mm and mean annual maximum and minimum daily
temperature of 28.5 1C and 13.6 1C, respectively. The soil types are mainly Leptosol and Cambisol which are found
in the central and upper part while, Vertisol is found around the outlet of the study watershed (Addis et al., 2015).
Severe soil erosion, including sheet, rill and gully incision is widely occurred and it is the major environmental and
social problem in the Gumara-Maksegnit watershed. The watershed was mainly covered by agricultural land (71%)
followed by forest (25%), and grassland (4%), which were identified by means of supervised classification of spot
satellite image (Addis et al., 2015).

2.2. Soil sampling procedures

The study watershed was divided into a 500 m by 500 m square grid and approximately, at the center of each grid,
topsoil samples were collected over 234 locations within the study watershed (Fig. 1) (Addis et al., 2015). As a result
of shallow depth in the study area, the topsoil depth was not fixed; instead roughly 10 to 20 cm depth ranges were
applied. The soil sampling spots were selected using a well-organized regular sampling interval in a GIS
environment, coupled with a careful selection of the most representative soil-landscape characteristics (terrine
attributes, soil types, land use systems and the topsoil conditions) as it was described by Buttafuoco et al. (2012).
Garmin explorer GPS accuracy: (73 m) was used for locating the geographic coordinates of the sampling points in
the field so that, topsoil samples of around 2 kg were removed with the best available tool (bucket auger) for analysis
(Addis et al., 2015). During this study, sometimes the center of the square grid may not be a representative location,
thus in such cases sampling point was shifted to the area which describe the grid well. The soil textures were
analyzed following the procedure reported by Gee and Or (2002) while, soil organic carbon was determined by wet
oxidation method as described by De Vos, Lettens, Muys, and Deckers (2007).

2.3. Soil erodibility factor (K-factor)

Soil erodibility factor is a complex concept and it is influenced by many soil properties, which can reflect the soil
resistance to erosion (Buttafuoco et al., 2012). The most crucial soil variables that control K-factor include OM, clay
content, bulk density, particle size distribution, shape, size and stability of aggregates, shear strength, porosity and
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permeability, and chemical composition (Duiker, Flanagan & Lal, 2001; Veihe, 2002; Sanchis et al., 2008; Morgan,
2009). The K-factor can be calculated via the Universal Soil Loss Equation (USLE), frequently applied to estimate
soil erosion on the basis of other factors obtained from simulated or natural rainfall experimental data (Wischmeier &
Smith, 1978). However, the direct estimation of K-factor is both expensive and time taking (Buttafuoco et al., 2012).
In this study, the K-factors of the collected topsoil samples were estimated using USLE nomograph reported by
Wischmeier et al. (1971), then modified by Foster, McCool, Renard, and Moldenhauer (1981) and Rosewell (1993),
so as to definite the K-factor in international system of unit (SI unit) (Mg h MJ�1 mm�1). The K-factor can be
calculated from the observed soil values (texture, organic matter (OM), structural and permeability class) in
accordance with Eq. (1):

K factorð Þ ¼ 2:77� 10�7 12�OMð ÞM1:14þ4:28� 10�3 s�2ð Þþ3:29� 10�3 p�3ð Þ ð1Þ
where

M ¼ 100�Cð Þ LþArmfð Þ½ � ð2Þ
C is % of clay (o0.002 mm), L is % of silt (0.002–0.05 mm) and Armf is % of very fine sand (0.05–0.1 mm)

(Pérez-Rodríguez, Marques & Bienes, 2007), OM is the organic matter content (%), p is a code indicating the class of
permeability, and s is a code for structure size, type and grade based on field observation and interpreted as described
by Soil Survey Staff (1993). Then each soil texture is assigned a permeability class using (SSS, 1993) document.

2.4. Semivariograms

The K-factor is a quantitative description of a soil particles ability to resist moving downslope and this factor
reflects the fact that different soils erode at different rates when the other factors that affect erosion are the same
(Goldman, Jackson & Bursztynsky, 1986). This variability of K-factor across the study of interest can be described
through a semivariogram model, which is a plot of the structure function that describes the degree of linear
association between pairs of values separated by a given distance (Nielsen & Wendroth, 2003). In addition,
semivariogram is useful for interpolation of values at unmeasured points across the study watershed (Li & Heap,
2008). Values of K-factor anywhere on the landscape differ from location to location, and spatial variations are
generally highly irregular and not exactly described by deterministic equations, instead geostatistical analysis is used
(Nielsen & Wendroth, 2003). In geostatistics, for N pairs of values of soil attribute Ai separated by a distance h, the
semivariogram (a measure of the strength of statistical correlation as a function of distance) (Goovaerts, 1997) is
calculated using equation (3):

γðhÞ ¼ 1
2NðhÞ

XNðhÞ

i ¼ 1

Ai xið Þ�AiðxiþhÞ½ �2 ð3Þ

The software package GSþ (Gamma Design Software) version 10 (Robertson, 2008) was used to obtain the
semivariogram model of K-factor, which were obtained through USLE nomograph. In this study, the semivariogram
model with the least reduced sum of squares (RSS) was selected for spatial autocorrelation process as described by
Addis et al. (2015). The RSS measures the overall difference between observed data and the estimated values by a
prediction model and it is one of the best criterions for parameter and model selection. Meanwhile, the four
commonly used semivariogram models reported by Burrough and McDonnell (1998) were tested to find the best
Table 1
Summary of descriptive statistics of the selected soil samples and the estimated K-factor in the study watershed.

Input parameters Min Max Range Mean SD SE (mean) CV Skewness

Clay (%) 11.6 67.8 56.16 29.29 13.33 0.87 0.45 1.07
Siltþvery fine sand (%) 9.84 49.84 40.0 33.63 7.90 0.52 0.23 �0.94
OM (%) 0.21 8.0 7.79 2.66 1.73 0.11 0.65 0.84
Sand (%) 14.56 72.56 58.0 36.66 9.85 0.64 0.27 �0.18
K-factor (Mg h MJ�1 mm�1) 0.0 0.04 0.04 0.02 0.01 0.00 0.31 �0.26

OM¼organic matter content. SD¼standard deviation. SE (mean)¼standard error of mean. CV¼ coefficient of variation.
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fitted model. This study used cross-validation procedures, which removes one data point and then estimates the
corresponding data using the data points at the rest of the locations and the main use of cross-validation is to compare
the estimated value to the observed value in order to obtain useful information about variables (Davis, 1987; Li &
Heap, 2008). The various cross-validation statistics are vital for examining how well the semivariogram model fits
with the obtained data (Willmott, 1982). Some of the good criteria that the study used to decide the best model
among the tested models were the mean error (ME), the root mean square error (RMSE) and the mean squared
deviation ratio (MSDR).

3. Results and discussion

The measured soil properties, which were used to estimate soil erodibility, were subjected to descriptive statistical
analysis. Summary of the classical statistics for the selected soil attributes observed in the watershed is displayed in
Table 1. Over the sampled area, mean value of OM was 2.6670.11% while, mean value of observed soil texture
(clay, silt and sand) were 29.2970.87%, 33.6370.52%, and 36.6670.64%, respectively (Table 1). According to
Borselli et al. (2009) Wischmeier’s nomograph (Wischmeier et al., 1971) is not applicable for a silt content
exceeding 70%, however, in the study watershed, the resulting silt content ranges from 9.84% to 49.84%, therefore,
the USLE nomograph is applicable.

A soil variability can be defined through descriptive statistics and among the descriptive statistics, the coefficient
of variation (CV) is the most significant parameter (Wei, Xiao, Zeng & Fu, 2008). When a CV is less than or equals
to 0.15, the property shows low variability, moderate if CV is between 0.15 to 0.35 and most variable if CV is greater
than 0.35 (Wilding, 1985). OM and clay content were the most variable soil properties, with CV greater than 0.35
while, silt and sand contents were moderately variable, with CV between 0.22 to 0.28 (Table 1).

The K-factor was calculated for all observed soil sampling points, except for some locations with OM content
greater than 4%. The CV of K-factor was 0.31, suggesting a moderate variability in the study watershed (Table 1).

3.1. Spatial variability

The isotropic experimental semivariogram for the estimated K-factor was determined using Eq. (3). The
semivariogram modeling and prediction is indispensable for spatial structural pattern analysis and interpolation
(Burrough & McDonnell, 1998). The resulting spatial distribution of soil erodibility factor obtained using USLE
nomograph was best fitted to the Gaussian model (Fig. 2) and the coefficient of determination (R2) is equal to 0.904,
which suggest that K-factor had stronger spatial structure (Table 2). The value of nugget to sill ratio (C0/C0þC)
displays the spatial autocorrelation (Li & Reynolds, 1995). The soil erodibility factor had a nugget to sill ratio that
ranges from 0.25 to 0.75, which categorized as moderate spatial autocorrelation (Cambardella et al., 1994), therefore
surface map generation using ordinary Kriging method could be possible (Table 2). A small RSS indicates a model
fits well with the obtained data and it represents unexplained variation (Draper & Smith, 1998). Therefore, based on
the resulting RSS value in Table 2, the Gaussian model is selected as the best model for predicting K-factor.
Fig. 2. The best fitted semivariogram model (the Gaussian model) of the estimated K-factor.



Table 2
Coefficients of the semivariogram statistic produced for the ordinary Kriging models of K-factor using Wischmeier's nomograph.

K-factor Model types Nugget (C0) Sill (C0þC) Range A0 (m) RSS R2 Nugget/sill

Wischmeier’s nomograph Spherical 0.00006 0.00013 20030 1.278E-10 0.865 0.46
Exponential 0.00006 0.00018 21100 1.362E-10 0.856 0.33
Linear 0.00006 0.00009 5706 3.490E-09 0.869 0.67
Gaussian 0.00006 0.00019 12060 9.020E-11 0.904 0.32

RSS¼residual sum squares. R2¼coefficient of determination. Bolded RSS value was chosen as the best model.

Fig. 3. Spatial distribution map of K-factor predicted by ordinary Kriging using the Gaussian semivariogram model.

Table 3
The cross-validation statistics, the mean error (ME), the root mean squared error (RMSE), and the mean squared deviation ratio (MSDR) for
models listed in Table 2 fitted to the experimental semivariogram of K-factor.

Variable Model types ME RMSE MSDR

K-factor Spherical 0.000 0.0089 1.05
Exponential 0.000 0.0088 1.04
Linear 0.000 0.0101 1.13
Gaussian 0.000 0.0086 0.99

Bolded value was chosen as the best model.
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3.2. Soil erodibility map

Spatial prediction map of K-factor created by ordinary Kriging interpolation procedure using the semivariogram
coefficient of the Gaussian model in Table 2 is illustrated in Fig. 3. The inherent topographical variations and
characteristics would be expected to influence organic matter content and soil particle transport, leading to spatial
variability in K-factor which then influences soil erosion. The resulting values of K-factor (obtained using USLE
nomograph) were small (0.0217 to 0.0188) in the north corner and gradually increased (0.0273 to 0.033 Mg h
MJ�1 mm�1) toward the central and south of the study watershed (Fig. 3). This could probably due to forest
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coverage in the northern parts of the study watershed that increases OM content, which ultimately lower K-factor
(Tejada & Gonzalez, 2006). Meanwhile, intensive cultivation of agricultural lands with limited or no recycling of
dung and crop residues in the central and southern parts of the study watershed lowers OM content which resulting in
an increment of K-factor. The prediction of K-factor using the Gaussian ordinary Kriging model was relatively
unbiased as the mean error (ME) was almost equals to 0 (Isaaks & Srivastava, 1989) while, the root mean square
error (RMSE) was very low (0.0086), which indicates better model performance (Hu, Li, Lu & Zhang, 2004). The
mean squared deviation ratio (MSDR) is most nearly 1 for the Gaussian model, which suggests the variance of
measurement data is well reproduced with the ordinary Kriging interpolation method as it was described by Vašát,
Pavlu, Boruvka, Drábek, and Nikodem (2013). In general, the cross-validation statistics is somewhat better for the
Gaussian model of ordinary Kriging than exponential, spherical and linear function, but the differences were very
small (Table 3).

4. Conclusions

Universal Soil Loss Equation (USLE) nomograph is essential method for K-factor calculation and this study
successfully employed the USLE nomograph to estimate the spatial variation of K-factor at a watershed scale. The
result indicates that the coefficient of variation of K-factor was 0.31, suggesting a moderate variability and the
average estimated value of K-factor was 0.02. Meanwhile, the value of nugget to sill ratio of the estimated soil
erodibility factor was between 0.25 and 0.75, which categorized as moderate spatial autocorrelation. The Gaussian
function was the best semivariogram model to explain the spatial pattern of the estimated soil erodibility factor. The
range of the spatial variation of soil erodibility factor was 12060 m and this lag distances was much longer than the
sampling interval, thus the sampling design used in the study watershed for the estimated K-factor was adequately
revealed spatial distribution. Generally, the predicted K-factor was relatively unbiased as the mean error was almost
equals to 0 while, the root mean square error was very low, which indicates better model performance. Moreover, the
mean squared deviation ratio (MSDR) is close to one, which indicates the variance of measurement data is well
reproduced with the ordinary Kriging interpolation method. The estimated soil erodibility factor had the highest
values at the outlet and central part of the watershed, while the lowest values of the soil erodibility factor was
observed in the north and, rarely, in a small part in the other parts of the study watershed. The results of this study
can be used to make recommendation of the K-factor in future soil erosion studies of data scarce similar regions of
the Ethiopian highlands. Finally, the spatial pattern of the estimated K-factor accuracy and applicability of USLE
nomograph for this watershed should be examined using direct measurement in standard plots under natural rainfall
events, although direct estimation of K-factor is both expensive and time consuming.
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