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a b s t r a c t

In this paper we consider threshold graphs (also called nested split graphs) and investigate
some invariants of these graphswhich can be of interest in bounding the largest eigenvalue
of some graph spectra.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Threshold graphs represent a well-studied class of graphs motivated from numerous directions. They were first
introduced by Chvátal and Hammer in 1977 [4] (with motivation in integer linear programming) as graphs for which
there exists a linear threshold function separating independent subsets from non-independent (vertex) subsets. Since then,
depending on pedigree, many different definitions and/or characterizations have been found, including constructive ones,
those based on forbidden configurations, etc. We mention in passing that threshold graphs appear in studying graphical
degree sequences, simplicial complexes, etc. The importance of threshold graphs can be also seen through numerous
applications (not to be listed here).
The detailed treatment of threshold graphs first appeared in the book by Golumbic [10]; the most complete reference on

the topic is the book by Mahadev and Peled [11] (which includes nine different characterizations). Needless to say there are
many different generalizations of threshold graphs. They can be viewed as special cases of somewider classes of graphs like
cographs, split graphs, interval graphs, etc.
Our motivation for considering threshold graphs comes from the spectral graph theory. These graphs arise (within the

graphs with fixed order and/or size) as graphs with the largest eigenvalue of the adjacency matrix. Brualdi and Hoffman [3]
observed that they admit the stepwise form of the adjacencymatrix, while later Hansen (see, for example, [2]) observed that
they are split graphs distinguished by a nesting property imposed on vertices in the maximal co-clique, and hence called
them the nested split graphs. As far as we know, it was first observed in [12], they are {2K2, P4, C4}-free graphs, and thus the
threshold graphs. In [5,6] it was observed that they appear in the same role with respect to the signless Laplacian spectrum.
Recall, a split graph is a graph which admits a partition (or colouring) of its vertex set into two parts (say white and black)

so that the vertices of thewhite part (sayU) are independent (induce a co-clique), while the vertices of the black part (say V )
are non-independent (induce a clique). All other edges, the cross edges, join a vertex in U to a vertex in V . To get a nested split
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Fig. 1. The structure of a nested split graph.

graph (or NSG for short) we add cross edges in accordance to partitions ofU and V into h cells (namely,U = U1∪U2∪· · ·∪Uh
and V = V1 ∪ V2 ∪ · · · ∪ Vh) in the following way: each vertex u ∈ Ui is adjacent to all vertices v ∈ V1 ∪ V2 ∪ · · · ∪ Vi (see
Fig. 1; for more details see [12]). The vertices Ui ∪ Vi form the ith level of some NSG (h is the number of levels). The NSG as
described can be denoted by NSG(m1,m2, . . . ,mh; n1, n2, . . . , nh), wheremi = |Ui| and ni = |Vi| (i = 1, 2, . . . , h).
We now fix some notation and terminology. Given a (simple) graph G = (V , E), V = {v1, v2, . . . , vn} is its vertex set,

while E = {e1, e2, . . . , em} its edge set (n is its order, while m its size). As usual, if v ∈ V , then deg(v) (or dv for short) is
the degree of v. The average degree of G (=1/n

∑
v∈V dv) is denoted by d̄, while the average degree of the neighbors of v

(=1/dv
∑
u∼v du) is denoted by d̄v (here∼ denotes that the vertices in question are adjacent; we write e = uv if u ∼ v). If

e ∈ E, then deg∗(e) (or d∗e for short) is the edge degree of e — it is the number of edges adjacent to e, or alternatively, the
degree of e in L(G), the line graph of G; clearly, d∗e = du + dv − 2. Recall, the line graph of a graph G, denoted by L(G), has as
the vertex set the edge set of G, with two vertices in L(G) adjacent if the corresponding edges in G are adjacent. The average
edge degree of G (=1/m

∑
e∈E d

∗
e ) is denoted by d̄

∗, while the average edge degree of the neighbors of e (=1/d∗e
∑
f∼e d

∗

f ) is
denoted by d̄∗e (note, here∼ denotes that the edges in question are adjacent).
The following (derived) parameters of the NSGs will be useful in the next section:

– ai =
∑i−1
s=1ms the number of white vertices contained in the first i− 1 levels (we also set aij = aj − ai);

– bi =
∑i
t=1 nt the number of black vertices contained in the first i levels (we also set bij = bj − bi);

– Ai =
∑i−1
s=1msbs the number of cross edges emerging from the vertex set U1 ∪ · · · ∪ Ui−1 (we also set Aij = Aj − Ai);

– Bi =
∑i
t=1 nt(n − 1 − at) the number of cross non-edges (or edges in Ḡ) emerging from the vertex set V1 ∪ · · · ∪ Vi

(we also set Bij = Bj − Bi).

Note 1 6 i 6 j 6 h; we also assume that a1 = A1 = 0. We will also need the following parameters (defined for each
1 6 i 6 h):
– di (=bi), the degree of any (white) vertex in Ui;
– Di (=n− 1− ai), the degree of any (black) vertex in Vi;
– d̄i (=d̄ui), the average degree of any (white) vertex in Ui;
– D̄i (=d̄vi), the average degree of any (black) vertex in Vi.

The rest of the paper is organized as follows: in Section 2 (main results) we prove some inequalities for the quantities
based on vertex or edge degrees, and in Section 3 give some considerations related to the spectral graph theory.

2. Main results

Let G = (V , E) be a connected NSG of order n > 5. In this section we focus our attention on some questions related to
average vertex (resp. edge) degrees of G.
We first consider these quantities with respect to vertices. Recall first that for (distinct) vertex degrees the following

holds:
d1 < d2 < · · · < dh 6 Dh < Dh−1 < · · · < D1 = n− 1. (2.1)

In contrast, for average vertex degrees of neighbors in NSGs, we have another type of monotonicity (see Proposition 2.1). To
prove this we first invoke the following fact:

(∗) for any strictlymonotone sequence, say (sn), the sequence ofweighted arithmeticmeans (Sn) (here Sn =
∑n
i=1 wisi∑n
i=1 wi

, where
(wn) is a positive sequence of weights) is also a strictly monotone sequence.
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Proposition 2.1. If G is an NSG then:

n− 1 = d̄1 > d̄2 > · · · > d̄h > D̄h > D̄h−1 > · · · > D̄1. (2.2)

In addition, d̄h = D̄h only if Uh is a singleton.

Proof. Note first that d̄1 = n−1. The monotonicity of d̄i’s easily follows from (∗) (and (2.1)). Note next that d̄h is an average
degree of all black vertices (i.e. vertices from V1∪V2∪· · ·∪Vh of G). On the other hand D̄h has a similar interpretation on the
almost the same vertex set but with one black vertex from Vh removed while all white vertices from Uh added. So d̄h > D̄h,
and it follows at once that equality holds if Uh is a singleton (i.e. ifmh = 1). Finally, we prove that

D̄i < D̄i+1 (2.3)

for 1 ≤ i ≤ h− 1. Let Qi =
∑h
s=imsds +

∑h
t=1 ntDt , while qi =

∑h
s=ims +

∑h
t=1 nt − 1. Then

D̄i =
Qi − Di
qi

, D̄i+1 =
Qi −midi − Di+1

qi −mi
,

and (2.3) is equivalent to Qi +
qi(Di−Di+1)

mi
> qidi + Di. Since Qi > qidi + Di (by (2.1)), we are done.

This completes the proof. �

The next example (constructed ad hoc) shows that other graphs (like line graphs of NSGs) do not have such a nice
property.

Example 2.1. Let G = NSG(1, 2, 1; 1, 1, 1). Let the vertices of G be labelled so that U1 = {1}, U2 = {2, 3}, U3 =
{4}, V3 = {5}, V2 = {6} and V1 = {7}. Consider the line graph of G, i.e. the graph H = L(G), with V (H) =
{45, 17, 26, 36, 27, 37, 46, 56, 47, 57, 67}. The degrees of the vertices of H (edges of G) are: {4, 5, 5, 5, 5, 6, 6, 6, 7, 7, 9},
respectively. It is now easy to see that du = 4, d̄u = 6.5 (u = 45) dv = 5, d̄v = 6.8 (v = 17) and dw = 6, d̄w = 6.0 (w = 46).
So du < dv < dw , but nothing analogous holds for d̄u, d̄v and d̄w . �

We now consider the invariant dv + d̄v (v is a vertex of G, where G is not necessary an NSG). It can be easily shown (as
expected from (2.1) and (2.2)) that this invariant is not monotonic for NSGs in the sense of Proposition 2.1. On the other
hand, this invariant was considered by [7], where it was shown that max{dv + d̄v : v ∈ V (G)} 6 2m

n−1 + n − 2, for any
(connected) graph of order n and sizem. Here, to make a paper more self-contained (in view of spectral context) we give a
short proof of this result, but only for NSGs.

Proposition 2.2. If G is an NSG, then

(i) max1≤i≤h{di + d̄i} 6 2m
n−1 + n− 2;

(ii) max1≤i≤h{Di + D̄i} 6 2m
n−1 + n− 2;

The equality in (i) holds only for G = Kn, while in (ii) only for i = 1.

Proof. To prove (i) we have to show that

di +

i∑
t=1
ntDt

di
6

i∑
t=1
ntDt + Si

n− 1
+ n− 2

holds for i = 1, 2, . . . , h (here Si =
∑h
t=i+1 ntDt +

∑h
s=1msds). The latter is equivalent to

di + (D1 − di)
i∑
t=1

ntDt
diD1

6 n− 2+
Si
D1
;

note D1 = n− 1. Since DtD1 6 1 and
∑i
t=1 nt = di, the left hand side is 6 n− 1. On the other hand Si >

∑h
s=1msds > n− 1;

note,
∑h
s=1msds is the number of cross edges in G, and it is > n − 1 since the corresponding bipartite graph (on n vertices

formed by the cross edges) is connected. So the right hand side is > n− 1, and we are done.
For (ii) we have to show that

Di +

h∑
s=i
msds +

h∑
t=1
ntDt − Di

Di
6

h∑
s=1
msds +

h∑
t=1
ntDt

D1
+ n− 2,
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holds for i = 1, 2, . . . , h, or equivalently, that

Di +
(
D1 − Di
D1Di

)
(DiD̄i + Di) 6

i−1∑
s=1
msds

D1
+ n− 1;

note,
∑h
s=imsds+

∑h
t=1 ntDt = DiD̄i+Di. Since

D̄i
D1
6 1, and sinceD1−Di =

∑i−1
s=1ms, the left hand side is≤

∑i−1
s=1 ms
D1
+n−1,

and this is clearly 6
∑i−1
s=1 msds
D1

+ n− 1. So, we are again done.
This completes the proof. �

We now switch to the analogous quantities related to edges. We first note that the analogy of Proposition 2.1 now does
not hold (see again Example 2.1). In sequel we will consider NSGs G for which the quantity maxe∈E{d̄∗e } (or equivalently,
max{d̄v : v ∈ V (L(G))}) is exceeding the value equal to n− 3+ d̄. (Note, the quantity maxv∈V {d̄v} is always equal to n− 1
in NSGs, the maximal possible value by Proposition 2.1, and therefore is not interesting to be studied.)
Let e = uv be an edge of any graph G (not necessarily an NSG). Then

d̄∗e =

∑
f∼u,f 6=e

deg∗(f )+
∑

f∼v,f 6=e
deg∗(f )

deg(u)+ deg(v)− 2
.

Putting p = deg(u) and q = deg(v)we get

d̄∗e =

∑
w∼u,w 6=v

[p+ dw − 2] +
∑

w∼v,w 6=u
[q+ dw − 2]

p+ q− 2
,

which yields

d̄∗e =
p2 + q2 − 3p− 3q+ 4

p+ q− 2
+

∑
w∼u,w 6=v

dw +
∑

w∼v,w 6=u
dw

p+ q− 2
.

Therefore, we get

d̄∗e = f (p, q)+
S(u)+ S(v)
p+ q− 2

,

where
S(u) =

∑
w∼u,w 6=v

dw, S(v) =
∑

w∼v,w 6=u

dw,

and

f (p, q) = p+ q− 1− 2
pq− 1
p+ q− 2

.

In what follows we assume that G is an NSG as depicted in Fig. 1, other than a complete graph.

Lemma 2.1. If e = uv, where u ∈ Vi and v ∈ Vj (1 6 i 6 j 6 h), then

d̄∗e < n− 3+ d̄.

Proof. We have: p = n−1−ai, q = n−1−aj (=p−aij), S(u) = 2m−Ai−p−q and S(v) = 2m−Aj−p−q (=S(u)−Aij).
So it follows that

f (p, q) = p− 2−
aij
2
+

(
aij
2 )
2

p− 1− aij
2

,

S(u)+ S(v)
p+ q− 2

= −2+
2m− 2− Ai − 1

2Aij
p− 1− aij

2

and therefore

d̄∗e = p− 4−
aij
2
+
2m− 2− Ai − 1

2Aij + (
aij
2 )
2

p− 1− aij
2

.

So we will consider the following inequality:

n− ai − 5−
aij
2
+
2m− Ai − 2− 1

2Aij + (
aij
2 )
2

n− ai − 2−
aij
2

6 n− 3+
2m
n
,
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which is equivalent to

2m

n− ai − 2−
aij
2

−
2m
n
6 2+ ai +

aij
2
+
Ai + 2+ 1

2Aij − (
aij
2 )
2

n− ai − 2−
aij
2

and also to

2m 6 n
(
n− 2− ai −

aij
2

)
+
n
(
2+ Ai + 1

2Aij − (
aij
2 )
2
)

2+ ai +
aij
2

.

For i = j = 1 the latter inequality reduces to m 6
( n
2

)
, and we are done. To prove it for j > 1, we first estimate the

upper bound for m, in the case that G′ (in the role of G) is an NSG of order n having the first j − 1 levels the same as G
(namely, U1, V1, . . . ,Uj−1, Vj−1), and the remaining levels chosen so that the size of G′ is maximal. It is next easy to see
that the maximum (denoted by m′) is attained when G′ is ‘‘the closest’’ to the complete graph, i.e. when G′ has exactly j
levels, and the clique induced by the black vertices is the largest possible. This happens when U ′j has only one element, and
V1 ∪ · · · ∪ Vj−1 ∪ V ′j has n − aj − 1 elements. Then 2m

′
= (n − aj)(n − aj − 1) + 2Aj. To complete the proof, it suffices to

verify that

2m′ < n
(
n− 2− ai −

aij
2

)
+
n[2+ Ai + 1

2Aij − (
aij
2 )
2
]

2+ ai +
aij
2

.

We first observe that for every s ∈ {1, . . . , i− 1}

n− aj − 1+
n(bs − 1)

2+ ai +
aij
2

> bj +mj − 1+
n(bs − 1)

2+ ai +
aij
2

> 2bs,

since n− aj > bj +mj and n > 2+ ai +
aij
2 . Next, for every s ∈ {i, . . . , j− 1}we have

n(bs + ai + 1) > (ai + aij + bs + 2)(bs + ai + 1) > bs(2ai + aij + 4),

since n− aj − 1 > bs + 1. Therefore we get

n− 1− aj +
1
2
n(bs + ai + 1)

2+ ai +
aij
2

> bs + 1+ bs > 2bs.

Using the above inequalities, we obtain

n
(
n− 2− ai −

aij
2

)
+
n[2+ Ai + 1

2Aij − (
aij
2 )
2
]

2+ ai +
aij
2

= n(n− aj − 1)+ n
(aij
2
− 1

)
+
n
[
2+ Ai + 1

2Aij − (
aij
2 )
2
]

2+ ai +
aij
2

= (n− aj)(n− aj − 1)+ (ai + aij)(n− aj − 1)+
n

2+ ai +
aij
2

[
Ai − ai +

1
2
(Aij + aij(ai + 1))

]

= (n− aj)(n− aj − 1)+
i−1∑
s=1

ms

[
n− aj − 1+

n(bs − 1)

2+ ai +
aij
2

]
+

j−1∑
s=i

ms

[
n− aj − 1+

1
2
n(bs + ai + 1)

2+ ai +
aij
2

]
> (n− aj)(n− aj − 1)+ 2Aj
= 2m′.

This completes the proof. �

Lemma 2.2. If e = uv, u ∈ Uj and v ∈ Vi (1 6 i 6 j 6 h), then

d̄∗e 6 n− 3+ d̄

holds, unless i = j = 1, |V1| = 1 and d̄ > n
2 .

Proof. We now have: p = bj = bi + bij , q = n − 1 − ai , S(u) = Bj − q = Bi + Bij − q and S(v) = 2m − Ai − p − q. So
S(u)+ S(v) = 2m− p− 2q+ R, where R = Bi+ Bij− Ai. Let Cij =

∑j
s=i+1 nsais. It is a matter of routine calculations to show

that R = pq− Cij. But then S(u)+ S(v) = 2m+ pq− p− 2q− Cij, and consequently we have that

d̄∗e = p+ q− 2+
2m− pq− q− Cij
p+ q− 2

,



2246 M. Anđelić, S.K. Simić / Discrete Mathematics 310 (2010) 2241–2248

or equivalently

d̄∗e = n− 3− ai + bj +
2m− (n− 1− ai)(bj + 1)− Cij

n− 3− ai + bj
.

So we have to prove the following inequality:

2m(ai − bj + 3) 6 n[(ai − bj)(n− 3+ bj − ai)+ (n− 1− ai)(bj + 1)+ Cij].

We next consider the following two cases depending on the sign of ai − bj + 3.
Case 1: ai − bj + 3 > 0. If ai − bj + 3 = 0 then the above inequality reduces to n(bj − 2) + Cij > (ai + 1)(bj + 1). Since
bj − 2 = ai + 1 the latter inequality becomes (n − bj − 1)(bj − 2) + Cij > 0, which holds since n > ai + bj + 1 and
bj = ai + 3 > 2. So we next assume that ai − bj + 3 > 0. If i = 1 then a1 = 0 and bj 6 2. If bj = 1 (i.e. if |V1| = 1) then we
easily get that the above inequality reduces tom 6 n2

4 . So, if |V1| = 1 and d̄ >
n
2 we get that the inequality in question does

not hold (an exceptional case from the lemma). Otherwise, if bj = 2 then the above inequality reduces to 2m 6 n(n−1+C1j)
which clearly holds. So we next assume that i > 1 and consequently we have to prove that

2m 6
n

ai − bj + 3
[(ai − bj)(n− 3+ bj − ai)+ (bj + 1)(n− ai − 1)+ Cij].

Assume now that G′ is the graph with maximal number of edges obtained in the same way as in the proof of Lemma 2.1
Then 2m′ = (n− aj)(n− aj − 1)+ 2Aj. Therefore we have to prove that

2m′ 6
n

ai − bj + 3
[(ai − bj)(n− 3+ bj − ai)+ (bj + 1)(n− ai − 1)+ Cij].

This can be done as follows:
n

ai − bj + 3
[(ai − bj)(n− 3+ bj − ai)+ (bj + 1)(n− 1− ai)+ Cij]

= (n− aj)(n− aj − 1)+
n

ai − bj + 3
[(ai − bj)(n− 3+ bj − ai)

+ (bj + 1)(n− 1− ai)− (n− 2aj − 1)(ai − bj + 3)+ Cij] − aj(aj + 1)

> (n− aj)(n− aj − 1)+ aj(n− aj − 1)+ naij +
n

ai − bj + 3
[aj(bj − 2)+ Cij]

> (n− aj)(n− aj − 1)+ ajbj + aj(bj − 2)
> (n− aj)(n− aj − 1)+ 2ajbj−1
> (n− aj)(n− aj − 1)+ 2Aj
= 2m′.

Note that the first inequality in the chain follows since n−aj−bj−1 > 0, while the second one is based on the following
facts: n > ai− bj+ 3, n− aj− 1 > bj, aij > 0 and Cij > 0. Finally, since the third one is self-evident, we are done in this case.
Case 2: ai − bj + 3 < 0. Now we have to verify that

2m >
n

ai − bj + 3
[(ai − bj)(n− 3+ bj − ai)+ (bj + 1)(n− ai − 1)+ Cij].

In contrast to the previous case we will now have to minimize the number of edges in G′. For this aim we take that the
first j − 1 levels are the same as in G, while the remaining vertices are in the jth level distributed so that V ′j is the same as
Vj. Then 2m′ = bj(bj − 1)+ 2(n− aj − bj)bj + 2Aj. Therefore we have to prove that

2m′ >
n

ai − bj + 3
[(ai − bj)(n− 3+ bj − ai)+ (bj + 1)(n− ai − 1)+ Cij].

This can be done as follows:
n

bj − ai − 3
[(bj − ai)(n− 3+ bj − ai)− (bj + 1)(n− ai − 1)− Cij]

= bj(bj − 1)+ 2(n− aj − bj)bj + (2aj + bj + 1− n)bj +
n

bj − ai − 3
(a2i − nai + 4ai + bj + 1− n− Cij)

6 bj(bj − 1)+ 2(n− aj − bj)bj + ajbj − nai −
n

bj − ai − 3
[(n− bj − 1)(ai + 1)+ Cij]

6 bj(bj − 1)+ 2(n− aj − bj)bj + ajbj − nai − aj(ai + 1)− Cij
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6 bj(bj − 1)+ 2(n− aj − bj)bj + aijbj − Cij
6 bj(bj − 1)+ 2(n− aj − bj)bj + 2Aj
= 2m′.

Note that the first three inequalities in the chain follow since n−aj−bj > 1. On the other hand, the fourth one easily follows
by observing that Aj = Ai + Aij and Aij + Cij = aijbj. So we are again done.
This completes the proof. �

Collecting the above results we get that maxe∈E{d̄∗e } 6 n − 3 + d̄ for all NSGs G for which n1 > 1, or n1 = 1 and d̄ 6
n
2 .

In other words, if G has at least two vertices of degree n − 1, or one vertex of degree n − 1 and the average vertex degree
d̄ 6 n

2 then maxe∈E{d̄
∗
e } 6 n − 3 + d̄ holds. We will say that these graphs are of type-I. In contrast, the graphs for which

maxe∈E{d̄∗e } > n− 3+ d̄ are of type-II.
We will now consider in more details the graphs of type-II. Any such graph has a unique vertex of degree n − 1 (thus

m1 = k and n1 = 1) and big average vertex degree (> n2 ). The latter fact also implies that k cannot be too big. By a simple

calculation we can get that k < (1 −
√
2
2 )n < 0.3n (note, k is the largest if G = NSG(k, 1; 1, n − k − 2)). Next, it is also

reasonable to ask how large the quantity maxe∈E{d̄∗e } can be for a fixed k. But then, due to Lemmas 2.1 and 2.2, we have
to take that G = NSG(k,m2, . . . ,mh; 1, n2, . . . , nh) for some choice its parameters, and to consider an edge e = uv with
u ∈ U1 and v ∈ V1. By adding some edges if necessary (note, then the observed quantity cannot decrease) we arrive at the
graph G′ = NSG(k, 1; 1, n− k− 2). But then, by simple calculations, we get that

d̄∗e 6
k2 − (2n− 3)k+ (n− 2)(2n− 3)

n− 2
,

with the largest possible value equal to 2n− 5 (attained for G = NSG(1, 1; 1, n− 3), if k = 1). Note, for the latter graph we
have that

max
e∈E
{d̄∗} = max

{
2n− 6+

1
2n− 5

, 2n− 5, 2n− 6+
2

2n− 5
, 2n− 6+

5
2n− 5

}
,

and so, as expected, for n ≥ 5 the second value is the right one (note, the caseswith n < 5 are excluded from considerations).
Collecting the above results, we arrive at:

Proposition 2.3. If G is an NSG then, depending on the type of G (I or II, respectively), we have:
(i) maxe∈E{d̄∗e } 6 n− 3+ d̄, or
(ii) n− 3+ d̄ < maxe∈E{d̄∗e } 6

k2−(2n−3)k+(n−2)(2n−3)
n−2 , where k is the number of vertices of degree one.

3. Concluding remarks

We will now use the above results to give some comments related to spectral graph theory. More precisely, we
will highlight some phenomena related to Conjecture 7 from [6], the conjecture generated by the computer program
AutoGraphiX (AGX). Let κ(G) the largest eigenvalue of the signless Laplacian of a graph G (not necessarily an NSG). Recall,
Q (G) = D(G) + A(G), where A(G) is the adjacency matrix of G, and D(G) the diagonal matrix of its vertex degrees, is the
signless Laplacian of G. According to [6], Conjecture 7 reads:
If G is a connected graph of order n > 5 and average vertex degree d̄(G), then κ(G) 6 n− 1+ d̄(G) with equality if and only

if G is complete.
The next theorem covers some cases for which the above conjecture is true.1

Theorem 3.1. Let G be a connected graph of order n and size m, and average vertex degree d̄(G) 6 n
2 . Then κ(G) < n−1+ d̄(G).

Proof. Based on Theorem 5.4 from [6], it suffices to verify the conjecture only for NSGs. Since κ(G) = ρ(L(G)) + 2, where
ρ(G) is the largest eigenvalue of the adjacency matrix of a graph G (see, for example, Eq. (2) in [6]), we in fact have to prove
that ρ(L(G)) < n − 3 + d̄(G). Due to Favaron et al. (cf. [8]), ρ(L(G)) 6 maxe∈E{d̄∗e }. The final conclusion (for graphs in
question) now follows by using Proposition 2.3. �

The following remark is worth mentioning:

Remark 3.1. In particular, we immediately have that Conjecture 7 from [6] holds for all bipartite graphs G (including
some non-bipartite graphs). On the other hand, it is true in general, as we recently learnt from D. Cvetković, who pointed
us the Reference [9], where the authors have made a short proof of the conjecture in question by proving first that
κ(G) 6 max{dv + d̄v} (see also [1]), and by using the sophisticated bound from [7] (see also Proposition 2.2). �

1 These results were presented at International Linear Algebra Society 15th conference, June 16–20, 2008, Cancun, Mexico.
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