Journal of Algebra 323 (2010) 458-472

Boundedness of cohomology

Markus Brodmann^{a,*}, Maryam Jahangiri^b, Cao Huy Linh^c

^a University of Zürich. Institute of Mathematics. Winterthurerstrasse 190, 8057 Zürich. Switzerland

^b School of Mathematics and Computer Sciences, Damghan University of Basic Sciences, Damghan, Iran

^c Department of Mathematics, College of Education, Hue University, 32 Le Loi, Hue City, Viet Nam

ARTICLE INFO

Article history: Received 13 May 2009 Available online 26 August 2009 Communicated by Luchezar L. Avramov

Keywords: Local cohomology Sheaf cohomology Graded modules Projective schemes Finiteness of cohomology

ABSTRACT

Let $d \in \mathbb{N}$ and let \mathcal{D}^d denote the class of all pairs (R, M) in which $R = \bigoplus_{n \in \mathbb{N}_0} R_n$ is a Noetherian homogeneous ring with Artinian base ring R_0 and such that M is a finitely generated graded R-module of dimension $\leq d$. For such a pair (R, M) let $d_M^i(n)$ denote the (finite) R_0 -length of the *n*-th graded component of the *i*-th R_+ -transform module $D_{R^+}^i(M)$.

The cohomology table of a pair $(R, M) \in \mathcal{D}^d$ is defined as the family of non-negative integers $d_M := (d_M^i(n))_{(i,n)\in\mathbb{N}\times\mathbb{Z}}$. We say that a subclass C of \mathcal{D}^d is of finite cohomology if the set $\{d_M \mid (R, M) \in C\}$ is finite. A set $\mathbb{S} \subseteq \{0, \ldots, d-1\} \times \mathbb{Z}$ is said to bound cohomology, if for each family $(h^{\sigma})_{\sigma\in\mathbb{S}}$ of non-negative integers, the class $\{(R, M) \in \mathcal{D}^d \mid d_M^i(n) \leq h^{(i,n)} \text{ for all } (i, n) \in \mathbb{S}\}$ is of finite cohomology. Our main result says that this is the case if and only if \mathbb{S} contains a quasi diagonal, that is a set of the form $\{(i, n_i) \mid i = 0, \ldots, d-1\}$ with integers $n_0 > n_1 > \cdots > n_{d-1}$.

We draw a number of conclusions of this boundedness criterion. © 2009 Elsevier Inc. All rights reserved.

1. Introduction

This paper continues our investigation [6], which was driven by the question "What bounds cohomology of a projective scheme?"

A considerable number of contributions has been given to this theme, mainly under the aspect of bounding some cohomological invariants in terms of other invariants (see [1–4,7–9,11–13,15–19,21, 22] for example).

* Corresponding author.

0021-8693/\$ – see front matter @ 2009 Elsevier Inc. All rights reserved. doi:10.1016/j.jalgebra.2009.07.032

E-mail addresses: brodmann@math.uzh.ch (M. Brodmann), jahangiri@dubs.ac.ir (M. Jahangiri), huylinh2002@yahoo.com (C.H. Linh).

Our aim is to start from a different point of view, focusing on the notion of cohomological pattern (see [5]). So, our main result characterizes those sets $\mathbb{S} \subseteq \{0, ..., d-1\} \times \mathbb{Z}$ "which bound cohomology of projective schemes of dimension < d".

To make this precise, fix a positive integer d and let \mathcal{D}^d be the class of all pairs (R, M) in which $R = \bigoplus_{n \ge 0} R_n$ is a Noetherian homogeneous ring with Artinian base ring R_0 and M is a finitely generated graded R-module with dim $(M) \le d$. In this situation let $R_+ = \bigoplus_{n>0} R_n$ denote the irrelevant ideal of R.

For each $i \in \mathbb{N}_0$ consider the graded *R*-module $D_{R_+}^i(M)$, where $D_{R_+}^i$ denotes the *i*-th right derived functor of the R_+ -transform functor $D_{R_+}(\bullet) := \lim_{n \to \infty} \operatorname{Hom}_R((R_+)^n, \bullet)$. In addition, for each $n \in \mathbb{Z}$ let $d_M^i(n)$ denote the (finite) R_0 -length of the *n*-th graded component $D_{R_+}^i(M)_n$ of $D_{R_+}^i(M)$.

Finally, for $(R, M) \in D^d$ let us consider the so-called cohomology table of (R, M), that is the family of non-negative integers

$$d_M := \left(d_M^i(n)\right)_{(i,n)\in\mathbb{N}_0\times\mathbb{Z}}.$$

A subclass $C \subseteq D^d$ is said to be of finite cohomology if the set $\{d_M \mid (R, M) \in C\}$ is finite. The class C is said to be of bounded cohomology if the set $\{d_M^i(n) \mid (R, M) \in C\}$ is finite for all pairs $(i, n) \in \mathbb{N}_0 \times \mathbb{Z}$. It turns out that these two conditions are both equivalent to the condition that the class C is of finite cohomology "along some diagonal", e.g. there is some $n_0 \in \mathbb{Z}$ such that the set $\Delta_{C,n_0} := \{d_M^i(n_0 - i) \mid (R, M) \in C, 0 \leq i < d\}$ is finite (see Theorem 3.5).

So, if one bounds the values of $d_M^i(n)$ along a "diagonal subset"

$$\{(j, n_0 - j) \mid j = 0, \dots, d - 1\} \subseteq \{0, \dots, d - 1\} \times \mathbb{Z}$$

for an arbitrary integer n_0 one cuts out a subclass $C \subseteq D^d$ of finite cohomology. Motivated by this observation we say that the subset $\mathbb{S} \subseteq \{0, \ldots, d-1\} \times \mathbb{Z}$ bounds cohomology in the class $C \subseteq D^d$ if for each family $(h^{\sigma})_{\sigma \in \mathbb{S}}$ of non-negative integers $h^{\sigma} \in \mathbb{N}_0$ the class

$$\left\{ (R, M) \in \mathcal{C} \mid \forall (i, n) \in \mathbb{S} : d_M^i(n) \leq h^{(i, n)} \right\}$$

is of finite cohomology. Now, we may reformulate our previous result by saying that for arbitrary n_0 the diagonal set $\{(j, n_0 - j) \mid j = 0, ..., d - 1\}$ bounds cohomology in \mathcal{D}^d . It seems rather natural to ask, whether one can characterize the shape of those subsets $\mathbb{S} \subseteq \{0, ..., d - 1\} \times \mathbb{Z}$ which bound cohomology in \mathcal{D}^d . This is indeed done by our main result (see Corollary 4.10):

A subset $\mathbb{S} \subseteq \{0, \dots, d-1\} \times \mathbb{Z}$ bounds cohomology in \mathcal{D}^d if and only if it contains a quasi-diagonal, that is a set of the form $\{(i, n_i) \mid i = 0, \dots, d-1\}$ with

$$n_0 > n_1 > \cdots > n_{d-1}$$
.

Our next aim is to apply our main result in order to cut out classes $C \subseteq D^d$ of finite cohomology by fixing some numerical invariants which are defined on the class C. A finite family $(\mu_i)_{i=1}^r$ of numerical invariants μ_i on C is said to bound cohomology in C if for all $n_1, \ldots, n_r \in \mathbb{Z} \cup \{\pm \infty\}$ the class $\{(R, M) \in C \mid \mu_i(M) = n_i \text{ for } i = 1, \ldots, r\}$ is of finite cohomology.

class { $(R, M) \in \mathcal{C} \mid \mu_i(M) = n_i$ for i = 1, ..., r} is of finite cohomology. We define a numerical invariant $\varrho: \mathcal{D}^d \to \mathbb{N}_0$ by setting $\varrho(M) := d_M^0(\operatorname{reg}^2(M))$, where $\operatorname{reg}^2(M)$ denotes the Castelnuovo–Mumford regularity of M at and above level 2. Then, we show (see Theorem 5.8):

The pair of invariants (reg^2, ϱ) bounds cohomology in \mathcal{D}^d .

As an application of this we prove (see Theorem 5.9 and Corollary 5.10)

Fix a polynomial $p \in \mathbb{Q}[t]$ and an integer r. Let $C \subseteq D^d$ be the class of all pairs (R, M) such that M is a graded submodule of a finitely generated graded R-module N with Hilbert polynomial $p_N = p$ and $\operatorname{reg}^2(N) \leq r$. Then reg^2 bounds cohomology in C.

An immediate consequence of this is (see Corollary 5.11):

Let $(R, N) \in \mathcal{D}^d$, let $r \in \mathbb{Z}$ and let M run through all graded submodules $M \subseteq N$ with $\operatorname{reg}^2(M) \leq r$. Then only finitely many cohomology tables d_M occur.

As applications of this, we generalize two finiteness results of Hoa and Hyry [17] for local cohomology modules of graded ideals in a polynomial ring over a field to graded submodules $M \subseteq N$ for a given pair $(R, N) \in \mathcal{D}^d$ (see Corollaries 5.13 and 5.14).

In order to translate our results to sheaf cohomology of projective schemes observe that for all $(i, n) \in \mathbb{N}_0 \times \mathbb{Z}$ and all pairs $(R, M) \in \mathcal{D}^d$ we have $H^i(X, \mathcal{F}(n)) \cong D^i_{R_+}(M)_n$, where $X := \operatorname{Proj}(R)$ and $\mathcal{F} := \widetilde{M}$ is the coherent sheaf of \mathcal{O}_X -modules induced by M (see [10, Chapter 20] for example).

2. Preliminaries

In this section we recall a few basic facts which shall be used later in our paper.

Notation 2.1. Let $R = \bigoplus_{n \ge 0} R_n$ be a homogeneous Noetherian ring, so that R is positively graded, R_0 is Noetherian and $R = R_0[l_0, \ldots, l_r]$ with finitely many elements $l_0, \ldots, l_r \in R_1$. Let R_+ denote the irrelevant ideal $\bigoplus_{n \ge 0} R_n$ of R.

Reminder 2.2 (Local cohomology and Castelnuovo–Mumford regularity). (A) Let $i \in \mathbb{N}_0 := \{0, 1, 2, ...\}$ By $H^i_{R_+}(\bullet)$ we denote the *i*-th local cohomology functor with respect to R_+ . Moreover by $D^i_{R_+}(\bullet)$ we denote the *i*-th right derived functor of the ideal transform functor $D_{R_+}(\bullet) = \lim_{\to \infty} \operatorname{Hom}_R((R_+)^n, \bullet)$ with respect to R_+ .

(B) Let $M := \bigoplus_{n \in \mathbb{Z}} M_n$ be a graded *R*-module. Keep in mind that in this situation the *R*-modules $H^i_{R_+}(M)$ and $D^i_{R_+}(M)$ carry natural gradings. Moreover we then have a natural exact sequence of graded *R*-modules

(i)
$$0 \to H^0_{R_+}(M) \to M \to D^0_{R_+}(M) \to H^1_{R_+}(M) \to 0$$

and natural isomorphisms of graded R-modules

(ii)
$$D_{R_{+}}^{i}(M) \cong H_{R_{+}}^{i+1}(M)$$
 for all $i > 0$.

(C) If *T* is a graded *R*-module and $n \in \mathbb{Z}$, we use T_n to denote the *n*-th graded component of *T*. In particular, we define the *beginning* and the *end* of *T* respectively by

(i) $beg(T) := inf\{n \in \mathbb{Z} \mid T_n \neq 0\},\$

(ii) $\operatorname{end}(T) := \sup\{n \in \mathbb{Z} \mid T_n \neq 0\},\$

with the standard convention that $\inf \emptyset = \infty$ and $\sup \emptyset = -\infty$.

(D) If the graded *R*-module *M* is finitely generated, the R_0 -modules $H_{R_+}^i(M)_n$ are all finitely generated and vanish as well for all $n \gg 0$ as for all $i > \dim(M)$. So, we have

$$-\infty \leq a_i(M) := \operatorname{end}\left(H^i_{R_+}(M)\right) < \infty \quad \text{for all } i \geq 0,$$

with $a_i(M) := -\infty$ for all $i > \dim(M)$.

If $k \in \mathbb{N}_0$, the Castelnuovo–Mumford regularity of *M* at and above level *k* is defined by

$$\operatorname{reg}^{k}(M) := \sup \{ a_{i}(M) + i \mid i \ge k \} \quad (<\infty).$$

The *Castelnuovo–Mumford regularity of M* is defined by $reg(M) := reg^0(M)$. (E) We also shall use the *generating degree* of *M*, which is defined by

gendeg(M) = inf
$$\left\{ n \in \mathbb{Z} \mid M = \sum_{m \leq n} RM_m \right\}$$
.

If the graded *R*-module *M* is finitely generated, we have $gendeg(M) \leq reg(M)$.

Reminder 2.3 (*Cohomological Hilbert functions*). (A) Let $i \in \mathbb{N}_0$ and assume that the base ring R_0 is Artinian. Let M be a finitely generated graded R-module. Then, the graded R-modules $H^i_{R_+}(M)$ are Artinian. In particular for all $i \in \mathbb{N}_0$ and all $n \in \mathbb{Z}$ we may define the non-negative integers

(i) $h_{M}^{i}(n) := \text{length}_{R_{0}}(H_{R_{+}}^{i}(M)_{n}),$ (ii) $d_{M}^{i}(n) := \text{length}_{R_{0}}(D_{R_{+}}^{i}(M)_{n}).$

Fix $i \in \mathbb{N}_0$. Then the functions

 $\begin{array}{ll} \text{(iii)} & h^i_M : \mathbb{Z} \to \mathbb{N}_0, \ n \mapsto h^i_M(n), \\ \text{(iv)} & d^i_M : \mathbb{Z} \to \mathbb{N}_0, \ n \mapsto d^i_M(n) \end{array}$

are called the *i*-th Cohomological Hilbert functions of the first respectively the second kind of M.

(B) Let *M* be a finitely generated graded *R*-module and let $x \in R_1$. We also write $\Gamma_{R_+}(M)$ for the R_+ -torsion submodule of *M* which we identify with $H^0_{R_+}(M)$. By $NZD_R(M)$ and $ZD_R(M)$ we respectively denote the set of non-zerodivisors or of zero divisors of *R* with respect to *M*. The linear form $x \in R_1$ is said to be (R_+-) filter regular with respect to *M* if $x \in NZD_R(M/\Gamma_{R_+}(M))$.

Reminder 2.4. (Cf. [6, Definition 5.2].) For $d \in \mathbb{N}$ let \mathcal{D}^d denote the class of all pairs (R, M) in which $R = \bigoplus_{n \in \mathbb{N}_0} R_n$ is a Noetherian homogeneous ring with Artinian base ring R_0 and $M = \bigoplus_{n \in \mathbb{Z}} M_n$ is a finitely generated graded *R*-module with dim $(M) \leq d$.

3. Finiteness and boundedness of cohomology

We keep the notations and hypotheses introduced in Section 2.

Definition 3.1. The *cohomology table* of the pair $(R, M) \in \mathcal{D}^d$ is the family of non-negative integers

$$d_M := \left(d_M^l(n) \right)_{(i,n) \in \mathbb{N}_0 \times \mathbb{Z}^d}$$

Reminder 3.2. (A) According to [5] the *cohomological pattern* \mathcal{P}_M of the pair $(R, M) \in \mathcal{D}^d$ is defined as the set of places at which the cohomology table of (R, M) has a non-zero entry:

$$\mathcal{P}_M := \left\{ (i, n) \in \mathbb{N}_0 \times \mathbb{Z} \mid d_M^i(n) \neq 0 \right\}.$$

(B) A set $P \subseteq \mathbb{N}_0 \times \mathbb{Z}$ is called a *tame combinatorial pattern of width* $w \in \mathbb{N}_0$ if the following conditions are satisfied:

 $(\pi_1) \exists m, n \in \mathbb{Z}: (0, m), (w, n) \in P;$

 $(\pi_2) \ (i,n) \in P \Rightarrow i \leqslant w;$

- $(\pi_3) \ (i,n) \in P \Rightarrow \exists j \leq i: \ (j,n+i-j+1) \in P;$
- $(\pi_4) \ (i,n) \in P \Rightarrow \exists k \ge i: \ (k,n+i-k-1) \in P;$
- $(\pi_5) \ i > 0 \Rightarrow \forall n \gg 0: \ (i, n) \notin P;$
- $(\pi_6) \ \forall i \in \mathbb{N}: \ (\forall n \ll 0: \ (i, n) \in P) \ or \ else \ (\forall n \ll 0: \ (i, n) \notin P).$

By [5] we know:

- (a) If $(R, M) \in \mathcal{D}^d$ with dim(M) = s > 0, then \mathcal{P}_M is a tame combinatorial pattern of width w = s 1.
- (b) If P is a tame combinatorial pattern of width $w \leq d 1$, then there is a pair $(R, M) \in \mathcal{D}^d$ such that the base ring R_0 is a field and $P = \mathcal{P}_M$.

By the previous observation, the set of patterns $\{\mathcal{P}_M \mid (R, M) \in \mathcal{D}^d\}$ is quite large, and hence so is the set of cohomology tables $\{d_M \mid (R, M) \in \mathcal{D}^d\}$. Therefore, one seeks for decompositions $\bigcup_{i \in \mathbb{I}} \mathcal{C}_i = \mathcal{D}^d$ of \mathcal{D}^d into "simpler" subclasses \mathcal{C}_i such that for each $i \in \mathbb{I}$ the set $\{d_M \mid (R, M) \in \mathcal{C}_i\}$ is finite. Bearing in mind this goal, we define the following concepts:

Definitions 3.3. (A) Let $C \subseteq D^d$ be a subclass. We say that C is a subclass of finite cohomology if

$$\sharp \{ d_M \mid (R, M) \in \mathcal{C} \} < \infty.$$

(B) We say that $\mathcal{C} \subseteq \mathcal{D}^d$ is a subclass of bounded cohomology if

$$\forall (i,n) \in \mathbb{N}_0 \times \mathbb{Z}: \quad \sharp \left\{ d_M^i(n) \mid (R,M) \in \mathcal{C} \right\} < \infty.$$

Remark 3.4. (A) Let $\mathcal{C}, \mathcal{D} \subseteq \mathcal{D}^d$ be subclasses of \mathcal{D}^d . Then clearly

- (a) If $C \subseteq D$ and D is of finite cohomology or of bounded cohomology, then so is C respectively.
 - (B) If $r \in \mathbb{Z}$, we have a bijection

$$\{d_M \mid (R, M) \in \mathcal{C}\} \twoheadrightarrow \{d_{M(r)} \mid (R, M) \in \mathcal{C}\}$$
 given by $d_M \mapsto d_{M(r)}$.

Now, we show how the finiteness and boundedness conditions defined above are related.

Theorem 3.5. For a subclass $C \subseteq D^d$ the following statements are equivalent:

- (i) C is a class of finite cohomology.
- (ii) C is a class of bounded cohomology.
- (iii) For each $n_0 \in \mathbb{Z}$ the set $\triangle_{\mathcal{C},n_0} := \{d_M^i(n_0 i) \mid (R, M) \in \mathcal{C}, 0 \leq i < d\}$ is finite.
- (iv) There is some $n_0 \in \mathbb{Z}$ such that the set $\triangle_{\mathcal{C},n_0}$ of statement (iii) is finite.

Proof. The implications (i) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (iv) are clear from the definitions. To prove the implication (iv) \Rightarrow (i) fix $n_0 \in \mathbb{Z}$ and assume that the set $\triangle_{\mathcal{C},n_0}$ is finite. Then there is some non-negative integer h such that $d^i_{M(n_0)}(-i) \leq h$ for all pairs $(R, M) \in \mathcal{C}$ and all $i \in \{0, ..., d-1\}$. By [6, Theorem 5.4] it thus follows that the set of functions

$$\left\{d_{M(n_0)}^i \mid (R, M) \in \mathcal{C}, \ i \in \mathbb{N}_0\right\}$$

is finite. By Remark 3.4(B) we now may conclude that the class $\mathcal C$ is of finite cohomology. \Box

So, by Theorem 3.5 boundedness and finiteness of cohomology are the same for a given class $\mathcal{C} \subset \mathcal{D}^d$.

Definition 3.6. Let $d \in \mathbb{N}_0$, let $\mathcal{C} \subseteq \mathcal{D}^d$ and let $\mathbb{S} \subseteq \{0, \dots, d-1\} \times \mathbb{Z}$ be a subset. We say that the set \mathbb{S} bounds cohomology in \mathcal{C} if for each family $(h^{\sigma})_{\sigma \in \mathbb{S}}$ of non-negative integers h^{σ} the class

$$\left\{ (R, M) \in \mathcal{C} \mid \forall (i, n) \in \mathbb{S} \colon d_M^i(n) \leq h^{(i, n)} \right\}$$

is of finite cohomology.

Remark 3.7. (A) Let $d \in \mathbb{N}_0$, let $\mathcal{C}, \mathcal{D} \subseteq \mathcal{D}^d$ and $\mathbb{S}, \mathbb{T} \subseteq \{0, \dots, d-1\} \times \mathbb{Z}$. Then obviously we can say

If $\mathbb{S} \subseteq \mathbb{T}$ and \mathbb{S} bounds cohomology in \mathcal{C} , then so does \mathbb{T} .

(B) If $r \in \mathbb{Z}$, we can form the set $\mathbb{S}(r) := \{(i, n + r) \mid (i, n) \in \mathbb{S}\}$. In view of the bijection of Remark 3.4(B) we have

 $\mathbb{S}(r)$ bounds cohomology in $\mathcal{C}(r) := \{(R, M(r)) \mid (R, M) \in \mathcal{C}\}$ if and only if \mathbb{S} does in \mathcal{C} .

(C) For all $s \in \{0, \ldots, d\}$ we set

$$\mathbb{S}^{$$

as $\mathcal{D}^s \subseteq \mathcal{D}^d$ it follows easily:

If \mathbb{S} bounds cohomology in \mathcal{C} , then $\mathbb{S}^{< s}$ bounds cohomology in $\mathcal{D}^{s} \cap \mathcal{C}$.

Corollary 3.8. Let $C \subseteq D^d$ and $n \in \mathbb{Z}$. Then, the "*n*-th diagonal"

$$\{(i, n-i) \mid i=0, \ldots, d-1\}$$

bounds cohomology in C.

Proof. This is immediate by Theorem 3.5. \Box

4. Quasi-diagonals

Our first aim is to generalize Corollary 3.8 by showing that not only the diagonals bound cohomology on C, but rather all "quasi-diagonals". We shall define below, what such a quasi-diagonal is.

Lemma 4.1. Let $t \in \{1, \ldots, d\}$, let $(n_i)_{i=d-t}^{d-1}$ be a sequence of integers such that $n_{d-1} < \cdots < n_{d-t}$ and let $C \subseteq D^d$ be a class such that the set $\{d_M^i(n_i) \mid (R, M) \in C\}$ is finite for all $i \in \{d - t, \ldots, d - 1\}$. Then the set $\{d_M^i(n) \mid (R, M) \in C\}$ is finite whenever $n_i \leq n$ and $d - t \leq i \leq d - 1$.

Proof. By our hypothesis there is some $h \in \mathbb{N}_0$ with $d_M^i(n_i) \leq h$ for all $i \in \{d - t, \dots, d - 1\}$ and all pairs $(R, M) \in \mathcal{C}$.

Let $(R, M) \in C$. On use of standard reduction arguments we can restrict ourselves to the case where the Artinian base ring R_0 is local with infinite residue field. Replacing M by $M/\Gamma_{R_+}(M)$ we may assume that M is R_+ -torsion free. Therefore, there exists $x \in R_1 \cap NZD(M)$. For each $i \in \mathbb{N}_0$ and $m \in \mathbb{Z}$, the short exact sequence $0 \to M(-1) \to M \to M/xM \to 0$ induces a long exact sequence.

$$(*_{i,m}) \qquad \qquad D^{i}_{R_{+}}(M)_{m-1} \to D^{i}_{R_{+}}(M)_{m} \to D^{i}_{R_{+}}(M/xM)_{m} \to D^{i+1}_{R_{+}}(M)_{m-1}.$$

As dim(M/xM) < d, the sequences $(*_{d-1,m})$ imply that $d_M^{d-1}(m) \leq d_M^{d-1}(m-1)$ for all $m \in \mathbb{Z}$. This proves our claim if t = 1. So, let t > 1.

Assume inductively that the set $\{d_M^i(n_i) \mid (R, M) \in C\}$ is finite whenever $n_i \leq n$ and $d - t + 1 \leq i \leq d - 1$. It remains to find a family of non-negative integers $(h_n)_{n \geq n_{d-t}}$ such that $d_M^{d-t}(n) \leq h_n$ for all $n \geq n_{d-t}$ and all pairs $(R, M) \in C$. Let \mathcal{E} denote the class of all pairs $(R, M/xM) = (R, \overline{M})$ in which $(R, M) \in C$ and $x \in R_1 \cap NZD(M)$. As $n_i - 1 \geq n_{i+1}$ for all $i \in \{d - t, \dots, d - 2\}$, the sequences $(*_{i,n_i})$ show that

$$d^{i}_{M/xM}(n_{i}) \leq d^{i+1}_{M}(n_{i}-1) + h \text{ for } i \in \{d-t, \dots, d-2\}.$$

This means that the set $\{d_{\overline{M}}^i(n_i) \mid (R, \overline{M}) \in \mathcal{E}\}$ is finite whenever $(d-1) - (t-1) \leq i \leq d-2$. So, by induction the set $\{d_{\overline{M}}^i(n_i) \mid (R, \overline{M}) \in \mathcal{E}\}$ is finite whenever $n_i \leq n$ and $(d-1) - (t-1) \leq i \leq d-2$.

In particular there is a family of non-negative integers $(k_m)_{m \ge n_{d-t}}$ such that $d_{M/xM}^{d-t}(m) \le k_m$ for all $m \ge n_{d-t}$ and all (R, M) and x as above. Now, for each $n \ge n_{d-t}$ set $h_n := h + \sum_{n_{d-t} < m \le n} k_m$. If we choose $(R, M) \in C$, the sequences $(*_{d-t,n})$ imply that $d_M^{d-t}(n) \le h_n$ for all $n \ge n_{d-t}$. \Box

Proposition 4.2. Let $(n_i)_{i=0}^{d-1}$ be a sequence of integers such that $n_{d-1} < \cdots < n_0$ and let $C \subseteq D^d$. Then the set $\{(i, n_i) \mid i = 0, \dots, d-1\}$ bounds cohomology in C.

Proof. Let $(h^i)_{i=0}^{d-1}$ be a family of non-negative integers and let \mathcal{C}' be the class of all pairs $(R, M) \in \mathcal{C}$ such that $d^i_M(n_i) \leq h^i$ for i = 0, ..., d-1. Then, by Lemma 4.1 the set $\{d^i_M(n) \mid (R, M) \in \mathcal{C}'\}$ is finite, whenever $n \geq n_i$ and $0 \leq i \leq d-1$. Therefore the set $\Delta_{\mathcal{C}',n_0} := \{d^i_M(n_0-i) \mid (R, M) \in \mathcal{C}', 0 \leq i < d\}$ is finite. So, by Theorem 3.5 the class \mathcal{C}' is of finite cohomology. It follows that $\{(i, n_i) \mid i = 0, ..., d-1\}$ bounds cohomology in \mathcal{C} . \Box

Definition 4.3. A set $\mathbb{T} \subseteq \{0, 1, \dots, d-1\} \times \mathbb{Z}$ is called a *quasi-diagonal* if there is a sequence of integers $(n_i)_{i=0}^{d-1}$ such that $n_{d-1} < n_{d-2} < \cdots < n_0$ and

$$\mathbb{T} = \big\{ (i, n_i) \mid i = 0, \dots, d-1 \big\}.$$

Observe, that diagonals in $\{0, ..., d-1\} \times \mathbb{Z}$ are quasi-diagonals. So, the next result generalizes Corollary 3.8.

Corollary 4.4. Let $\mathbb{S} \subseteq \{0, 1, \dots, d-1\} \times \mathbb{Z}$ be a set which contains a quasi-diagonal. Then \mathbb{S} bounds cohomology in each subclass $\mathcal{C} \subseteq \mathcal{D}^d$.

Proof. Clear by Proposition 4.2.

Our next goal is to show that the converse of Corollary 4.4 holds, namely: if a set $\mathbb{S} \subseteq \{0, 1, ..., d-1\} \times \mathbb{Z}$ bounds cohomology in \mathcal{D}^d , then \mathbb{S} contains a quasi-diagonal.

Reminder 4.5. Let *K* be a field, let $R = K \oplus R_1 \oplus \cdots$ and $R' = K \oplus R'_1 \oplus \cdots$ be two Noetherian homogeneous *K*-algebras. Let $R \boxtimes_K R' := K \oplus (R_1 \otimes R'_1) \oplus (R_2 \otimes R'_2) \oplus \cdots \subseteq R \otimes_K R'$ be the Segre product ring of *R* and *R'*, a Noetherian homogeneous *K*-algebra. For a graded *R*-module $M = \bigoplus_{n \in \mathbb{Z}} M_n$ and a graded *R'*-module $M' = \bigoplus_{n \in \mathbb{Z}} M'_n$ let $M \boxtimes_K M' := \bigoplus_{n \in \mathbb{Z}} M_n \otimes_K M'_n \subseteq M \otimes_K M'$ the Segre product module of *M* and *M'*, a graded $R \boxtimes_K R'$ -module. Keep in mind, that the Künneth relations (for Segre products) yield isomorphism of graded $R \boxtimes_K R'$ -modules

$$D^{i}_{(R\boxtimes_{K}R')_{+}}(M\boxtimes_{K}M')\cong\bigoplus_{j=0}^{l}D^{j}_{R_{+}}(M)\boxtimes_{K}D^{i-j}_{R'_{+}}(M')$$

for all $i \in \mathbb{N}_0$ (cf. [23,14,20]).

Lemma 4.6. Let d > 1 and let $R := K[x_1, ..., x_d]$ be a polynomial ring over some infinite field K. Let $\mathbb{S} \subseteq \{0, 1, ..., d-1\} \times \mathbb{Z}$ such that

- (1) \mathbb{S} contains no quasi-diagonal,
- (2) $\mathbb{S} \cap (\{0, \ldots, d-2\} \times \mathbb{Z})$ contains a quasi-diagonal $\{(i, n_i) \mid i = 0, \ldots, d-2\}$ and
- (3) $\mathbb{S} \cap (\{d-1\} \times \mathbb{Z}) \neq \emptyset$.

Then

- (a) $(d-1, n) \notin \mathbb{S}$ for all $n \ll 0$.
- (b) There is a family $(M_k)_{k \in \mathbb{N}}$ of finitely generated graded *R*-modules, locally free of rank $\leq ((d-1)!)^2$ on $\operatorname{Proj}(R)$ such that the set $\{d^i_{M_k}(n) \mid k \in \mathbb{N}\}$ is finite for all $(i, n) \in \mathbb{S}$ and

$$\lim_{k\to\infty} d_{M_k}^{d-1}(r) = \infty, \quad \text{where } r := \inf\{n \in \mathbb{Z} \mid (d-1, n) \in \mathbb{S}\} - 1.$$

Proof. For all $i \in \{1, ..., d\}$ we write $R^i := K[x_1, ..., x_i]$ and $\mathbb{S}^i := \mathbb{S} \cap (\{i\} \times \mathbb{Z})$. Statement (a) follows immediately from our hypotheses on the set \mathbb{S} . So, it remains to prove statement (b). After shifting appropriately we may assume that r = -1.

By our hypotheses on S it is clear that $S^i \neq \emptyset$ for all $i \in \{0, ..., d-1\}$. Let

$$\alpha_i := \sup \{ n \in \mathbb{Z} \mid (i, n) \in \mathbb{S}^i \} \text{ for all } i \in \{0, \dots, d-1\}.$$

Then by our hypothesis on S we have $\alpha_i < \infty$ for some $i \in \{1, ..., d-2\}$. Let

$$s:=\min\{i\in\{0,\ldots,d-2\}\mid\alpha_i<\infty\}$$

and

$$n_s := \alpha_s = \max\{n \in \mathbb{Z} \mid (s, n) \in \mathbb{S}^s\}.$$

Now, we may find a quasi-diagonal $\{(i, n_i) | i = 0, ..., d - 2\}$ in $\mathbb{S} \cap (\{0, ..., d - 2\} \times \mathbb{Z})$ such that for all $i \in \{s + 1, ..., d - 2\}$ we have

$$n_i = \max\{n < n_{i-1} \mid (i,n) \in \mathbb{S}\}.$$

As S contains no quasi-diagonal, we must have $n_{d-2} \leq 0$. For all $m, n \in \mathbb{Z} \cup \{\pm \infty\}$ we write $]m, n[:= \{t \in \mathbb{Z} \mid m < t < n\}$. Using this notation we set

$$t_{-1} := \infty;$$
 $t_{d-s-1} := -\infty;$ $t_i := \max\{d-s-i-2, n_{i+s}\}, \forall i \in \{0, \dots, d-s-2\},$

and write

$$P := \bigcup_{i=0}^{d-s-1} (\{i\} \times]t_i, t_{i-1}[).$$

Observe, that by our choice of the pairs (i, n_i) we have

(*) if
$$s \leq i \leq d-1$$
 and $(i, n) \in \mathbb{S}$, then $(i - s, n) \notin P$.

Moreover by [5, 2.7] the set $P \subseteq \{0, \dots, d-s-1\} \times \mathbb{Z}$ is a minimal combinatorial pattern of width d-s-1. So, by [5, Proposition 4.5], there exists a finitely generated R^{d-s} -module N, locally free of rank $\leq (d - s - 1)!$ on $\operatorname{Proj}(\mathbb{R}^{d-s})$ such that $\mathcal{P}_N = P$.

Now, consider the Segre product ring $S := R^{s+1} \boxtimes_K R^{d-s}$ and for each $k \in \mathbb{N}$ let M_k be the finitely generated graded S-module $R^{s+1}(-k) \boxtimes_K N$, which is locally free of rank $\leq (d-1)!/s!$ on Proj(S). Observe that

$$d_{R^{s+1}}^{j} \equiv 0$$
 for all $j \neq 0, s$ and $d_{N}^{l} \equiv 0$ for all $l > d - s - 1$.

Now, we get from the Künneth relations (cf. Reminder 4.5) for all $i \in \{0, \ldots, d-1\}$ and all $n \in \mathbb{Z}$

$$d_{M_{k}}^{i}(n) = \begin{cases} d_{R^{s+1}}^{0}(-k+n)d_{N}^{i}(n) & \text{for } 0 \leq i < s, \\ d_{R^{s+1}}^{0}(-k+n)d_{N}^{i}(n) + d_{R^{s+1}}^{s}(-k+n)d_{N}^{i-s}(n) & \text{for } s \leq i \leq d-s-1, \\ d_{R^{s+1}}^{s}(-k+n)d_{N}^{i-s}(n) & \text{for } d-s-1 < i \leq d-1. \end{cases}$$

As $P = \mathcal{P}_N$ and in view of (*) we have $d_N^{i-s}(n) = 0$ for all $(i, n) \in \mathbb{S}$ with $s \leq i \leq d-1$. Moreover, for all $n \in \mathbb{Z}$ and all $k \in \mathbb{N}$ we have $d_{\mathbb{R}^{s+1}}^0(-k+n) \leq d_{\mathbb{R}^{s+1}}^0(n-1)$. So for all $k \in \mathbb{N}$ and all $(i, n) \in \mathbb{S}$ we get

$$d_{M_k}^i(n) \begin{cases} \leq d_{R^{s+1}}^0(n-1)d_N^i(n) & \text{for } 0 \leq i \leq d-s-1, \\ = 0 & \text{if } d-s-1 < i \leq d-1. \end{cases}$$

Therefore the set $\{d_{M_k}^i(n) \mid k \in \mathbb{N}\}$ is finite for all $(i, n) \in S$. Moreover $d_{M_k}^{d-1}(-1) = d_{R^{s+1}}^s(-k-1)d_N^{d-s-1}(-1)$. As $(d-s-1, -1) \in P$ we have $d_N^{d-s-1}(-1) > 0$ and hence $d_{R^{s+1}}^s(-k-1) = {k \choose s}$ implies that

$$\lim_{k\to\infty} d_{M_k}^{d-1}(-1) = \infty.$$

As dim(S) = d, there is a finite injective morphism $R \to S$ of graded rings, which turns S in an *R*-module of rank (d-1)!/s!(d-s-1)!. So M_k becomes an *R*-module locally free of rank $\leq [(d-1)!/s!]$ $s!(d-s-1)!][(d-1)!/s!] \leq ((d-1)!)^2$ on Proj(R). Moreover, by Graded Base Ring Independence of Local Cohomology, we get isomorphisms of graded *R*-modules $D_{S_{\perp}}^{j}(M_{k}) \cong D_{R_{\perp}}^{j}(M_{k})$ for all $j \in \mathbb{N}_{0}$. Now, our claim follows easily. \Box

Definition 4.7. A class $\mathcal{D} \subseteq \mathcal{D}^d$ is said to be *big*, if for each $t \in \{1, ..., d\}$ there is an infinite field *K* such that \mathcal{D} contains all pairs (R, M) in which R is the polynomial ring $K[x_1, \ldots, x_t]$.

Proposition 4.8. Let $\mathcal{C} \subset \mathcal{D}^d$ be a big class and let $\mathbb{S} \subset \{0, \ldots, d-1\} \times \mathbb{Z}$ be a set which bounds cohomology in C. Then S contains a quasi-diagonal.

Proof. There is an infinite field *K* such that with $R := K[x_1, \ldots, x_d]$ we have $(R, R(-k)) \in C$ for all $k \in \mathbb{N}$. The set $\{d_{R(-k)}^i(n) \mid k \in \mathbb{N}\}$ is finite for all $(i, n) \in \{0, \ldots, d-2\} \times \mathbb{Z}$ and $\lim_{k \to \infty} d_{R(-k)}^{d-1}(0) = \infty$.

It follows that $\mathbb{S}^{d-1} := \mathbb{S} \cap (\{d-1\} \times \mathbb{Z}) \neq \emptyset$. This proves our claim if d = 1. So, let d > 1. Clearly $\mathcal{D}^{d-1} \cap \mathcal{C} \subseteq \mathcal{D}^{d-1}$ is a big class and $\mathbb{S}^{<(d-1)} = \mathbb{S} \cap (\{0, \dots, d-2\} \times \mathbb{Z})$ bounds cohomology in $\mathcal{D}^{d-1} \cap \mathcal{C}$ (see Remark 3.7(C)). So, by induction the set $\mathbb{S}^{<(d-1)}$ contains a quasidiagonal. If S would contain no quasi-diagonal, Lemma 4.6 would imply that for our polynomial ring R there is a class \mathcal{D} of pairs $(R, M) \in \mathcal{D}^d$ which is not of bounded cohomology but such that the set $\{d_M^i(n) \mid (R, M) \in \mathcal{D}\}$ is finite for all $(i, n) \in S$. As \mathcal{C} is a big class, we have $\mathcal{D} \subseteq \mathcal{C}$, and this would imply the contradiction that \mathbb{S} does not bound cohomology in \mathcal{C} . \Box

Theorem 4.9. Let $C \subseteq D^d$ be a big class and let $S \subseteq \{0, ..., d-1\} \times \mathbb{Z}$. Then S bounds cohomology in C if and only if S contains a quasi-diagonal.

Proof. Clear by Corollary 4.4 and Proposition 4.8.

Corollary 4.10. The set $\mathbb{S} \subseteq \{0, ..., d-1\} \times \mathbb{Z}$ bounds cohomology in \mathcal{D}^d if and only if \mathbb{S} contains a quasidiagonal.

Proof. Clear by Theorem 4.9.

5. Bounding invariants

In this section we investigate numerical invariants which bound cohomology.

Definitions 5.1. (A) (See [2,8,9].) Let $C \subseteq D^d$ be a subclass. A *numerical invariant* on the class C is a map

$$\mu: \mathcal{C} \to \mathbb{Z} \cup \{\pm \infty\}$$

such that for any two pairs $(R, M), (R, N) \in C$ with $M \cong N$ we have $\mu(R, M) = \mu(R, N)$. We shall write $\mu(M)$ instead of $\mu(R, M)$.

(B) Let $(\mu_i)_{i=1}^r$ be a family of numerical invariants on the subclass $C \subseteq D^d$. We say that the family $(\mu_i)_{i=1}^r$ bounds cohomology on the class C, if for each $(n_1, \ldots, n_r) \in (\mathbb{Z} \cup \{\pm \infty\})^r$ the class

$$\{(R, M) \in \mathcal{C} \mid \mu_i(M) = n_i \text{ for all } i \in \{1, \dots, r\}\}$$

is of bounded cohomology.

(C) A numerical invariant μ on the class $C \subseteq D^d$ is said to be *finite* if $\mu(M) \in \mathbb{Z}$ for all $(R, M) \in C$. (D) A numerical invariant μ on the class $C \subseteq D^d$ is said to be *positive* if $\mu(M) \ge 0$ for all $(R, M) \in C$.

Remark 5.2. (A) If $\mu : \mathcal{C} \to \mathbb{Z} \cup \{\pm \infty\}$ is a numerical invariant on the class $\mathcal{C} \subseteq \mathcal{D}^d$ and if $\mathcal{D} \subseteq \mathcal{C}$, then the restriction $\mu \upharpoonright_{\mathcal{D}} : \mathcal{D} \to \mathbb{Z} \cup \{\pm \infty\}$ is a numerical invariant on the class \mathcal{D} . Clearly, if μ is finite (resp. positive) then so is $\mu \upharpoonright_{\mathcal{D}}$.

(B) If $(\mu_i)_{i=1}^r$ bounds cohomology on the class $C \subseteq D^d$ and if $D \subseteq C$, then $(\mu_i \upharpoonright_D)_{i=1}^r$ bounds cohomology in D.

(C) A family $(\mu_i)_{i=1}^r$ of positive numerical invariants bounds cohomology in C if and only if for all $(n_1, \ldots, n_r) \in (\mathbb{N}_0 \cup \{\infty\})^r$ the class

$$\{(R, M) \in \mathcal{C} \mid \mu_i(M) \leq n_i \text{ for all } i \in \{1, \dots, r\}\}$$

is of bounded cohomology.

(D) A family $(\mu_i)_{i=1}^r$ of finite positive invariants bounds cohomology on C if and only if the sum invariant $\sum_{i=1}^r \mu_i : C \to \mathbb{N}_0$ bounds cohomology in C.

Remark 5.3. Let $i \in \mathbb{N}_0$ and $n \in \mathbb{Z}$. Then, the map

$$d^{i}_{\bullet}(n): \mathcal{D}^{d} \to \mathbb{N}_{0} \quad \left((R, M) \mapsto d^{i}_{M}(n) \right)$$

is a finite positive numerical invariant on \mathcal{D}^d .

Theorem 5.4. Let $(n_i)_{i=0}^{d-1}$ be a sequence of integers such that $n_0 > n_1 > n_2 > \cdots > n_{d-1}$. Then the family of numerical invariants $(d_{\bullet}^i(n_i))_{i=0}^{d-1}$ bounds cohomology in \mathcal{D}^d .

Proof. Clear by Proposition 4.2.

Reminder 5.5. For each $k \in \mathbb{N}_0$ we may define the numerical invariant

$$\operatorname{reg}^k : \mathcal{D}^d \to \mathbb{Z} \cup \{-\infty\} \quad ((R, M) \mapsto \operatorname{reg}^k(M)).$$

Notation 5.6. For $(R, M) \in \mathcal{D}^d$ we set

$$\varrho(M) := \begin{cases} d_M^0(\operatorname{reg}^2(M)) & \text{if } \dim(M) > 1, \\ d_M^0(0) & \text{if } \dim(M) \leq 1. \end{cases}$$

Remark 5.7. (A) If $(R, M) \in \mathcal{D}^d$ with dim $(M) \leq 1$, the cohomological Hilbert function d_M^0 of M is constant, and this constant is strictly positive if and only if dim(M) = 1.

(B) The function

$$\varrho: \mathcal{D}^d \to \mathbb{N}_0 \quad ((R, M) \mapsto \varrho(M))$$

is a finite positive numerical invariant on \mathcal{D}^d .

Theorem 5.8. The pair of invariants (reg^2, ϱ) bounds cohomology in \mathcal{D}^d .

Proof. Fix $u, v \in \mathbb{Z}$ and set

$$\mathcal{C} := \left\{ (R, M) \in \mathcal{D}^d \mid \operatorname{reg}^2(M) = u, \ \varrho(M) = v \right\}.$$

If $(R, M) \in \mathcal{C}$ we have $d_M^0(u) = d_M^0(\operatorname{reg}^2(M)) = v$.

Let $i \in \mathbb{N}$. Then $u - i = \operatorname{reg}^2(M) - i > a_{i+1}(M)$ and hence $d_M^i(u - i) = h_M^{i+1}(u - i) = 0$. Therefore (R, M) belongs to the class

$$\mathcal{D} := \{ (R, M) \in \mathcal{D}^d \mid d_M^0(u) = v \text{ and } d_M^i(u-i) = 0 \text{ for all } i \in \{1, \dots, d-1\} \}.$$

But according to Theorem 5.4 the class \mathcal{D} is of bounded cohomology. \Box

Lemma 5.9. Let $(R, M) \in \mathcal{D}^d$ be such that $\dim(R/\mathfrak{p}) \neq 1$ for all $\mathfrak{p} \in Ass_R(M)$. Then

$$d_M^0(n-1) \leqslant \max\{0, d_M^0(n) - 1\} \quad \text{for all } n \in \mathbb{Z}.$$

Proof. For an arbitrary finitely generated graded *R*-module *N* let

$$\lambda(N) := \inf \{ \operatorname{depth}(N_{\mathfrak{p}}) + \operatorname{height}((\mathfrak{p} + R_{+})/\mathfrak{p}) \mid \mathfrak{p} \in \operatorname{Spec}(R) \setminus \operatorname{Var}(R_{+}) \}.$$

Clearly, for all $n \in \mathbb{Z}$ we have $\lambda(N(n)) = \lambda(N)$. So, for all $n \in \mathbb{Z}$, we get by our hypotheses that $\lambda(M(n)) = \lambda(M) > 1$. Now, according to [8, Proposition 4.6] we obtain

$$d_M^0(n-1) = d_{M(n)}^0(-1) \leqslant \max\{0, d_{M(n)}^0(0) - 1\} = \max\{0, d_M^0(n) - 1\}. \quad \Box$$

Theorem 5.10. Let $r, s \in \mathbb{Z}$ and let $p \in \mathbb{Q}[t]$ be a polynomial. Let $C \subseteq D^d$ be the class of all pairs $(R, M) \in D^d$ satisfying the following conditions:

- (α) There is a finitely generated graded R-module N with Hilbert polynomial $p_N = p$ and $\operatorname{reg}^2(N) \leq r$ such that $M \subseteq N$.
- $(\beta) \operatorname{reg}^2(M) \leq s.$

Then, C is a class of finite cohomology.

Proof. Let $v := \max\{r, s\}$. We first show that for each pair $(R, M) \in C$ we have

(*)
$$\varrho(M) \leqslant p(v)$$

and

(**)
$$\dim(M) \leq 1$$
 or $\operatorname{reg}^2(M) \geq -\nu - p(\nu)$.

So, let $(R, M) \in C$. Then, there is a monomorphism of finitely generated graded *R*-modules $M \xrightarrow{\epsilon} N$ such that $p_N = p$ and $\operatorname{reg}^2(N) \leq r \leq v$.

Assume first that $\dim(M) > 1$. As $\operatorname{reg}^2(M) \leq v$ we then get

$$\varrho(M) = d_M^0(\operatorname{reg}^2(M)) \leqslant d_M^0(\nu) \leqslant d_N^0(\nu) = p_N(\nu) = p(\nu).$$

If dim(*M*) \leq 1, the function d_M^0 is constant and therefore

$$\varrho(M) = d_M^0(0) = d_M^0(v) \leqslant d_N^0(v) = p_N(v) = p(v).$$

Thus we have proved statement (*).

To prove statement (**) we assume that $\dim(M) > 1$. Then there is a short exact sequence of finitely generated graded *R*-modules

 $0 \to H \to M \to \overline{M} \to 0$

such that dim $(H) \leq 1$ and Ass_{*R*} (\overline{M}) does not contain any prime \mathfrak{p} with dim $(R/\mathfrak{p}) \leq 1$. As dim $(H) \leq 1$, we have $H^i_{R_+}(H) = 0$ for all i > 1. Therefore $H^i_{R_+}(M) \cong H^i_{R_+}(\overline{M})$ for all i > 1 and hence $\operatorname{reg}^2(M) = \operatorname{reg}^2(\overline{M})$. Moreover by the observation made on Ass_{*R*} (\overline{M}) , we have (see Lemma 5.9)

$$d_{\overline{M}}^{0}(n-1) \leqslant \max\left\{0, d_{\overline{M}}^{0}(n) - 1\right\} \quad \text{for all } n \in \mathbb{Z}.$$

As $D^1_{R_{\perp}}(H) = H^2_{R_{\perp}}(H) = 0$, we have

$$d_{\overline{M}}^{0}(\nu) \leqslant d_{M}^{0}(\nu) \leqslant d_{N}^{0}(\nu) = p_{N}(\nu) = p(\nu)$$

and it follows that

$$d_{\overline{M}}^0(n) = 0$$
 for all $n \leq -\nu - p(\nu) - 1$.

One consequence of this is, that $T := D^0_{R_+}(\overline{M})$ is a finitely generated *R*-module. As $H^i_{R_+}(M) \cong H^i_{R_+}(\overline{M})$ for all i > 1, we have $\operatorname{reg}^2(T) = \operatorname{reg}^2(\overline{M}) = \operatorname{reg}^2(M)$. As $H^i_{R_+}(T) = 0$ for i = 0, 1, we thus get $\operatorname{reg}^2(M) = \operatorname{reg}^2(M)$.

reg(*T*). As $T_n = 0$ for all $n \leq -v - p(v) - 1$, we finally obtain (see Reminder 2.2(E))

$$\operatorname{reg}^{2}(M) = \operatorname{reg}(T) \ge \operatorname{gendeg}(T) \ge \operatorname{beg}(T) \ge -\nu - p(\nu)$$

This proves statement (**).

Now, we may write

$$\mathcal{C} \subseteq \mathcal{C}_{-\infty} \cup \bigcup_{t=-\nu-p(\nu)}^{s} \mathcal{C}_{t}$$

where

$$\mathcal{C}_{-\infty} := \left\{ (R, M) \in \mathcal{D}^d \mid \dim(M) \leqslant 1 \text{ and } \varrho(M) \leqslant p(\nu) \right\}$$

and, for all $t \in \mathbb{Z}$ with $-v - p(v) \leq t \leq s$,

$$\mathcal{C}_t := \left\{ (R, M) \in \mathcal{D}^d \mid \operatorname{reg}^2(M) = t, \ \varrho(M) \leqslant p(v) \right\}.$$

The class $\mathcal{C}_{-\infty}$ clearly is of bounded cohomology.

Now, by Remark 5.2(C) and by Corollary 5.8, each of the classes C_t is of bounded cohomology. This proves our claim. \Box

Corollary 5.11. Let $r \in \mathbb{Z}$ and let $p \in \mathbb{Q}[t]$ be a polynomial. Let $C \subseteq D^d$ be the class of all pairs $(R, M) \in D^d$ satisfying the condition (α) of Theorem 5.10. Then, the invariant reg^2 bounds cohomology in the class C.

Proof. This is immediate by Theorem 5.10. \Box

Corollary 5.12. Let $r \in \mathbb{Z}$ and let $(R, N) \in \mathcal{D}^d$. If M runs through all graded submodules $M \subseteq N$ with $\operatorname{reg}^2(M) \leq r$, only finitely many cohomology tables d_M and hence only finitely many Hilbert polynomials p_M occur.

Proof. This is clear by Theorem 5.10. \Box

Corollary 5.13. Let $r \in \mathbb{Z}$ and let $(R, N) \in D^d$. If M runs through all graded submodules of N with $\operatorname{reg}^1(M) \leq r$ only finitely many families

 $(h_M^i(n))_{(i,n)\in\mathbb{N}_0\times\mathbb{Z}}$ and $(h_{N/M}^i(n))_{(i,n)\in\mathbb{N}_0\times\mathbb{Z}}$

can occur.

Proof. Let \mathcal{P} be the set of all graded submodules $M \subseteq N$ with $\operatorname{reg}^1(M) \leq r$. Now, for each $M \in \mathcal{P}$ we have the following three relations

$$\begin{aligned} d_M^i(n) &= h_M^{i+1}(n) \quad \text{for all } i \ge 1 \text{ and all } n \in \mathbb{Z}; \\ \begin{cases} h_M^1(n) \leqslant d_M^0(n) \quad \text{for all } n \in \mathbb{Z}; \\ h_M^1(n) &= d_M^0(n) \quad \text{for all } n < \text{beg}(N); \\ h_M^1(n) &= 0 \qquad \text{for all } n \ge r, \end{aligned}$$

470

and

$$h_M^0(n) \leqslant h_N^0(n)$$
 for all $n \in \mathbb{Z}$.

So, by Corollary 5.12 the set

$$\mathcal{U} := \left\{ \left(h_M^i(n) \right)_{(i,n) \in \mathbb{N}_0 \times \mathbb{Z}} \mid M \in \mathcal{P} \right\}$$

is finite.

For each $M \in \mathcal{P}$ the short exact sequence $0 \to M \to N \to N/M \to 0$ yields that for all $n \in \mathbb{Z}$ and all $i \in \mathbb{N}_0$

$$h_{N/M}^{0}(n) \leq h_{N}^{0}(n) + h_{M}^{1}(n),$$
 (1)

$$d_{N/M}^{i}(n) \leq d_{N}^{i}(n) + h_{M}^{i+2}(n).$$
⁽²⁾

By the finiteness of \mathcal{U} it follows that the set of functions

 $\mathcal{U}_0 := \left\{ \left(h_{N/M}^0(n) \right)_{n \in \mathbb{Z}} \mid M \in \mathcal{P} \right\}$

is finite and that the set of cohomology diagonals

$$\mathcal{W} := \left\{ \left(d_{N/M}^{i}(-i) \right)_{i=0}^{d-1} \mid M \in \mathcal{P} \right\}$$

is finite.

In view of the theorem [6, Theorem 5.4] the finiteness of $\mathcal W$ implies that the set

 $\mathcal{U}_1 := \left\{ \left(d_{N/M}^i(n) \right)_{(i,n) \in \mathbb{N}_0 \times \mathbb{Z}} \mid M \in \mathcal{P} \right\}$

is finite. Moreover for all $M \in \mathcal{P}$ we have

$$\operatorname{end}\left(H_{R_{+}}^{1}(N/M)\right) < \operatorname{reg}^{1}(N/M) \leq \max\left\{\operatorname{reg}^{2}(M) - 1, \operatorname{reg}^{2}(N)\right\} \leq \max\left\{r - 1, \operatorname{reg}^{1}(N)\right\}$$

and

$$h_{N/M}^1(n) \leq d_{N/M}^0(n)$$
 for all $n \in \mathbb{Z}$, with equality if $n < \text{beg}(N)$

As $d_{N/M}^i \equiv h_{N/M}^{i+1}$ for all i > 0 the finiteness of \mathcal{U}_0 and \mathcal{U}_1 shows that the set

$$\left\{ \left(h_{N/M}^{i}(n) \right)_{(i,n) \in \mathbb{N}_{0} \times \mathbb{Z}} \mid M \in \mathcal{P} \right\}$$

is finite, too. \Box

Corollary 5.14. Assume that *R* is a homogeneous Noetherian Cohen–Macaulay ring with Artinian local base ring R_0 . Let $s \in \mathbb{Z}$ and let *N* be a finitely generated graded *R*-module. If *M* runs trough all graded submodules

of N with gendeg(M) \leq s only finitely many families

 $(h_M^i(n))_{(i,n)\in\mathbb{N}_0\times\mathbb{Z}}$ and $(h_{N/M}^i(n))_{(i,n)\in\mathbb{N}_0\times\mathbb{Z}}$

may occur.

Proof. By [4, Proposition 6.1] we see that reg(M) finds an upper bound in terms of gendeg(M), reg(N), reg(R), beg(N), dim(R), the multiplicity $e_0(R)$ of R and the minimal number of homogeneous generators of the R-module N. Now, we conclude by Corollary 5.13. \Box

Remark 5.15. If we apply Corollary 5.13 in the special case where $N = R = K[x_1, ..., x_r]$ is a polynomial ring over a field, we get back the finiteness result [17, Corollary 14]. Correspondingly, if we apply Corollary 5.14 in this special case, we get back [17, Corollary 20].

Acknowledgments

The third author would like to thank the Institute of Mathematics of University of Zürich for financial support and hospitality during the preparation of this paper.

References

- D. Bayer, D. Mumford, What can be computed in algebraic geometry?, in: D. Eisenbud, L. Robbiano (Eds.), Computational Algebraic Geometry, Commutative Algebra, Proc., Cortona, 1991, Cambridge Univ. Press, 1993, pp. 1–48.
- [2] M. Brodmann, Cohomological invariants of coherent sheaves over projective schemes A survey, in: G. Lyubeznik (Ed.), Local Cohomology and Its Applications, in: Lect. Notes Pure Appl. Math., vol. 226, M. Dekker, 2001, pp. 91–120.
- [3] M. Brodmann, Castelnuovo–Mumford regularity and degrees of generators of graded submodules, Illinois J. Math. 47 (3) (2003) 749–767.
- [4] M. Brodmann, T. Götsch, Bounds for the Castelnuovo–Mumford regularity, J. Commut. Algebra 1 (2) (2009) 197-225.
- [5] M. Brodmann, M. Hellus, Cohomological patterns of coherent sheaves over projective schemes, J. Pure Appl. Algebra 172 (2002) 165–182.
- [6] M. Brodmann, M. Jahangiri, C.H. Linh, Castelnuovo–Mumford regularity of deficiency modules, J. Algebra 322 (8) (2009) 2816–2838.
- [7] M. Brodmann, F.A. Lashgari, A diagonal bound for cohomological postulation numbers of projective schemes, J. Algebra 265 (2003) 631–650.
- [8] M. Brodmann, C. Matteotti, N.D. Minh, Bounds for cohomological Hilbert functions of projective schemes over Artinian rings, Vietnam J. Math. 28 (4) (2000) 345–384.
- [9] M. Brodmann, C. Matteotti, N.D. Minh, Bounds for cohomological deficiency functions of projective schemes over Artinian rings, Vietnam J. Math. 31 (1) (2003) 71–113.
- [10] M. Brodmann, R.Y. Sharp, Local Cohomology: An Algebraic Introduction with Geometric Applications, Cambridge Univ. Press, 1998.
- [11] G. Caviglia, Bounds on the Castelnuovo-Mumford regularity of tensor products, Proc. Amer. Math. Soc. 135 (2007) 1949-1957.
- [12] G. Caviglia, E. Sbarra, Characteristic free bounds for the Castelnuovo-Mumford regularity, Compos. Math. 141 (2005) 1365– 1373.
- [13] M. Chardin, A.L. Fall, U. Nagel, Bounds for the Castelnuovo-Mumford regularity of modules, Math. Z. 258 (2008) 69-80.
- [14] S. Fumasoli, Die Künnethrelation in abelschen Kategorien und ihre Anwendung auf die Idealtransformation, Diplomarbeit, Universität Zürich, 1999.
- [15] A. Grothendieck, Séminare de géometrie algébrique IV, Lecture Notes in Math., vol. 225, Springer, 1971.
- [16] L.T. Hoa, Finiteness of Hilbert functions and bounds for the Castelnuovo–Mumford regularity of initial ideals, Trans. Amer. Math. Soc. 360 (2008) 4519–4540.
- [17] L.T. Hoa, E. Hyry, Castelnuovo-Mumford regularity of canonical and deficiency modules, J. Algebra 305 (2) (2006) 877-900.
- [18] J. Kleiman, Towards a numerical theory of ampleness, Ann. of Math. 84 (1966) 293-344.
- [19] C.H. Linh, Upper bounds for Castelnuovo–Mumford regularity of associated graded modules, Comm. Algebra 33 (6) (2005) 1817–1831.
- [20] S. Mac Lane, Homology, Grundlehren Math. Wiss., vol. 114, Springer, Berlin, 1963.
- [21] D. Mumford, Lectures on Curves on an Algebraic Surface, Ann. of Math. Stud., vol. 59, Princeton Univ. Press, 1966.
- [22] M.E. Rossi, N.V. Trung, G. Valla, Castelnuovo–Mumford regularity and extended degree, Trans. Amer. Math. Soc. 355 (5) (2003) 1773–1786.
- [23] J. Stükrad, W. Vogel, Buchsbaum Rings and Applications, Deutscher Verlag der Wissenschaften, Berlin, 1986.