Boundedness of cohomology

Markus Brodmann ${ }^{\text {a,* }}$, Maryam Jahangiri ${ }^{\text {b }}$, Cao Huy Linh ${ }^{\text {c }}$
${ }^{\text {a }}$ University of Zürich, Institute of Mathematics, Winterthurerstrasse 190, 8057 Zürich, Switzerland
${ }^{\text {b }}$ School of Mathematics and Computer Sciences, Damghan University of Basic Sciences, Damghan, Iran
${ }^{\text {c }}$ Department of Mathematics, College of Education, Hue University, 32 Le Loi, Hue City, Viet Nam

ARTICLE INFO

Article history:

Received 13 May 2009
Available online 26 August 2009
Communicated by Luchezar L. Avramov

Keywords:

Local cohomology
Sheaf cohomology
Graded modules
Projective schemes
Finiteness of cohomology

Abstract

Let $d \in \mathbb{N}$ and let \mathcal{D}^{d} denote the class of all pairs (R, M) in which $R=\bigoplus_{n \in \mathbb{N}_{0}} R_{n}$ is a Noetherian homogeneous ring with Artinian base ring R_{0} and such that M is a finitely generated graded R module of dimension $\leqslant d$. For such a pair (R, M) let $d_{M}^{i}(n)$ denote the (finite) R_{0}-length of the n-th graded component of the i-th R_{+}-transform module $D_{R^{+}}^{i}(M)$. The cohomology table of a pair $(R, M) \in \mathcal{D}^{d}$ is defined as the family of non-negative integers $d_{M}:=\left(d_{M}^{i}(n)\right)_{(i, n) \in \mathbb{N} \times \mathbb{Z}}$. We say that a subclass \mathcal{C} of \mathcal{D}^{d} is of finite cohomology if the set $\left\{d_{M} \mid\right.$ $(R, M) \in \mathcal{C}\}$ is finite. A set $\mathbb{S} \subseteq\{0, \ldots, d-1\} \times \mathbb{Z}$ is said to bound cohomology, if for each family $\left(h^{\sigma}\right)_{\sigma \in \mathbb{S}}$ of non-negative integers, the class $\left\{(R, M) \in \mathcal{D}^{d} \mid d_{M}^{i}(n) \leqslant h^{(i, n)}\right.$ for all $\left.(i, n) \in \mathbb{S}\right\}$ is of finite cohomology. Our main result says that this is the case if and only if \mathbb{S} contains a quasi diagonal, that is a set of the form $\left\{\left(i, n_{i}\right) \mid i=\right.$ $0, \ldots, d-1\}$ with integers $n_{0}>n_{1}>\cdots>n_{d-1}$. We draw a number of conclusions of this boundedness criterion.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

This paper continues our investigation [6], which was driven by the question "What bounds cohomology of a projective scheme?"

A considerable number of contributions has been given to this theme, mainly under the aspect of bounding some cohomological invariants in terms of other invariants (see [1-4,7-9,11-13,15-19,21, 22] for example).

[^0]Our aim is to start from a different point of view, focusing on the notion of cohomological pattern (see [5]). So, our main result characterizes those sets $\mathbb{S} \subseteq\{0, \ldots, d-1\} \times \mathbb{Z}$ "which bound cohomology of projective schemes of dimension $<d$ ".

To make this precise, fix a positive integer d and let \mathcal{D}^{d} be the class of all pairs (R, M) in which $R=\bigoplus_{n \geqslant 0} R_{n}$ is a Noetherian homogeneous ring with Artinian base ring R_{0} and M is a finitely generated graded R-module with $\operatorname{dim}(M) \leqslant d$. In this situation let $R_{+}=\bigoplus_{n>0} R_{n}$ denote the irrelevant ideal of R.

For each $i \in \mathbb{N}_{0}$ consider the graded R-module $D_{R_{+}}^{i}(M)$, where $D_{R_{+}}^{i}$ denotes the i-th right derived functor of the R_{+}-transform functor $D_{R_{+}}(\bullet):=\lim _{n} \operatorname{Hom}_{R}\left(\left(R_{+}\right)^{n}, \bullet\right)$. In addition, for each $n \in \mathbb{Z}$ let $d_{M}^{i}(n)$ denote the (finite) R_{0}-length of the n-th graded component $D_{R_{+}}^{i}(M)_{n}$ of $D_{R_{+}}^{i}(M)$.

Finally, for $(R, M) \in \mathcal{D}^{d}$ let us consider the so-called cohomology table of (R, M), that is the family of non-negative integers

$$
d_{M}:=\left(d_{M}^{i}(n)\right)_{(i, n) \in \mathbb{N}_{0} \times \mathbb{Z}}
$$

A subclass $\mathcal{C} \subseteq \mathcal{D}^{d}$ is said to be of finite cohomology if the set $\left\{d_{M} \mid(R, M) \in \mathcal{C}\right\}$ is finite. The class \mathcal{C} is said to be of bounded cohomology if the set $\left\{d_{M}^{i}(n) \mid(R, M) \in \mathcal{C}\right\}$ is finite for all pairs $(i, n) \in \mathbb{N}_{0} \times \mathbb{Z}$. It turns out that these two conditions are both equivalent to the condition that the class \mathcal{C} is of finite cohomology "along some diagonal", e.g. there is some $n_{0} \in \mathbb{Z}$ such that the set $\Delta_{\mathcal{C}, n_{0}}:=\left\{d_{M}^{i}\left(n_{0}-i\right) \mid\right.$ $(R, M) \in \mathcal{C}, 0 \leqslant i<d\}$ is finite (see Theorem 3.5).

So, if one bounds the values of $d_{M}^{i}(n)$ along a "diagonal subset"

$$
\left\{\left(j, n_{0}-j\right) \mid j=0, \ldots, d-1\right\} \subseteq\{0, \ldots, d-1\} \times \mathbb{Z}
$$

for an arbitrary integer n_{0} one cuts out a subclass $\mathcal{C} \subseteq \mathcal{D}^{d}$ of finite cohomology. Motivated by this observation we say that the subset $\mathbb{S} \subseteq\{0, \ldots, d-1\} \times \mathbb{Z}$ bounds cohomology in the class $\mathcal{C} \subseteq \mathcal{D}^{d}$ if for each family $\left(h^{\sigma}\right)_{\sigma \in \mathbb{S}}$ of non-negative integers $h^{\sigma} \in \mathbb{N}_{0}$ the class

$$
\left\{(R, M) \in \mathcal{C} \mid \forall(i, n) \in \mathbb{S}: d_{M}^{i}(n) \leqslant h^{(i, n)}\right\}
$$

is of finite cohomology. Now, we may reformulate our previous result by saying that for arbitrary n_{0} the diagonal set $\left\{\left(j, n_{0}-j\right) \mid j=0, \ldots, d-1\right\}$ bounds cohomology in \mathcal{D}^{d}. It seems rather natural to ask, whether one can characterize the shape of those subsets $\mathbb{S} \subseteq\{0, \ldots, d-1\} \times \mathbb{Z}$ which bound cohomology in \mathcal{D}^{d}. This is indeed done by our main result (see Corollary 4.10):

A subset $\mathbb{S} \subseteq\{0, \ldots, d-1\} \times \mathbb{Z}$ bounds cohomology in \mathcal{D}^{d} if and only if it contains a quasi-diagonal, that is a set of the form $\left\{\left(i, n_{i}\right) \mid i=0, \ldots, d-1\right\}$ with

$$
n_{0}>n_{1}>\cdots>n_{d-1}
$$

Our next aim is to apply our main result in order to cut out classes $\mathcal{C} \subseteq \mathcal{D}^{d}$ of finite cohomology by fixing some numerical invariants which are defined on the class \mathcal{C}. A finite family $\left(\mu_{i}\right)_{i=1}^{r}$ of numerical invariants μ_{i} on \mathcal{C} is said to bound cohomology in \mathcal{C} if for all $n_{1}, \ldots, n_{r} \in \mathbb{Z} \cup\{ \pm \infty\}$ the class $\left\{(R, M) \in \mathcal{C} \mid \mu_{i}(M)=n_{i}\right.$ for $\left.i=1, \ldots, r\right\}$ is of finite cohomology.

We define a numerical invariant $\varrho: \mathcal{D}^{d} \rightarrow \mathbb{N}_{0}$ by setting $\varrho(M):=d_{M}^{0}\left(\operatorname{reg}^{2}(M)\right)$, where $\operatorname{reg}^{2}(M)$ denotes the Castelnuovo-Mumford regularity of M at and above level 2 . Then, we show (see Theorem 5.8):

The pair of invariants $\left(\mathrm{reg}^{2}, \varrho\right)$ bounds cohomology in \mathcal{D}^{d}.

As an application of this we prove (see Theorem 5.9 and Corollary 5.10)
Fix a polynomial $p \in \mathbb{Q}[t]$ and an integer r. Let $\mathcal{C} \subseteq \mathcal{D}^{d}$ be the class of all pairs (R, M) such that M is a graded submodule of a finitely generated graded R-module N with Hilbert polynomial $p_{N}=p$ and $\operatorname{reg}^{2}(N) \leqslant r$. Then reg ${ }^{2}$ bounds cohomology in \mathcal{C}.

An immediate consequence of this is (see Corollary 5.11):
Let $(R, N) \in \mathcal{D}^{d}$, let $r \in \mathbb{Z}$ and let M run through all graded submodules $M \subseteq N$ with $\operatorname{reg}^{2}(M) \leqslant r$. Then only finitely many cohomology tables d_{M} occur.

As applications of this, we generalize two finiteness results of Hoa and Hyry [17] for local cohomology modules of graded ideals in a polynomial ring over a field to graded submodules $M \subseteq N$ for a given pair $(R, N) \in \mathcal{D}^{d}$ (see Corollaries 5.13 and 5.14).

In order to translate our results to sheaf cohomology of projective schemes observe that for all $(i, n) \in \mathbb{N}_{0} \times \mathbb{Z}$ and all pairs $(R, M) \in \mathcal{D}^{d}$ we have $H^{i}(X, \mathcal{F}(n)) \cong D_{R_{+}}^{i}(M)_{n}$, where $X:=\operatorname{Proj}(R)$ and $\mathcal{F}:=\widetilde{M}$ is the coherent sheaf of \mathcal{O}_{X}-modules induced by M (see [10, Chapter 20] for example).

2. Preliminaries

In this section we recall a few basic facts which shall be used later in our paper.
Notation 2.1. Let $R=\bigoplus_{n \geqslant 0} R_{n}$ be a homogeneous Noetherian ring, so that R is positively graded, R_{0} is Noetherian and $R=R_{0}\left[l_{0}, \ldots, l_{r}\right]$ with finitely many elements $l_{0}, \ldots, l_{r} \in R_{1}$. Let R_{+}denote the irrelevant ideal $\bigoplus_{n>0} R_{n}$ of R.

Reminder 2.2 (Local cohomology and Castelnuovo-Mumford regularity). (A) Let $i \in \mathbb{N}_{0}:=\{0,1,2, \ldots\}$. By $H_{R_{+}}^{i}(\bullet)$ we denote the i-th local cohomology functor with respect to R_{+}. Moreover by $D_{R_{+}}^{i}(\bullet)$ we denote the i-th right derived functor of the ideal transform functor $D_{R_{+}}(\bullet)=\underset{\rightarrow}{\lim _{n}} \operatorname{Hom}_{R}\left(\left(R_{+}\right)^{n}, \bullet\right)$ with respect to R_{+}.
(B) Let $M:=\bigoplus_{n \in \mathbb{Z}} M_{n}$ be a graded R-module. Keep in mind that in this situation the R-modules $H_{R_{+}}^{i}(M)$ and $D_{R_{+}}^{i}(M)$ carry natural gradings. Moreover we then have a natural exact sequence of graded R-modules
(i) $0 \rightarrow H_{R_{+}}^{0}(M) \rightarrow M \rightarrow D_{R_{+}}^{0}(M) \rightarrow H_{R_{+}}^{1}(M) \rightarrow 0$
and natural isomorphisms of graded R-modules
(ii) $D_{R_{+}}^{i}(M) \cong H_{R_{+}}^{i+1}(M)$ for all $i>0$.
(C) If T is a graded R-module and $n \in \mathbb{Z}$, we use T_{n} to denote the n-th graded component of T. In particular, we define the beginning and the end of T respectively by
(i) $\operatorname{beg}(T):=\inf \left\{n \in \mathbb{Z} \mid T_{n} \neq 0\right\}$,
(ii) $\operatorname{end}(T):=\sup \left\{n \in \mathbb{Z} \mid T_{n} \neq 0\right\}$,
with the standard convention that $\inf \emptyset=\infty$ and $\sup \emptyset=-\infty$.
(D) If the graded R-module M is finitely generated, the R_{0}-modules $H_{R_{+}}^{i}(M)_{n}$ are all finitely generated and vanish as well for all $n \gg 0$ as for all $i>\operatorname{dim}(M)$. So, we have

$$
-\infty \leqslant a_{i}(M):=\operatorname{end}\left(H_{R_{+}}^{i}(M)\right)<\infty \quad \text { for all } i \geqslant 0
$$

with $a_{i}(M):=-\infty$ for all $i>\operatorname{dim}(M)$.

If $k \in \mathbb{N}_{0}$, the Castelnuovo-Mumford regularity of M at and above level k is defined by

$$
\operatorname{reg}^{k}(M):=\sup \left\{a_{i}(M)+i \mid i \geqslant k\right\} \quad(<\infty)
$$

The Castelnuovo-Mumford regularity of M is defined by $\operatorname{reg}(M):=\operatorname{reg}^{0}(M)$.
(E) We also shall use the generating degree of M, which is defined by

$$
\operatorname{gendeg}(M)=\inf \left\{n \in \mathbb{Z} \mid M=\sum_{m \leqslant n} R M_{m}\right\}
$$

If the graded R-module M is finitely generated, we have gendeg $(M) \leqslant \operatorname{reg}(M)$.
Reminder 2.3 (Cohomological Hilbert functions). (A) Let $i \in \mathbb{N}_{0}$ and assume that the base ring R_{0} is Artinian. Let M be a finitely generated graded R-module. Then, the graded R-modules $H_{R_{+}}^{i}(M)$ are Artinian. In particular for all $i \in \mathbb{N}_{0}$ and all $n \in \mathbb{Z}$ we may define the non-negative integers
(i) $h_{M}^{i}(n):=\operatorname{length}_{R_{0}}\left(H_{R_{+}}^{i}(M)_{n}\right)$,
(ii) $d_{M}^{i}(n):=$ length $_{R_{0}}\left(D_{R_{+}}^{i}(M)_{n}\right)$.

Fix $i \in \mathbb{N}_{0}$. Then the functions
(iii) $h_{M}^{i}: \mathbb{Z} \rightarrow \mathbb{N}_{0}, n \mapsto h_{M}^{i}(n)$,
(iv) $d_{M}^{i}: \mathbb{Z} \rightarrow \mathbb{N}_{0}, n \mapsto d_{M}^{i}(n)$
are called the i-th Cohomological Hilbert functions of the first respectively the second kind of M.
(B) Let M be a finitely generated graded R-module and let $x \in R_{1}$. We also write $\Gamma_{R_{+}}(M)$ for the R_{+}-torsion submodule of M which we identify with $H_{R_{+}}^{0}(M)$. By $\mathrm{NZD}_{R}(M)$ and $\mathrm{ZD}_{R}(M)$ we respectively denote the set of non-zerodivisors or of zero divisors of R with respect to M. The linear form $x \in R_{1}$ is said to be (R_{+}-)filter regular with respect to M if $x \in \operatorname{NZD}_{R}\left(M / \Gamma_{R_{+}}(M)\right)$.

Reminder 2.4. (Cf. [6, Definition 5.2].) For $d \in \mathbb{N}$ let \mathcal{D}^{d} denote the class of all pairs (R, M) in which $R=\bigoplus_{n \in \mathbb{N}_{0}} R_{n}$ is a Noetherian homogeneous ring with Artinian base ring R_{0} and $M=\bigoplus_{n \in \mathbb{Z}} M_{n}$ is a finitely generated graded R-module with $\operatorname{dim}(M) \leqslant d$.

3. Finiteness and boundedness of cohomology

We keep the notations and hypotheses introduced in Section 2.
Definition 3.1. The cohomology table of the pair $(R, M) \in \mathcal{D}^{d}$ is the family of non-negative integers

$$
d_{M}:=\left(d_{M}^{i}(n)\right)_{(i, n) \in \mathbb{N}_{0} \times \mathbb{Z}} .
$$

Reminder 3.2. (A) According to [5] the cohomological pattern \mathcal{P}_{M} of the pair $(R, M) \in \mathcal{D}^{d}$ is defined as the set of places at which the cohomology table of (R, M) has a non-zero entry:

$$
\mathcal{P}_{M}:=\left\{(i, n) \in \mathbb{N}_{0} \times \mathbb{Z} \mid d_{M}^{i}(n) \neq 0\right\} .
$$

(B) A set $P \subseteq \mathbb{N}_{0} \times \mathbb{Z}$ is called a tame combinatorial pattern of width $w \in \mathbb{N}_{0}$ if the following conditions are satisfied:

```
\(\left(\pi_{1}\right) \exists m, n \in \mathbb{Z}:(0, m),(w, n) \in P ;\)
\(\left(\pi_{2}\right)(i, n) \in P \Rightarrow i \leqslant w\);
\(\left(\pi_{3}\right)(i, n) \in P \Rightarrow \exists j \leqslant i:(j, n+i-j+1) \in P\);
\(\left(\pi_{4}\right)(i, n) \in P \Rightarrow \exists k \geqslant i:(k, n+i-k-1) \in P\);
\(\left(\pi_{5}\right) \quad i>0 \Rightarrow \forall n \gg 0:(i, n) \notin P\);
\(\left(\pi_{6}\right) \forall i \in \mathbb{N}:(\forall n \ll 0:(i, n) \in P)\) or else \((\forall n \ll 0:(i, n) \notin P)\).
```

By [5] we know:
(a) If $(R, M) \in \mathcal{D}^{d}$ with $\operatorname{dim}(M)=s>0$, then \mathcal{P}_{M} is a tame combinatorial pattern of width $w=s-1$.
(b) If P is a tame combinatorial pattern of width $w \leqslant d-1$, then there is a pair $(R, M) \in \mathcal{D}^{d}$ such that the base ring R_{0} is a field and $P=\mathcal{P}_{M}$.

By the previous observation, the set of patterns $\left\{\mathcal{P}_{M} \mid(R, M) \in \mathcal{D}^{d}\right\}$ is quite large, and hence so is the set of cohomology tables $\left\{d_{M} \mid(R, M) \in \mathcal{D}^{d}\right\}$. Therefore, one seeks for decompositions $\bigcup_{i \in \mathbb{I}} \mathcal{C}_{i}=\mathcal{D}^{d}$ of \mathcal{D}^{d} into "simpler" subclasses \mathcal{C}_{i} such that for each $i \in \mathbb{I}$ the set $\left\{d_{M} \mid(R, M) \in \mathcal{C}_{i}\right\}$ is finite. Bearing in mind this goal, we define the following concepts:

Definitions 3.3. (A) Let $\mathcal{C} \subseteq \mathcal{D}^{d}$ be a subclass. We say that \mathcal{C} is a subclass of finite cohomology if

$$
\sharp\left\{d_{M} \mid(R, M) \in \mathcal{C}\right\}<\infty
$$

(B) We say that $\mathcal{C} \subseteq \mathcal{D}^{d}$ is a subclass of bounded cohomology if

$$
\forall(i, n) \in \mathbb{N}_{0} \times \mathbb{Z}: \quad \sharp\left\{d_{M}^{i}(n) \mid(R, M) \in \mathcal{C}\right\}<\infty
$$

Remark 3.4. (A) Let $\mathcal{C}, \mathcal{D} \subseteq \mathcal{D}^{d}$ be subclasses of \mathcal{D}^{d}. Then clearly
(a) If $\mathcal{C} \subseteq \mathcal{D}$ and \mathcal{D} is of finite cohomology or of bounded cohomology, then so is \mathcal{C} respectively.
(B) If $r \in \mathbb{Z}$, we have a bijection

$$
\left\{d_{M} \mid(R, M) \in \mathcal{C}\right\} \rightarrow\left\{d_{M(r)} \mid(R, M) \in \mathcal{C}\right\} \quad \text { given by } d_{M} \mapsto d_{M(r)}
$$

Now, we show how the finiteness and boundedness conditions defined above are related.

Theorem 3.5. For a subclass $\mathcal{C} \subseteq \mathcal{D}^{d}$ the following statements are equivalent:
(i) \mathcal{C} is a class of finite cohomology.
(ii) \mathcal{C} is a class of bounded cohomology.
(iii) For each $n_{0} \in \mathbb{Z}$ the set $\triangle_{\mathcal{C}, n_{0}}:=\left\{d_{M}^{i}\left(n_{0}-i\right) \mid(R, M) \in \mathcal{C}, 0 \leqslant i<d\right\}$ is finite.
(iv) There is some $n_{0} \in \mathbb{Z}$ such that the set $\Delta_{\mathcal{C}, n_{0}}$ of statement (iii) is finite.

Proof. The implications (i) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (iv) are clear from the definitions. To prove the implication (iv) \Rightarrow (i) fix $n_{0} \in \mathbb{Z}$ and assume that the set $\Delta_{\mathcal{C}, n_{0}}$ is finite. Then there is some non-negative integer h such that $d_{M\left(n_{0}\right)}^{i}(-i) \leqslant h$ for all pairs $(R, M) \in \mathcal{C}$ and all $i \in\{0, \ldots, d-1\}$. By [6, Theorem 5.4] it thus follows that the set of functions

$$
\left\{d_{M\left(n_{0}\right)}^{i} \mid(R, M) \in \mathcal{C}, i \in \mathbb{N}_{0}\right\}
$$

is finite. By Remark $3.4(\mathrm{~B})$ we now may conclude that the class \mathcal{C} is of finite cohomology.

So, by Theorem 3.5 boundedness and finiteness of cohomology are the same for a given class $\mathcal{C} \subseteq \mathcal{D}^{d}$.

Definition 3.6. Let $d \in \mathbb{N}_{0}$, let $\mathcal{C} \subseteq \mathcal{D}^{d}$ and let $\mathbb{S} \subseteq\{0, \ldots, d-1\} \times \mathbb{Z}$ be a subset. We say that the set \mathbb{S} bounds cohomology in \mathcal{C} if for each family $\left(h^{\sigma}\right)_{\sigma \in \mathbb{S}}$ of non-negative integers h^{σ} the class

$$
\left\{(R, M) \in \mathcal{C} \mid \forall(i, n) \in \mathbb{S}: d_{M}^{i}(n) \leqslant h^{(i, n)}\right\}
$$

is of finite cohomology.
Remark 3.7. (A) Let $d \in \mathbb{N}_{0}$, let $\mathcal{C}, \mathcal{D} \subseteq \mathcal{D}^{d}$ and $\mathbb{S}, \mathbb{T} \subseteq\{0, \ldots, d-1\} \times \mathbb{Z}$. Then obviously we can say
If $\mathbb{S} \subseteq \mathbb{T}$ and \mathbb{S} bounds cohomology in \mathcal{C}, then so does \mathbb{T}.
(B) If $r \in \mathbb{Z}$, we can form the set $\mathbb{S}(r):=\{(i, n+r) \mid(i, n) \in \mathbb{S}\}$. In view of the bijection of Remark 3.4(B) we have
$\mathbb{S}(r)$ bounds cohomology in $\mathcal{C}(r):=\{(R, M(r)) \mid(R, M) \in \mathcal{C}\}$ if and only if \mathbb{S} does in \mathcal{C}.
(C) For all $s \in\{0, \ldots, d\}$ we set

$$
\mathbb{S}^{<s}:=\mathbb{S} \cap(\{0, \ldots, s-1\} \times \mathbb{Z})
$$

as $\mathcal{D}^{s} \subseteq \mathcal{D}^{d}$ it follows easily:
If \mathbb{S} bounds cohomology in \mathcal{C}, then $\mathbb{S}^{<s}$ bounds cohomology in $\mathcal{D}^{s} \cap \mathcal{C}$.
Corollary 3.8. Let $\mathcal{C} \subseteq \mathcal{D}^{d}$ and $n \in \mathbb{Z}$. Then, the " n-th diagonal"

$$
\{(i, n-i) \mid i=0, \ldots, d-1\}
$$

bounds cohomology in \mathcal{C}.
Proof. This is immediate by Theorem 3.5.

4. Quasi-diagonals

Our first aim is to generalize Corollary 3.8 by showing that not only the diagonals bound cohomology on \mathcal{C}, but rather all "quasi-diagonals". We shall define below, what such a quasi-diagonal is.

Lemma 4.1. Let $t \in\{1, \ldots, d\}$, let $\left(n_{i}\right)_{i=d-t}^{d-1}$ be a sequence of integers such that $n_{d-1}<\cdots<n_{d-t}$ and let $\mathcal{C} \subseteq \mathcal{D}^{d}$ be a class such that the set $\left\{d_{M}^{i}\left(n_{i}\right) \mid(R, M) \in \mathcal{C}\right\}$ is finite for all $i \in\{d-t, \ldots, d-1\}$. Then the set $\left\{d_{M}^{i}(n) \mid(R, M) \in \mathcal{C}\right\}$ is finite whenever $n_{i} \leqslant n$ and $d-t \leqslant i \leqslant d-1$.

Proof. By our hypothesis there is some $h \in \mathbb{N}_{0}$ with $d_{M}^{i}\left(n_{i}\right) \leqslant h$ for all $i \in\{d-t, \ldots, d-1\}$ and all pairs $(R, M) \in \mathcal{C}$.

Let $(R, M) \in \mathcal{C}$. On use of standard reduction arguments we can restrict ourselves to the case where the Artinian base ring R_{0} is local with infinite residue field. Replacing M by $M / \Gamma_{R_{+}}(M)$ we may assume that M is R_{+}-torsion free. Therefore, there exists $x \in R_{1} \cap \operatorname{NZD}(M)$. For each $i \in \mathbb{N}_{0}$ and $m \in \mathbb{Z}$, the short exact sequence $0 \rightarrow M(-1) \rightarrow M \rightarrow M / x M \rightarrow 0$ induces a long exact sequence.
$\left(*_{i, m}\right)$

$$
D_{R_{+}}^{i}(M)_{m-1} \rightarrow D_{R_{+}}^{i}(M)_{m} \rightarrow D_{R_{+}}^{i}(M / x M)_{m} \rightarrow D_{R_{+}}^{i+1}(M)_{m-1} .
$$

As $\operatorname{dim}(M / x M)<d$, the sequences $\left(*_{d-1, m}\right)$ imply that $d_{M}^{d-1}(m) \leqslant d_{M}^{d-1}(m-1)$ for all $m \in \mathbb{Z}$. This proves our claim if $t=1$. So, let $t>1$.

Assume inductively that the set $\left\{d_{M}^{i}\left(n_{i}\right) \mid(R, M) \in \mathcal{C}\right\}$ is finite whenever $n_{i} \leqslant n$ and $d-t+1 \leqslant i \leqslant$ $d-1$. It remains to find a family of non-negative integers $\left(h_{n}\right)_{n \geqslant n_{d-t}}$ such that $d_{M}^{d-t}(n) \leqslant h_{n}$ for all $n \geqslant n_{d-t}$ and all pairs $(R, M) \in \mathcal{C}$. Let \mathcal{E} denote the class of all pairs $(R, M / x M)=(R, \bar{M})$ in which $(R, M) \in \mathcal{C}$ and $x \in R_{1} \cap \operatorname{NZD}(M)$. As $n_{i}-1 \geqslant n_{i+1}$ for all $i \in\{d-t, \ldots, d-2\}$, the sequences $\left(*_{i, n_{i}}\right)$ show that

$$
d_{M / X M}^{i}\left(n_{i}\right) \leqslant d_{M}^{i+1}\left(n_{i}-1\right)+h \quad \text { for } i \in\{d-t, \ldots, d-2\} .
$$

This means that the set $\left\{d_{\bar{M}}^{i}\left(n_{i}\right) \mid(R, \bar{M}) \in \mathcal{E}\right\}$ is finite whenever $(d-1)-(t-1) \leqslant i \leqslant d-2$. So, by induction the set $\left\{d_{\bar{M}}^{i}\left(n_{i}\right) \mid(R, \bar{M}) \in \mathcal{E}\right\}$ is finite whenever $n_{i} \leqslant n$ and $(d-1)-(t-1) \leqslant i \leqslant d-2$.

In particular there is a family of non-negative integers $\left(k_{m}\right)_{m \geqslant n_{d-t}}$ such that $d_{M / \times M}^{d-t}(m) \leqslant k_{m}$ for all $m \geqslant n_{d-t}$ and all (R, M) and x as above. Now, for each $n \geqslant n_{d-t}$ set $h_{n}:=h+\sum_{n_{d-t}<m \leqslant n} k_{m}$. If we choose $(R, M) \in \mathcal{C}$, the sequences $\left(*_{d-t, n}\right)$ imply that $d_{M}^{d-t}(n) \leqslant h_{n}$ for all $n \geqslant n_{d-t}$.

Proposition 4.2. Let $\left(n_{i}\right)_{i=0}^{d-1}$ be a sequence of integers such that $n_{d-1}<\cdots<n_{0}$ and let $\mathcal{C} \subseteq \mathcal{D}^{d}$. Then the set $\left\{\left(i, n_{i}\right) \mid i=0, \ldots, d-1\right\}$ bounds cohomology in \mathcal{C}.

Proof. Let $\left(h^{i}\right)_{i=0}^{d-1}$ be a family of non-negative integers and let \mathcal{C}^{\prime} be the class of all pairs $(R, M) \in \mathcal{C}$ such that $d_{M}^{i}\left(n_{i}\right) \leqslant h^{i}$ for $i=0, \ldots, d-1$. Then, by Lemma 4.1 the set $\left\{d_{M}^{i}(n) \mid(R, M) \in \mathcal{C}^{\prime}\right\}$ is finite, whenever $n \geqslant n_{i}$ and $0 \leqslant i \leqslant d-1$. Therefore the set $\triangle_{\mathcal{C}^{\prime}, n_{0}}:=\left\{d_{M}^{i}\left(n_{0}-i\right) \mid(R, M) \in \mathcal{C}^{\prime}, 0 \leqslant i<d\right\}$ is finite. So, by Theorem 3.5 the class \mathcal{C}^{\prime} is of finite cohomology. It follows that $\left\{\left(i, n_{i}\right) \mid i=0, \ldots, d-1\right\}$ bounds cohomology in \mathcal{C}.

Definition 4.3. A set $\mathbb{T} \subseteq\{0,1, \ldots, d-1\} \times \mathbb{Z}$ is called a quasi-diagonal if there is a sequence of integers $\left(n_{i}\right)_{i=0}^{d-1}$ such that $n_{d-1}<n_{d-2}<\cdots<n_{0}$ and

$$
\mathbb{T}=\left\{\left(i, n_{i}\right) \mid i=0, \ldots, d-1\right\}
$$

Observe, that diagonals in $\{0, \ldots, d-1\} \times \mathbb{Z}$ are quasi-diagonals. So, the next result generalizes Corollary 3.8 .

Corollary 4.4. Let $\mathbb{S} \subseteq\{0,1, \ldots, d-1\} \times \mathbb{Z}$ be a set which contains a quasi-diagonal. Then \mathbb{S} bounds cohomology in each subclass $\mathcal{C} \subseteq \mathcal{D}^{d}$.

Proof. Clear by Proposition 4.2.
Our next goal is to show that the converse of Corollary 4.4 holds, namely: if a set $\mathbb{S} \subseteq\{0,1, \ldots$, $d-1\} \times \mathbb{Z}$ bounds cohomology in \mathcal{D}^{d}, then \mathbb{S} contains a quasi-diagonal.

Reminder 4.5. Let K be a field, let $R=K \oplus R_{1} \oplus \cdots$ and $R^{\prime}=K \oplus R_{1}^{\prime} \oplus \cdots$ be two Noetherian homogeneous K-algebras. Let $R \boxtimes_{K} R^{\prime}:=K \oplus\left(R_{1} \otimes R_{1}^{\prime}\right) \oplus\left(R_{2} \otimes R_{2}^{\prime}\right) \oplus \cdots \subseteq R \otimes_{K} R^{\prime}$ be the Segre product ring of R and R^{\prime}, a Noetherian homogeneous K-algebra. For a graded R-module $M=\bigoplus_{n \in \mathbb{Z}} M_{n}$ and a graded R^{\prime}-module $M^{\prime}=\bigoplus_{n \in \mathbb{Z}} M_{n}^{\prime}$ let $M \boxtimes_{K} M^{\prime}:=\bigoplus_{n \in \mathbb{Z}} M_{n} \otimes_{K} M_{n}^{\prime} \subseteq M \otimes_{K} M^{\prime}$ the Segre product module of M and M^{\prime}, a graded $R \boxtimes_{K} R^{\prime}$-module. Keep in mind, that the Künneth relations (for Segre products) yield isomorphism of graded $R \boxtimes_{K} R^{\prime}$-modules

$$
D_{\left(R \boxtimes_{K} R^{\prime}\right)_{+}}^{i}\left(M \boxtimes_{K} M^{\prime}\right) \cong \bigoplus_{j=0}^{i} D_{R_{+}}^{j}(M) \boxtimes_{K} D_{R_{+}^{\prime}}^{i-j}\left(M^{\prime}\right)
$$

for all $i \in \mathbb{N}_{0}$ (cf. $[23,14,20]$).

Lemma 4.6. Let $d>1$ and let $R:=K\left[x_{1}, \ldots, x_{d}\right]$ be a polynomial ring over some infinite field K. Let $\mathbb{S} \subseteq$ $\{0,1, \ldots, d-1\} \times \mathbb{Z}$ such that
(1) \mathbb{S} contains no quasi-diagonal,
(2) $\mathbb{S} \cap(\{0, \ldots, d-2\} \times \mathbb{Z})$ contains a quasi-diagonal $\left\{\left(i, n_{i}\right) \mid i=0, \ldots, d-2\right\}$ and
(3) $\mathbb{S} \cap(\{d-1\} \times \mathbb{Z}) \neq \emptyset$.

Then
(a) $(d-1, n) \notin \mathbb{S}$ for all $n \ll 0$.
(b) There is a family $\left(M_{k}\right)_{k \in \mathbb{N}}$ of finitely generated graded R-modules, locally free of rank $\leqslant((d-1)!)^{2}$ on $\operatorname{Proj}(R)$ such that the set $\left\{d_{M_{k}}^{i}(n) \mid k \in \mathbb{N}\right\}$ is finite for all $(i, n) \in \mathbb{S}$ and

$$
\lim _{k \rightarrow \infty} d_{M_{k}}^{d-1}(r)=\infty, \quad \text { where } r:=\inf \{n \in \mathbb{Z} \mid(d-1, n) \in \mathbb{S}\}-1
$$

Proof. For all $i \in\{1, \ldots, d\}$ we write $R^{i}:=K\left[x_{1}, \ldots, x_{i}\right]$ and $\mathbb{S}^{i}:=\mathbb{S} \cap(\{i\} \times \mathbb{Z})$. Statement (a) follows immediately from our hypotheses on the set \mathbb{S}. So, it remains to prove statement (b). After shifting appropriately we may assume that $r=-1$.

By our hypotheses on \mathbb{S} it is clear that $\mathbb{S}^{i} \neq \emptyset$ for all $i \in\{0, \ldots, d-1\}$. Let

$$
\alpha_{i}:=\sup \left\{n \in \mathbb{Z} \mid(i, n) \in \mathbb{S}^{i}\right\} \quad \text { for all } i \in\{0, \ldots, d-1\}
$$

Then by our hypothesis on \mathbb{S} we have $\alpha_{i}<\infty$ for some $i \in\{1, \ldots, d-2\}$. Let

$$
s:=\min \left\{i \in\{0, \ldots, d-2\} \mid \alpha_{i}<\infty\right\}
$$

and

$$
n_{s}:=\alpha_{s}=\max \left\{n \in \mathbb{Z} \mid(s, n) \in \mathbb{S}^{s}\right\} .
$$

Now, we may find a quasi-diagonal $\left\{\left(i, n_{i}\right) \mid i=0, \ldots, d-2\right\}$ in $\mathbb{S} \cap(\{0, \ldots, d-2\} \times \mathbb{Z})$ such that for all $i \in\{s+1, \ldots, d-2\}$ we have

$$
n_{i}=\max \left\{n<n_{i-1} \mid(i, n) \in \mathbb{S}\right\}
$$

As \mathbb{S} contains no quasi-diagonal, we must have $n_{d-2} \leqslant 0$. For all $m, n \in \mathbb{Z} \cup\{ \pm \infty\}$ we write $] m, n[:=$ $\{t \in \mathbb{Z} \mid m<t<n\}$. Using this notation we set

$$
t_{-1}:=\infty ; \quad t_{d-s-1}:=-\infty ; \quad t_{i}:=\max \left\{d-s-i-2, n_{i+s}\right\}, \quad \forall i \in\{0, \ldots, d-s-2\}
$$

and write

$$
P:=\bigcup_{i=0}^{d-s-1}(\{i\} \times] t_{i}, t_{i-1}[)
$$

Observe, that by our choice of the pairs $\left(i, n_{i}\right)$ we have

$$
\begin{equation*}
\text { if } s \leqslant i \leqslant d-1 \text { and }(i, n) \in \mathbb{S}, \quad \text { then }(i-s, n) \notin P . \tag{*}
\end{equation*}
$$

Moreover by $[5,2.7]$ the set $P \subseteq\{0, \ldots, d-s-1\} \times \mathbb{Z}$ is a minimal combinatorial pattern of width $d-s-1$. So, by [5, Proposition 4.5], there exists a finitely generated R^{d-s}-module N, locally free of rank $\leqslant(d-s-1)$! on $\operatorname{Proj}\left(R^{d-s}\right)$ such that $\mathcal{P}_{N}=P$.

Now, consider the Segre product ring $S:=R^{s+1} \boxtimes_{K} R^{d-s}$ and for each $k \in \mathbb{N}$ let M_{k} be the finitely generated graded S-module $R^{s+1}(-k) \boxtimes_{K} N$, which is locally free of rank $\leqslant(d-1)!/ s$! on $\operatorname{Proj}(S)$. Observe that

$$
d_{R^{s+1}}^{j} \equiv 0 \quad \text { for all } j \neq 0, s \quad \text { and } \quad d_{N}^{l} \equiv 0 \quad \text { for all } l>d-s-1 .
$$

Now, we get from the Künneth relations (cf. Reminder 4.5) for all $i \in\{0, \ldots, d-1\}$ and all $n \in \mathbb{Z}$

$$
d_{M_{k}}^{i}(n)= \begin{cases}d_{R^{s+1}}^{0}(-k+n) d_{N}^{i}(n) & \text { for } 0 \leqslant i<s \\ d_{R^{s+1}}^{0}(-k+n) d_{N}^{i}(n)+d_{R^{s+1}}^{s}(-k+n) d_{N}^{i-s}(n) & \text { for } s \leqslant i \leqslant d-s-1 \\ d_{R^{s+1}}^{s}(-k+n) d_{N}^{i-s}(n) & \text { for } d-s-1<i \leqslant d-1\end{cases}
$$

As $P=\mathcal{P}_{N}$ and in view of $(*)$ we have $d_{N}^{i-s}(n)=0$ for all $(i, n) \in \mathbb{S}$ with $s \leqslant i \leqslant d-1$. Moreover, for all $n \in \mathbb{Z}$ and all $k \in \mathbb{N}$ we have $d_{R^{s+1}}^{0}(-k+n) \leqslant d_{R^{s+1}}^{0}(n-1)$. So for all $k \in \mathbb{N}$ and all $(i, n) \in \mathbb{S}$ we get

$$
d_{M_{k}}^{i}(n) \begin{cases}\leqslant d_{R^{s+1}}^{0}(n-1) d_{N}^{i}(n) & \text { for } 0 \leqslant i \leqslant d-s-1, \\ =0 & \text { if } d-s-1<i \leqslant d-1 .\end{cases}
$$

Therefore the set $\left\{d_{M_{k}}^{i}(n) \mid k \in \mathbb{N}\right\}$ is finite for all $(i, n) \in \mathcal{S}$.
Moreover $d_{M_{k}}^{d-1}(-1)=d_{R^{s+1}}^{s}(-k-1) d_{N}^{d-s-1}(-1)$. As $(d-s-1,-1) \in P$ we have $d_{N}^{d-s-1}(-1)>0$ and hence $d_{R^{s+1}}^{s}(-k-1)=\binom{k}{s}$ implies that

$$
\lim _{k \rightarrow \infty} d_{M_{k}}^{d-1}(-1)=\infty
$$

As $\operatorname{dim}(S)=d$, there is a finite injective morphism $R \rightarrow S$ of graded rings, which turns S in an R-module of rank $(d-1)!/ s!(d-s-1)!$. So M_{k} becomes an R-module locally free of rank $\leqslant[(d-1)!/$ $s!(d-s-1)!][(d-1)!/ s!] \leqslant((d-1)!)^{2}$ on $\operatorname{Proj}(R)$. Moreover, by Graded Base Ring Independence of Local Cohomology, we get isomorphisms of graded R-modules $D_{S_{+}}^{j}\left(M_{k}\right) \cong D_{R_{+}}^{j}\left(M_{k}\right)$ for all $j \in \mathbb{N}_{0}$. Now, our claim follows easily.

Definition 4.7. A class $\mathcal{D} \subseteq \mathcal{D}^{d}$ is said to be big, if for each $t \in\{1, \ldots, d\}$ there is an infinite field K such that \mathcal{D} contains all pairs (R, M) in which R is the polynomial ring $K\left[x_{1}, \ldots, x_{t}\right]$.

Proposition 4.8. Let $\mathcal{C} \subseteq \mathcal{D}^{d}$ be a big class and let $\mathbb{S} \subseteq\{0, \ldots, d-1\} \times \mathbb{Z}$ be a set which bounds cohomology in \mathcal{C}. Then \mathbb{S} contains a quasi-diagonal.

Proof. There is an infinite field K such that with $R:=K\left[x_{1}, \ldots, x_{d}\right]$ we have $(R, R(-k)) \in \mathcal{C}$ for all $k \in \mathbb{N}$. The set $\left\{d_{R(-k)}^{i}(n) \mid k \in \mathbb{N}\right\}$ is finite for all $(i, n) \in\{0, \ldots, d-2\} \times \mathbb{Z}$ and $\lim _{k \rightarrow \infty} d_{R(-k)}^{d-1}(0)=\infty$. It follows that $\mathbb{S}^{d-1}:=\mathbb{S} \cap(\{d-1\} \times \mathbb{Z}) \neq \emptyset$. This proves our claim if $d=1$.

So, let $d>1$. Clearly $\mathcal{D}^{d-1} \cap \mathcal{C} \subseteq \mathcal{D}^{d-1}$ is a big class and $\mathbb{S}^{<(d-1)}=\mathbb{S} \cap(\{0, \ldots, d-2\} \times \mathbb{Z})$ bounds cohomology in $\mathcal{D}^{d-1} \cap \mathcal{C}$ (see Remark 3.7(C)). So, by induction the set $\mathbb{S}^{<(d-1)}$ contains a quasidiagonal. If \mathbb{S} would contain no quasi-diagonal, Lemma 4.6 would imply that for our polynomial ring R there is a class \mathcal{D} of pairs $(R, M) \in \mathcal{D}^{d}$ which is not of bounded cohomology but such that the set $\left\{d_{M}^{i}(n) \mid(R, M) \in \mathcal{D}\right\}$ is finite for all $(i, n) \in \mathbb{S}$. As \mathcal{C} is a big class, we have $\mathcal{D} \subseteq \mathcal{C}$, and this would imply the contradiction that \mathbb{S} does not bound cohomology in \mathcal{C}.

Theorem 4.9. Let $\mathcal{C} \subseteq \mathcal{D}^{d}$ be a big class and let $\mathbb{S} \subseteq\{0, \ldots, d-1\} \times \mathbb{Z}$. Then \mathbb{S} bounds cohomology in \mathcal{C} if and only if \mathbb{S} contains a quasi-diagonal.

Proof. Clear by Corollary 4.4 and Proposition 4.8.
Corollary 4.10. The set $\mathbb{S} \subseteq\{0, \ldots, d-1\} \times \mathbb{Z}$ bounds cohomology in \mathcal{D}^{d} if and only if \mathbb{S} contains a quasidiagonal.

Proof. Clear by Theorem 4.9.

5. Bounding invariants

In this section we investigate numerical invariants which bound cohomology.
Definitions 5.1. (A) (See [2,8,9].) Let $\mathcal{C} \subseteq \mathcal{D}^{d}$ be a subclass. A numerical invariant on the class \mathcal{C} is a map

$$
\mu: \mathcal{C} \rightarrow \mathbb{Z} \cup\{ \pm \infty\}
$$

such that for any two pairs $(R, M),(R, N) \in \mathcal{C}$ with $M \cong N$ we have $\mu(R, M)=\mu(R, N)$. We shall write $\mu(M)$ instead of $\mu(R, M)$.
(B) Let $\left(\mu_{i}\right)_{i=1}^{r}$ be a family of numerical invariants on the subclass $\mathcal{C} \subseteq \mathcal{D}^{d}$. We say that the family $\left(\mu_{i}\right)_{i=1}^{r}$ bounds cohomology on the class \mathcal{C}, if for each $\left(n_{1}, \ldots, n_{r}\right) \in(\mathbb{Z} \cup\{ \pm \infty\})^{r}$ the class

$$
\left\{(R, M) \in \mathcal{C} \mid \mu_{i}(M)=n_{i} \text { for all } i \in\{1, \ldots, r\}\right\}
$$

is of bounded cohomology.
(C) A numerical invariant μ on the class $\mathcal{C} \subseteq \mathcal{D}^{d}$ is said to be finite if $\mu(M) \in \mathbb{Z}$ for all $(R, M) \in \mathcal{C}$.
(D) A numerical invariant μ on the class $\mathcal{C} \subseteq \mathcal{D}^{d}$ is said to be positive if $\mu(M) \geqslant 0$ for all $(R, M) \in \mathcal{C}$.

Remark 5.2. (A) If $\mu: \mathcal{C} \rightarrow \mathbb{Z} \cup\{ \pm \infty\}$ is a numerical invariant on the class $\mathcal{C} \subseteq \mathcal{D}^{d}$ and if $\mathcal{D} \subseteq \mathcal{C}$, then the restriction $\mu \upharpoonright_{\mathcal{D}}: \mathcal{D} \rightarrow \mathbb{Z} \cup\{ \pm \infty\}$ is a numerical invariant on the class \mathcal{D}. Clearly, if μ is finite (resp. positive) then so is $\mu \Gamma_{\mathcal{D}}$.
(B) If $\left(\mu_{i}\right)_{i=1}^{r}$ bounds cohomology on the class $\mathcal{C} \subseteq \mathcal{D}^{d}$ and if $\mathcal{D} \subseteq \mathcal{C}$, then $\left(\mu_{i} \upharpoonright_{\mathcal{D}}\right)_{i=1}^{r}$ bounds cohomology in \mathcal{D}.
(C) A family $\left(\mu_{i}\right)_{i=1}^{r}$ of positive numerical invariants bounds cohomology in \mathcal{C} if and only if for all $\left(n_{1}, \ldots, n_{r}\right) \in\left(\mathbb{N}_{0} \cup\{\infty\}\right)^{r}$ the class

$$
\left\{(R, M) \in \mathcal{C} \mid \mu_{i}(M) \leqslant n_{i} \text { for all } i \in\{1, \ldots, r\}\right\}
$$

is of bounded cohomology.
(D) A family $\left(\mu_{i}\right)_{i=1}^{r}$ of finite positive invariants bounds cohomology on \mathcal{C} if and only if the sum invariant $\sum_{i=1}^{r} \mu_{i}: \mathcal{C} \rightarrow \mathbb{N}_{0}$ bounds cohomology in \mathcal{C}.

Remark 5.3. Let $i \in \mathbb{N}_{0}$ and $n \in \mathbb{Z}$. Then, the map

$$
d_{\bullet}^{i}(n): \mathcal{D}^{d} \rightarrow \mathbb{N}_{0} \quad\left((R, M) \mapsto d_{M}^{i}(n)\right)
$$

is a finite positive numerical invariant on \mathcal{D}^{d}.

Theorem 5.4. Let $\left(n_{i}\right)_{i=0}^{d-1}$ be a sequence of integers such that $n_{0}>n_{1}>n_{2}>\cdots>n_{d-1}$. Then the family of numerical invariants $\left(d_{\bullet}^{i}\left(n_{i}\right)\right)_{i=0}^{d-1}$ bounds cohomology in \mathcal{D}^{d}.

Proof. Clear by Proposition 4.2.
Reminder 5.5. For each $k \in \mathbb{N}_{0}$ we may define the numerical invariant

$$
\operatorname{reg}^{k}: \mathcal{D}^{d} \rightarrow \mathbb{Z} \cup\{-\infty\} \quad\left((R, M) \mapsto \operatorname{reg}^{k}(M)\right)
$$

Notation 5.6. For $(R, M) \in \mathcal{D}^{d}$ we set

$$
\varrho(M):= \begin{cases}d_{M}^{0}\left(\operatorname{reg}^{2}(M)\right) & \text { if } \operatorname{dim}(M)>1, \\ d_{M}^{0}(0) & \text { if } \operatorname{dim}(M) \leqslant 1\end{cases}
$$

Remark 5.7. (A) If $(R, M) \in \mathcal{D}^{d}$ with $\operatorname{dim}(M) \leqslant 1$, the cohomological Hilbert function d_{M}^{0} of M is constant, and this constant is strictly positive if and only if $\operatorname{dim}(M)=1$.
(B) The function

$$
\varrho: \mathcal{D}^{d} \rightarrow \mathbb{N}_{0} \quad((R, M) \mapsto \varrho(M))
$$

is a finite positive numerical invariant on \mathcal{D}^{d}.
Theorem 5.8. The pair of invariants $\left(\mathrm{reg}^{2}, \varrho\right)$ bounds cohomology in \mathcal{D}^{d}.
Proof. Fix $u, v \in \mathbb{Z}$ and set

$$
\mathcal{C}:=\left\{(R, M) \in \mathcal{D}^{d} \mid \operatorname{reg}^{2}(M)=u, \varrho(M)=v\right\} .
$$

If $(R, M) \in \mathcal{C}$ we have $d_{M}^{0}(u)=d_{M}^{0}\left(\operatorname{reg}^{2}(M)\right)=v$.
Let $i \in \mathbb{N}$. Then $u-i=\operatorname{reg}^{2}(M)-i>a_{i+1}(M)$ and hence $d_{M}^{i}(u-i)=h_{M}^{i+1}(u-i)=0$. Therefore (R, M) belongs to the class

$$
\mathcal{D}:=\left\{(R, M) \in \mathcal{D}^{d} \mid d_{M}^{0}(u)=v \text { and } d_{M}^{i}(u-i)=0 \text { for all } i \in\{1, \ldots, d-1\}\right\} .
$$

But according to Theorem 5.4 the class \mathcal{D} is of bounded cohomology.
Lemma 5.9. Let $(R, M) \in \mathcal{D}^{d}$ be such that $\operatorname{dim}(R / \mathfrak{p}) \neq 1$ for all $\mathfrak{p} \in \operatorname{Ass}_{R}(M)$. Then

$$
d_{M}^{0}(n-1) \leqslant \max \left\{0, d_{M}^{0}(n)-1\right\} \quad \text { for all } n \in \mathbb{Z} .
$$

Proof. For an arbitrary finitely generated graded R-module N let

$$
\lambda(N):=\inf \left\{\operatorname{depth}\left(N_{\mathfrak{p}}\right)+\operatorname{height}\left(\left(\mathfrak{p}+R_{+}\right) / \mathfrak{p}\right) \mid \mathfrak{p} \in \operatorname{Spec}(R) \backslash \operatorname{Var}\left(R_{+}\right)\right\} .
$$

Clearly, for all $n \in \mathbb{Z}$ we have $\lambda(N(n))=\lambda(N)$. So, for all $n \in \mathbb{Z}$, we get by our hypotheses that $\lambda(M(n))=\lambda(M)>1$. Now, according to [8, Proposition 4.6] we obtain

$$
d_{M}^{0}(n-1)=d_{M(n)}^{0}(-1) \leqslant \max \left\{0, d_{M(n)}^{0}(0)-1\right\}=\max \left\{0, d_{M}^{0}(n)-1\right\} .
$$

Theorem 5.10. Let $r, s \in \mathbb{Z}$ and let $p \in \mathbb{Q}[t]$ be a polynomial. Let $\mathcal{C} \subseteq \mathcal{D}^{d}$ be the class of all pairs $(R, M) \in \mathcal{D}^{d}$ satisfying the following conditions:
(α) There is a finitely generated graded R-module N with Hilbert polynomial $p_{N}=p$ and $\operatorname{reg}^{2}(N) \leqslant r$ such that $M \subseteq N$.
$(\beta) \operatorname{reg}^{2}(M) \leqslant s$.
Then, \mathcal{C} is a class of finite cohomology.
Proof. Let $v:=\max \{r, s\}$. We first show that for each pair $(R, M) \in \mathcal{C}$ we have

$$
\begin{equation*}
\varrho(M) \leqslant p(v) \tag{*}
\end{equation*}
$$

and
(**)

$$
\operatorname{dim}(M) \leqslant 1 \quad \text { or } \quad \operatorname{reg}^{2}(M) \geqslant-v-p(v)
$$

So, let $(R, M) \in \mathcal{C}$. Then, there is a monomorphism of finitely generated graded R-modules $M \stackrel{\epsilon}{\mapsto} N$ such that $p_{N}=p$ and $\operatorname{reg}^{2}(N) \leqslant r \leqslant v$.

Assume first that $\operatorname{dim}(M)>1$. As $\operatorname{reg}^{2}(M) \leqslant v$ we then get

$$
\varrho(M)=d_{M}^{0}\left(\operatorname{reg}^{2}(M)\right) \leqslant d_{M}^{0}(v) \leqslant d_{N}^{0}(v)=p_{N}(v)=p(v)
$$

If $\operatorname{dim}(M) \leqslant 1$, the function d_{M}^{0} is constant and therefore

$$
\varrho(M)=d_{M}^{0}(0)=d_{M}^{0}(v) \leqslant d_{N}^{0}(v)=p_{N}(v)=p(v)
$$

Thus we have proved statement (*).
To prove statement $(* *)$ we assume that $\operatorname{dim}(M)>1$. Then there is a short exact sequence of finitely generated graded R-modules

$$
0 \rightarrow H \rightarrow M \rightarrow \bar{M} \rightarrow 0
$$

such that $\operatorname{dim}(H) \leqslant 1$ and $\operatorname{Ass}_{R}(\bar{M})$ does not contain any prime \mathfrak{p} with $\operatorname{dim}(R / \mathfrak{p}) \leqslant 1$. As $\operatorname{dim}(H) \leqslant 1$, we have $H_{R_{+}}^{i}(H)=0$ for all $i>1$. Therefore $H_{R_{+}}^{i}(M) \cong H_{R_{+}}^{i}(\bar{M})$ for all $i>1$ and hence $\operatorname{reg}^{2}(M)=$ $\operatorname{reg}^{2}(\bar{M})$. Moreover by the observation made on $\operatorname{Ass}_{R}(\bar{M})$, we have (see Lemma 5.9)

$$
d_{\bar{M}}^{0}(n-1) \leqslant \max \left\{0, d_{\bar{M}}^{0}(n)-1\right\} \quad \text { for all } n \in \mathbb{Z} .
$$

As $D_{R_{+}}^{1}(H)=H_{R_{+}}^{2}(H)=0$, we have

$$
d_{\bar{M}}^{0}(v) \leqslant d_{M}^{0}(v) \leqslant d_{N}^{0}(v)=p_{N}(v)=p(v)
$$

and it follows that

$$
d_{\bar{M}}^{0}(n)=0 \quad \text { for all } n \leqslant-v-p(v)-1 .
$$

One consequence of this is, that $T:=D_{R_{+}}^{0}(\bar{M})$ is a finitely generated R-module. As $H_{R_{+}}^{i}(M) \cong H_{R_{+}}^{i}(\bar{M})$ for all $i>1$, we have $\operatorname{reg}^{2}(T)=\operatorname{reg}^{2}(\bar{M})=\operatorname{reg}^{2}(M)$. As $H_{R_{+}}^{i}(T)=0$ for $i=0$, 1 , we thus get $\operatorname{reg}^{2}(M)=$
$\operatorname{reg}(T)$. As $T_{n}=0$ for all $n \leqslant-v-p(v)-1$, we finally obtain (see Reminder 2.2(E))

$$
\operatorname{reg}^{2}(M)=\operatorname{reg}(T) \geqslant \operatorname{gendeg}(T) \geqslant \operatorname{beg}(T) \geqslant-v-p(v)
$$

This proves statement ($* *$).
Now, we may write

$$
\mathcal{C} \subseteq \mathcal{C}_{-\infty} \cup \bigcup_{t=-v-p(v)}^{s} \mathcal{C}_{t}
$$

where

$$
\mathcal{C}_{-\infty}:=\left\{(R, M) \in \mathcal{D}^{d} \mid \operatorname{dim}(M) \leqslant 1 \text { and } \varrho(M) \leqslant p(v)\right\}
$$

and, for all $t \in \mathbb{Z}$ with $-v-p(v) \leqslant t \leqslant s$,

$$
\mathcal{C}_{t}:=\left\{(R, M) \in \mathcal{D}^{d} \mid \operatorname{reg}^{2}(M)=t, \varrho(M) \leqslant p(v)\right\} .
$$

The class $\mathcal{C}_{-\infty}$ clearly is of bounded cohomology.
Now, by Remark 5.2(C) and by Corollary 5.8, each of the classes \mathcal{C}_{t} is of bounded cohomology. This proves our claim.

Corollary 5.11. Let $r \in \mathbb{Z}$ and let $p \in \mathbb{Q}[t]$ be a polynomial. Let $\mathcal{C} \subseteq \mathcal{D}^{d}$ be the class of all pairs $(R, M) \in \mathcal{D}^{d}$ satisfying the condition (α) of Theorem 5.10. Then, the invariant reg^{2} bounds cohomology in the class \mathcal{C}.

Proof. This is immediate by Theorem 5.10.
Corollary 5.12. Let $r \in \mathbb{Z}$ and let $(R, N) \in \mathcal{D}^{d}$. If M runs through all graded submodules $M \subseteq N$ with $\operatorname{reg}^{2}(M) \leqslant r$, only finitely many cohomology tables d_{M} and hence only finitely many Hilbert polynomials p_{M} occur.

Proof. This is clear by Theorem 5.10.
Corollary 5.13. Let $r \in \mathbb{Z}$ and let $(R, N) \in \mathcal{D}^{d}$. If M runs through all graded submodules of N with $\operatorname{reg}^{1}(M) \leqslant r$ only finitely many families

$$
\left(h_{M}^{i}(n)\right)_{(i, n) \in \mathbb{N}_{0} \times \mathbb{Z}} \text { and } \quad\left(h_{N / M}^{i}(n)\right)_{(i, n) \in \mathbb{N}_{0} \times \mathbb{Z}}
$$

can occur.
Proof. Let \mathcal{P} be the set of all graded submodules $M \subseteq N$ with $\operatorname{reg}^{1}(M) \leqslant r$.
Now, for each $M \in \mathcal{P}$ we have the following three relations

$$
\begin{aligned}
& d_{M}^{i}(n)=h_{M}^{i+1}(n) \quad \text { for all } i \geqslant 1 \text { and all } n \in \mathbb{Z} ; \\
& \qquad \begin{cases}h_{M}^{1}(n) \leqslant d_{M}^{0}(n) & \text { for all } n \in \mathbb{Z} ; \\
h_{M}^{1}(n)=d_{M}^{0}(n) & \text { for all } n<\operatorname{beg}(N) ; \\
h_{M}^{1}(n)=0 & \text { for all } n \geqslant r,\end{cases}
\end{aligned}
$$

and

$$
h_{M}^{0}(n) \leqslant h_{N}^{0}(n) \quad \text { for all } n \in \mathbb{Z} .
$$

So, by Corollary 5.12 the set

$$
\mathcal{U}:=\left\{\left(h_{M}^{i}(n)\right)_{(i, n) \in \mathbb{N}_{0} \times \mathbb{Z}} \mid M \in \mathcal{P}\right\}
$$

is finite.
For each $M \in \mathcal{P}$ the short exact sequence $0 \rightarrow M \rightarrow N \rightarrow N / M \rightarrow 0$ yields that for all $n \in \mathbb{Z}$ and all $i \in \mathbb{N}_{0}$

$$
\begin{align*}
& h_{N / M}^{0}(n) \leqslant h_{N}^{0}(n)+h_{M}^{1}(n), \tag{1}\\
& d_{N / M}^{i}(n) \leqslant d_{N}^{i}(n)+h_{M}^{i+2}(n) . \tag{2}
\end{align*}
$$

By the finiteness of \mathcal{U} it follows that the set of functions

$$
\mathcal{U}_{0}:=\left\{\left(h_{N / M}^{0}(n)\right)_{n \in \mathbb{Z}} \mid M \in \mathcal{P}\right\}
$$

is finite and that the set of cohomology diagonals

$$
\mathcal{W}:=\left\{\left(d_{N / M}^{i}(-i)\right)_{i=0}^{d-1} \mid M \in \mathcal{P}\right\}
$$

is finite.
In view of the theorem [6, Theorem 5.4] the finiteness of \mathcal{W} implies that the set

$$
\mathcal{U}_{1}:=\left\{\left(d_{N / M}^{i}(n)\right)_{(i, n) \in \mathbb{N}_{0} \times \mathbb{Z}} \mid M \in \mathcal{P}\right\}
$$

is finite. Moreover for all $M \in \mathcal{P}$ we have

$$
\operatorname{end}\left(H_{R_{+}}^{1}(N / M)\right)<\operatorname{reg}^{1}(N / M) \leqslant \max \left\{\operatorname{reg}^{2}(M)-1, \operatorname{reg}^{2}(N)\right\} \leqslant \max \left\{r-1, \operatorname{reg}^{1}(N)\right\}
$$

and

$$
h_{N / M}^{1}(n) \leqslant d_{N / M}^{0}(n) \quad \text { for all } n \in \mathbb{Z} \text {, with equality if } n<\operatorname{beg}(N)
$$

As $d_{N / M}^{i} \equiv h_{N / M}^{i+1}$ for all $i>0$ the finiteness of \mathcal{U}_{0} and \mathcal{U}_{1} shows that the set

$$
\left\{\left(h_{N / M}^{i}(n)\right)_{(i, n) \in \mathbb{N}_{0} \times \mathbb{Z}} \mid M \in \mathcal{P}\right\}
$$

is finite, too.

Corollary 5.14. Assume that R is a homogeneous Noetherian Cohen-Macaulay ring with Artinian local base ring R_{0}. Let $s \in \mathbb{Z}$ and let N be a finitely generated graded R-module. If M runs trough all graded submodules
of N with gendeg $(M) \leqslant s$ only finitely many families

$$
\left(h_{M}^{i}(n)\right)_{(i, n) \in \mathbb{N}_{0} \times \mathbb{Z}} \quad \text { and } \quad\left(h_{N / M}^{i}(n)\right)_{(i, n) \in \mathbb{N}_{0} \times \mathbb{Z}}
$$

may occur.

Proof. By [4, Proposition 6.1] we see that $\operatorname{reg}(M)$ finds an upper bound in terms of gendeg (M), $\operatorname{reg}(N), \operatorname{reg}(R), \operatorname{beg}(N), \operatorname{dim}(R)$, the multiplicity $e_{0}(R)$ of R and the minimal number of homogeneous generators of the R-module N. Now, we conclude by Corollary 5.13.

Remark 5.15. If we apply Corollary 5.13 in the special case where $N=R=K\left[x_{1}, \ldots, x_{r}\right]$ is a polynomial ring over a field, we get back the finiteness result [17, Corollary 14]. Correspondingly, if we apply Corollary 5.14 in this special case, we get back [17, Corollary 20].

Acknowledgments

The third author would like to thank the Institute of Mathematics of University of Zürich for financial support and hospitality during the preparation of this paper.

References

[1] D. Bayer, D. Mumford, What can be computed in algebraic geometry?, in: D. Eisenbud, L. Robbiano (Eds.), Computational Algebraic Geometry, Commutative Algebra, Proc., Cortona, 1991, Cambridge Univ. Press, 1993, pp. 1-48.
[2] M. Brodmann, Cohomological invariants of coherent sheaves over projective schemes - A survey, in: G. Lyubeznik (Ed.), Local Cohomology and Its Applications, in: Lect. Notes Pure Appl. Math., vol. 226, M. Dekker, 2001, pp. 91-120.
[3] M. Brodmann, Castelnuovo-Mumford regularity and degrees of generators of graded submodules, Illinois J. Math. 47 (3) (2003) 749-767.
[4] M. Brodmann, T. Götsch, Bounds for the Castelnuovo-Mumford regularity, J. Commut. Algebra 1 (2) (2009) 197-225.
[5] M. Brodmann, M. Hellus, Cohomological patterns of coherent sheaves over projective schemes, J. Pure Appl. Algebra 172 (2002) 165-182.
[6] M. Brodmann, M. Jahangiri, C.H. Linh, Castelnuovo-Mumford regularity of deficiency modules, J. Algebra 322 (8) (2009) 2816-2838.
[7] M. Brodmann, F.A. Lashgari, A diagonal bound for cohomological postulation numbers of projective schemes, J. Algebra 265 (2003) 631-650.
[8] M. Brodmann, C. Matteotti, N.D. Minh, Bounds for cohomological Hilbert functions of projective schemes over Artinian rings, Vietnam J. Math. 28 (4) (2000) 345-384.
[9] M. Brodmann, C. Matteotti, N.D. Minh, Bounds for cohomological deficiency functions of projective schemes over Artinian rings, Vietnam J. Math. 31 (1) (2003) 71-113.
[10] M. Brodmann, R.Y. Sharp, Local Cohomology: An Algebraic Introduction with Geometric Applications, Cambridge Univ. Press, 1998.
[11] G. Caviglia, Bounds on the Castelnuovo-Mumford regularity of tensor products, Proc. Amer. Math. Soc. 135 (2007) 19491957.
[12] G. Caviglia, E. Sbarra, Characteristic free bounds for the Castelnuovo-Mumford regularity, Compos. Math. 141 (2005) 13651373.
[13] M. Chardin, A.L. Fall, U. Nagel, Bounds for the Castelnuovo-Mumford regularity of modules, Math. Z. 258 (2008) 69-80.
[14] S. Fumasoli, Die Künnethrelation in abelschen Kategorien und ihre Anwendung auf die Idealtransformation, Diplomarbeit, Universität Zürich, 1999.
[15] A. Grothendieck, Séminare de géometrie algébrique IV, Lecture Notes in Math., vol. 225, Springer, 1971.
[16] L.T. Hoa, Finiteness of Hilbert functions and bounds for the Castelnuovo-Mumford regularity of initial ideals, Trans. Amer. Math. Soc. 360 (2008) 4519-4540.
[17] L.T. Hoa, E. Hyry, Castelnuovo-Mumford regularity of canonical and deficiency modules, J. Algebra 305 (2) (2006) 877-900.
[18] J. Kleiman, Towards a numerical theory of ampleness, Ann. of Math. 84 (1966) 293-344.
[19] C.H. Linh, Upper bounds for Castelnuovo-Mumford regularity of associated graded modules, Comm. Algebra 33 (6) (2005) 1817-1831.
[20] S. Mac Lane, Homology, Grundlehren Math. Wiss., vol. 114, Springer, Berlin, 1963.
[21] D. Mumford, Lectures on Curves on an Algebraic Surface, Ann. of Math. Stud., vol. 59, Princeton Univ. Press, 1966.
[22] M.E. Rossi, N.V. Trung, G. Valla, Castelnuovo-Mumford regularity and extended degree, Trans. Amer. Math. Soc. 355 (5) (2003) 1773-1786.
[23] J. Stükrad, W. Vogel, Buchsbaum Rings and Applications, Deutscher Verlag der Wissenschaften, Berlin, 1986.

[^0]: * Corresponding author.

 E-mail addresses: brodmann@math.uzh.ch (M. Brodmann), jahangiri@dubs.ac.ir (M. Jahangiri), huylinh2002@yahoo.com (C.H. Linh).

