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Let d ∈ N and let Dd denote the class of all pairs (R, M) in which
R = ⊕

n∈N0
Rn is a Noetherian homogeneous ring with Artinian

base ring R0 and such that M is a finitely generated graded R-
module of dimension � d. For such a pair (R, M) let di

M(n) denote
the (finite) R0-length of the n-th graded component of the i-th
R+-transform module Di

R+ (M).

The cohomology table of a pair (R, M) ∈ Dd is defined as the
family of non-negative integers dM := (di

M(n))(i,n)∈N×Z . We say
that a subclass C of Dd is of finite cohomology if the set {dM |
(R, M) ∈ C} is finite. A set S ⊆ {0, . . . ,d − 1} × Z is said to bound
cohomology, if for each family (hσ )σ∈S of non-negative integers,
the class {(R, M) ∈ Dd | di

M(n) � h(i,n) for all (i,n) ∈ S} is of finite
cohomology. Our main result says that this is the case if and only
if S contains a quasi diagonal, that is a set of the form {(i,ni) | i =
0, . . . ,d − 1} with integers n0 > n1 > · · · > nd−1.
We draw a number of conclusions of this boundedness criterion.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

This paper continues our investigation [6], which was driven by the question “What bounds coho-
mology of a projective scheme?”

A considerable number of contributions has been given to this theme, mainly under the aspect of
bounding some cohomological invariants in terms of other invariants (see [1–4,7–9,11–13,15–19,21,
22] for example).
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Our aim is to start from a different point of view, focusing on the notion of cohomological pattern
(see [5]). So, our main result characterizes those sets S ⊆ {0, . . . ,d −1}×Z “which bound cohomology
of projective schemes of dimension < d”.

To make this precise, fix a positive integer d and let Dd be the class of all pairs (R, M) in which
R = ⊕

n�0 Rn is a Noetherian homogeneous ring with Artinian base ring R0 and M is a finitely gen-
erated graded R-module with dim(M) � d. In this situation let R+ = ⊕

n>0 Rn denote the irrelevant
ideal of R .

For each i ∈ N0 consider the graded R-module Di
R+ (M), where Di

R+ denotes the i-th right derived
functor of the R+-transform functor D R+ (•) := lim−→ n HomR((R+)n,•). In addition, for each n ∈ Z let

di
M(n) denote the (finite) R0-length of the n-th graded component Di

R+ (M)n of Di
R+ (M).

Finally, for (R, M) ∈ Dd let us consider the so-called cohomology table of (R, M), that is the family
of non-negative integers

dM := (
di

M(n)
)
(i,n)∈N0×Z

.

A subclass C ⊆ Dd is said to be of finite cohomology if the set {dM | (R, M) ∈ C} is finite. The class C is
said to be of bounded cohomology if the set {di

M(n) | (R, M) ∈ C} is finite for all pairs (i,n) ∈ N0 × Z.
It turns out that these two conditions are both equivalent to the condition that the class C is of finite
cohomology “along some diagonal”, e.g. there is some n0 ∈ Z such that the set �C,n0 := {di

M(n0 − i) |
(R, M) ∈ C, 0 � i < d} is finite (see Theorem 3.5).

So, if one bounds the values of di
M(n) along a “diagonal subset”

{
( j,n0 − j)

∣∣ j = 0, . . . ,d − 1
} ⊆ {0, . . . ,d − 1} × Z

for an arbitrary integer n0 one cuts out a subclass C ⊆ Dd of finite cohomology. Motivated by this
observation we say that the subset S ⊆ {0, . . . ,d − 1} × Z bounds cohomology in the class C ⊆ Dd if
for each family (hσ )σ∈S of non-negative integers hσ ∈ N0 the class

{
(R, M) ∈ C

∣∣ ∀(i,n) ∈ S: di
M(n) � h(i,n)

}
is of finite cohomology. Now, we may reformulate our previous result by saying that for arbitrary n0
the diagonal set {( j,n0 − j) | j = 0, . . . ,d − 1} bounds cohomology in Dd . It seems rather natural to
ask, whether one can characterize the shape of those subsets S ⊆ {0, . . . ,d − 1} × Z which bound
cohomology in Dd . This is indeed done by our main result (see Corollary 4.10):

A subset S ⊆ {0, . . . ,d − 1}× Z bounds cohomology in Dd if and only if it contains a quasi-diagonal, that
is a set of the form {(i,ni) | i = 0, . . . ,d − 1} with

n0 > n1 > · · · > nd−1.

Our next aim is to apply our main result in order to cut out classes C ⊆ Dd of finite cohomology
by fixing some numerical invariants which are defined on the class C . A finite family (μi)

r
i=1 of

numerical invariants μi on C is said to bound cohomology in C if for all n1, . . . ,nr ∈ Z ∪ {±∞} the
class {(R, M) ∈ C | μi(M) = ni for i = 1, . . . , r} is of finite cohomology.

We define a numerical invariant � : Dd → N0 by setting �(M) := d0
M(reg2(M)), where reg2(M)

denotes the Castelnuovo–Mumford regularity of M at and above level 2. Then, we show (see Theo-
rem 5.8):

The pair of invariants (reg2,�) bounds cohomology in Dd.
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As an application of this we prove (see Theorem 5.9 and Corollary 5.10)

Fix a polynomial p ∈ Q[t] and an integer r. Let C ⊆ Dd be the class of all pairs (R, M) such that M is
a graded submodule of a finitely generated graded R-module N with Hilbert polynomial pN = p and
reg2(N) � r. Then reg2 bounds cohomology in C .

An immediate consequence of this is (see Corollary 5.11):

Let (R, N) ∈ Dd, let r ∈ Z and let M run through all graded submodules M ⊆ N with reg2(M) � r. Then
only finitely many cohomology tables dM occur.

As applications of this, we generalize two finiteness results of Hoa and Hyry [17] for local coho-
mology modules of graded ideals in a polynomial ring over a field to graded submodules M ⊆ N for
a given pair (R, N) ∈ Dd (see Corollaries 5.13 and 5.14).

In order to translate our results to sheaf cohomology of projective schemes observe that for all
(i,n) ∈ N0 × Z and all pairs (R, M) ∈ Dd we have Hi(X, F (n)) ∼= Di

R+ (M)n , where X := Proj(R) and

F := M̃ is the coherent sheaf of O X -modules induced by M (see [10, Chapter 20] for example).

2. Preliminaries

In this section we recall a few basic facts which shall be used later in our paper.

Notation 2.1. Let R = ⊕
n�0 Rn be a homogeneous Noetherian ring, so that R is positively graded,

R0 is Noetherian and R = R0[l0, . . . , lr] with finitely many elements l0, . . . , lr ∈ R1. Let R+ denote the
irrelevant ideal

⊕
n>0 Rn of R .

Reminder 2.2 (Local cohomology and Castelnuovo–Mumford regularity). (A) Let i ∈ N0 := {0,1,2, . . .}. By
Hi

R+ (•) we denote the i-th local cohomology functor with respect to R+ . Moreover by Di
R+ (•) we

denote the i-th right derived functor of the ideal transform functor D R+ (•) = lim−→ n HomR((R+)n,•)

with respect to R+ .
(B) Let M := ⊕

n∈Z
Mn be a graded R-module. Keep in mind that in this situation the R-modules

Hi
R+ (M) and Di

R+ (M) carry natural gradings. Moreover we then have a natural exact sequence of
graded R-modules

(i) 0 → H0
R+ (M) → M → D0

R+ (M) → H1
R+ (M) → 0

and natural isomorphisms of graded R-modules

(ii) Di
R+ (M) ∼= Hi+1

R+ (M) for all i > 0.

(C) If T is a graded R-module and n ∈ Z, we use Tn to denote the n-th graded component of T . In
particular, we define the beginning and the end of T respectively by

(i) beg(T ) := inf{n ∈ Z | Tn �= 0},
(ii) end(T ) := sup{n ∈ Z | Tn �= 0},

with the standard convention that inf ∅ = ∞ and sup ∅ = −∞.
(D) If the graded R-module M is finitely generated, the R0-modules Hi

R+ (M)n are all finitely gen-
erated and vanish as well for all n  0 as for all i > dim(M). So, we have

−∞ � ai(M) := end
(

Hi
R+(M)

)
< ∞ for all i � 0,

with ai(M) := −∞ for all i > dim(M).
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If k ∈ N0, the Castelnuovo–Mumford regularity of M at and above level k is defined by

regk(M) := sup
{

ai(M) + i
∣∣ i � k

}
(< ∞).

The Castelnuovo–Mumford regularity of M is defined by reg(M) := reg0(M).

(E) We also shall use the generating degree of M , which is defined by

gendeg(M) = inf

{
n ∈ Z

∣∣∣ M =
∑
m�n

RMm

}
.

If the graded R-module M is finitely generated, we have gendeg(M) � reg(M).

Reminder 2.3 (Cohomological Hilbert functions). (A) Let i ∈ N0 and assume that the base ring R0 is
Artinian. Let M be a finitely generated graded R-module. Then, the graded R-modules Hi

R+ (M) are
Artinian. In particular for all i ∈ N0 and all n ∈ Z we may define the non-negative integers

(i) hi
M(n) := lengthR0

(Hi
R+ (M)n),

(ii) di
M(n) := lengthR0

(Di
R+ (M)n).

Fix i ∈ N0. Then the functions

(iii) hi
M : Z → N0, n �→ hi

M(n),
(iv) di

M : Z → N0, n �→ di
M(n)

are called the i-th Cohomological Hilbert functions of the first respectively the second kind of M .
(B) Let M be a finitely generated graded R-module and let x ∈ R1. We also write ΓR+(M) for

the R+-torsion submodule of M which we identify with H0
R+ (M). By NZDR(M) and ZDR(M) we

respectively denote the set of non-zerodivisors or of zero divisors of R with respect to M . The linear
form x ∈ R1 is said to be (R+-)filter regular with respect to M if x ∈ NZDR(M/ΓR+ (M)).

Reminder 2.4. (Cf. [6, Definition 5.2].) For d ∈ N let Dd denote the class of all pairs (R, M) in which
R = ⊕

n∈N0
Rn is a Noetherian homogeneous ring with Artinian base ring R0 and M = ⊕

n∈Z
Mn is a

finitely generated graded R-module with dim(M) � d.

3. Finiteness and boundedness of cohomology

We keep the notations and hypotheses introduced in Section 2.

Definition 3.1. The cohomology table of the pair (R, M) ∈ Dd is the family of non-negative integers

dM := (
di

M(n)
)
(i,n)∈N0×Z

.

Reminder 3.2. (A) According to [5] the cohomological pattern PM of the pair (R, M) ∈ Dd is defined as
the set of places at which the cohomology table of (R, M) has a non-zero entry:

PM := {
(i,n) ∈ N0 × Z

∣∣ di
M(n) �= 0

}
.

(B) A set P ⊆ N0 × Z is called a tame combinatorial pattern of width w ∈ N0 if the following condi-
tions are satisfied:
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(π1) ∃m,n ∈ Z: (0,m), (w,n) ∈ P ;
(π2) (i,n) ∈ P ⇒ i � w;
(π3) (i,n) ∈ P ⇒ ∃ j � i: ( j,n + i − j + 1) ∈ P ;
(π4) (i,n) ∈ P ⇒ ∃k � i: (k,n + i − k − 1) ∈ P ;
(π5) i > 0 ⇒ ∀n  0: (i,n) /∈ P ;
(π6) ∀i ∈ N: (∀n � 0: (i,n) ∈ P ) or else (∀n � 0: (i,n) /∈ P ).

By [5] we know:

(a) If (R, M) ∈ Dd with dim(M) = s > 0, then PM is a tame combinatorial pattern of width w = s−1.

(b) If P is a tame combinatorial pattern of width w � d − 1, then there is a pair (R, M) ∈ Dd such
that the base ring R0 is a field and P = PM .

By the previous observation, the set of patterns {PM | (R, M) ∈ Dd} is quite large, and hence
so is the set of cohomology tables {dM | (R, M) ∈ Dd}. Therefore, one seeks for decompositions⋃

i∈I
Ci = Dd of Dd into “simpler” subclasses Ci such that for each i ∈ I the set {dM | (R, M) ∈ Ci}

is finite. Bearing in mind this goal, we define the following concepts:

Definitions 3.3. (A) Let C ⊆ Dd be a subclass. We say that C is a subclass of finite cohomology if

�
{

dM
∣∣ (R, M) ∈ C

}
< ∞.

(B) We say that C ⊆ Dd is a subclass of bounded cohomology if

∀(i,n) ∈ N0 × Z: �
{

di
M(n)

∣∣ (R, M) ∈ C
}

< ∞.

Remark 3.4. (A) Let C, D ⊆ Dd be subclasses of Dd . Then clearly

(a) If C ⊆ D and D is of finite cohomology or of bounded cohomology, then so is C respectively.

(B) If r ∈ Z, we have a bijection{
dM

∣∣ (R, M) ∈ C
}

�
{

dM(r)
∣∣ (R, M) ∈ C

}
given by dM �→ dM(r).

Now, we show how the finiteness and boundedness conditions defined above are related.

Theorem 3.5. For a subclass C ⊆ Dd the following statements are equivalent:

(i) C is a class of finite cohomology.
(ii) C is a class of bounded cohomology.

(iii) For each n0 ∈ Z the set �C,n0 := {di
M(n0 − i) | (R, M) ∈ C, 0 � i < d} is finite.

(iv) There is some n0 ∈ Z such that the set �C,n0 of statement (iii) is finite.

Proof. The implications (i) ⇒ (ii) ⇒ (iii) ⇒ (iv) are clear from the definitions. To prove the impli-
cation (iv) ⇒ (i) fix n0 ∈ Z and assume that the set �C,n0 is finite. Then there is some non-negative
integer h such that di

M(n0)(−i) � h for all pairs (R, M) ∈ C and all i ∈ {0, . . . ,d−1}. By [6, Theorem 5.4]
it thus follows that the set of functions{

di
M(n0)

∣∣ (R, M) ∈ C, i ∈ N0
}

is finite. By Remark 3.4(B) we now may conclude that the class C is of finite cohomology. �
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So, by Theorem 3.5 boundedness and finiteness of cohomology are the same for a given class
C ⊆ Dd .

Definition 3.6. Let d ∈ N0, let C ⊆ Dd and let S ⊆ {0, . . . ,d − 1}× Z be a subset. We say that the set S

bounds cohomology in C if for each family (hσ )σ∈S of non-negative integers hσ the class{
(R, M) ∈ C

∣∣ ∀(i,n) ∈ S: di
M(n) � h(i,n)

}
is of finite cohomology.

Remark 3.7. (A) Let d ∈ N0, let C, D ⊆ Dd and S,T ⊆ {0, . . . ,d − 1} × Z. Then obviously we can say

If S ⊆ T and S bounds cohomology in C , then so does T.

(B) If r ∈ Z, we can form the set S(r) := {(i,n + r) | (i,n) ∈ S}. In view of the bijection of Re-
mark 3.4(B) we have

S(r) bounds cohomology in C(r) := {(R, M(r)) | (R, M) ∈ C} if and only if S does in C .

(C) For all s ∈ {0, . . . ,d} we set

S<s := S ∩ ({0, . . . , s − 1} × Z
)

as Ds ⊆ Dd it follows easily:

If S bounds cohomology in C , then S<s bounds cohomology in Ds ∩ C .

Corollary 3.8. Let C ⊆ Dd and n ∈ Z. Then, the “n-th diagonal”{
(i,n − i)

∣∣ i = 0, . . . ,d − 1
}

bounds cohomology in C .

Proof. This is immediate by Theorem 3.5. �
4. Quasi-diagonals

Our first aim is to generalize Corollary 3.8 by showing that not only the diagonals bound coho-
mology on C , but rather all “quasi-diagonals”. We shall define below, what such a quasi-diagonal
is.

Lemma 4.1. Let t ∈ {1, . . . ,d}, let (ni)
d−1
i=d−t be a sequence of integers such that nd−1 < · · · < nd−t and let

C ⊆ Dd be a class such that the set {di
M(ni) | (R, M) ∈ C} is finite for all i ∈ {d − t, . . . ,d − 1}. Then the set

{di
M(n) | (R, M) ∈ C} is finite whenever ni � n and d − t � i � d − 1.

Proof. By our hypothesis there is some h ∈ N0 with di
M(ni) � h for all i ∈ {d − t, . . . ,d − 1} and all

pairs (R, M) ∈ C .
Let (R, M) ∈ C . On use of standard reduction arguments we can restrict ourselves to the case

where the Artinian base ring R0 is local with infinite residue field. Replacing M by M/ΓR+ (M) we
may assume that M is R+-torsion free. Therefore, there exists x ∈ R1 ∩ NZD(M). For each i ∈ N0 and
m ∈ Z, the short exact sequence 0 → M(−1) → M → M/xM → 0 induces a long exact sequence.

(∗i,m) Di
R (M)m−1 → Di

R (M)m → Di
R (M/xM)m → Di+1

R (M)m−1.
+ + + +



464 M. Brodmann et al. / Journal of Algebra 323 (2010) 458–472
As dim(M/xM) < d, the sequences (∗d−1,m) imply that dd−1
M (m) � dd−1

M (m − 1) for all m ∈ Z. This
proves our claim if t = 1. So, let t > 1.

Assume inductively that the set {di
M(ni) | (R, M) ∈ C} is finite whenever ni � n and d − t + 1 � i �

d − 1. It remains to find a family of non-negative integers (hn)n�nd−t such that dd−t
M (n) � hn for all

n � nd−t and all pairs (R, M) ∈ C . Let E denote the class of all pairs (R, M/xM) = (R, M) in which
(R, M) ∈ C and x ∈ R1 ∩ NZD(M). As ni − 1 � ni+1 for all i ∈ {d − t, . . . ,d − 2}, the sequences (∗i,ni )

show that

di
M/xM(ni) � di+1

M (ni − 1) + h for i ∈ {d − t, . . . ,d − 2}.

This means that the set {di
M

(ni) | (R, M) ∈ E } is finite whenever (d − 1) − (t − 1) � i � d − 2. So, by

induction the set {di
M

(ni) | (R, M) ∈ E } is finite whenever ni � n and (d − 1) − (t − 1) � i � d − 2.

In particular there is a family of non-negative integers (km)m�nd−t such that dd−t
M/xM(m) � km for all

m � nd−t and all (R, M) and x as above. Now, for each n � nd−t set hn := h + ∑
nd−t<m�n km . If we

choose (R, M) ∈ C , the sequences (∗d−t,n) imply that dd−t
M (n) � hn for all n � nd−t . �

Proposition 4.2. Let (ni)
d−1
i=0 be a sequence of integers such that nd−1 < · · · < n0 and let C ⊆ Dd. Then the set

{(i,ni) | i = 0, . . . ,d − 1} bounds cohomology in C .

Proof. Let (hi)d−1
i=0 be a family of non-negative integers and let C′ be the class of all pairs (R, M) ∈ C

such that di
M(ni) � hi for i = 0, . . . ,d − 1. Then, by Lemma 4.1 the set {di

M(n) | (R, M) ∈ C′} is finite,
whenever n � ni and 0 � i � d − 1. Therefore the set �C′,n0 := {di

M(n0 − i) | (R, M) ∈ C′, 0 � i < d} is
finite. So, by Theorem 3.5 the class C′ is of finite cohomology. It follows that {(i,ni) | i = 0, . . . ,d − 1}
bounds cohomology in C . �
Definition 4.3. A set T ⊆ {0,1, . . . ,d−1}×Z is called a quasi-diagonal if there is a sequence of integers
(ni)

d−1
i=0 such that nd−1 < nd−2 < · · · < n0 and

T = {
(i,ni)

∣∣ i = 0, . . . ,d − 1
}
.

Observe, that diagonals in {0, . . . ,d − 1} × Z are quasi-diagonals. So, the next result generalizes
Corollary 3.8.

Corollary 4.4. Let S ⊆ {0,1, . . . ,d − 1} × Z be a set which contains a quasi-diagonal. Then S bounds coho-
mology in each subclass C ⊆ Dd.

Proof. Clear by Proposition 4.2. �
Our next goal is to show that the converse of Corollary 4.4 holds, namely: if a set S ⊆ {0,1, . . . ,

d − 1} × Z bounds cohomology in Dd , then S contains a quasi-diagonal.

Reminder 4.5. Let K be a field, let R = K ⊕ R1 ⊕ · · · and R ′ = K ⊕ R ′
1 ⊕ · · · be two Noetherian homo-

geneous K -algebras. Let R �K R ′ := K ⊕ (R1 ⊗ R ′
1) ⊕ (R2 ⊗ R ′

2) ⊕ · · · ⊆ R ⊗K R ′ be the Segre product
ring of R and R ′ , a Noetherian homogeneous K -algebra. For a graded R-module M = ⊕

n∈Z
Mn and

a graded R ′-module M ′ = ⊕
n∈Z

M ′
n let M �K M ′ := ⊕

n∈Z
Mn ⊗K M ′

n ⊆ M ⊗K M ′ the Segre product
module of M and M ′ , a graded R �K R ′-module. Keep in mind, that the Künneth relations (for Segre
products) yield isomorphism of graded R �K R ′-modules

Di
(R�K R ′)+(M �K M ′) ∼=

i⊕
j=0

D j
R+(M) �K Di− j

R ′+
(M ′)

for all i ∈ N0 (cf. [23,14,20]).
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Lemma 4.6. Let d > 1 and let R := K [x1, . . . , xd] be a polynomial ring over some infinite field K . Let S ⊆
{0,1, . . . ,d − 1} × Z such that

(1) S contains no quasi-diagonal,
(2) S ∩ ({0, . . . ,d − 2} × Z) contains a quasi-diagonal {(i,ni) | i = 0, . . . ,d − 2} and
(3) S ∩ ({d − 1} × Z) �= ∅.

Then

(a) (d − 1,n) /∈ S for all n � 0.
(b) There is a family (Mk)k∈N of finitely generated graded R-modules, locally free of rank � ((d − 1)!)2 on

Proj(R) such that the set {di
Mk

(n) | k ∈ N} is finite for all (i,n) ∈ S and

lim
k→∞

dd−1
Mk

(r) = ∞, where r := inf
{
n ∈ Z

∣∣ (d − 1,n) ∈ S
} − 1.

Proof. For all i ∈ {1, . . . ,d} we write Ri := K [x1, . . . , xi] and Si := S ∩ ({i} × Z). Statement (a) follows
immediately from our hypotheses on the set S. So, it remains to prove statement (b). After shifting
appropriately we may assume that r = −1.

By our hypotheses on S it is clear that Si �= ∅ for all i ∈ {0, . . . ,d − 1}. Let

αi := sup
{
n ∈ Z

∣∣ (i,n) ∈ Si} for all i ∈ {0, . . . ,d − 1}.

Then by our hypothesis on S we have αi < ∞ for some i ∈ {1, . . . ,d − 2}. Let

s := min
{

i ∈ {0, . . . ,d − 2} ∣∣ αi < ∞}
and

ns := αs = max
{
n ∈ Z

∣∣ (s,n) ∈ Ss}.
Now, we may find a quasi-diagonal {(i,ni) | i = 0, . . . ,d − 2} in S ∩ ({0, . . . ,d − 2} × Z) such that

for all i ∈ {s + 1, . . . ,d − 2} we have

ni = max
{
n < ni−1

∣∣ (i,n) ∈ S
}
.

As S contains no quasi-diagonal, we must have nd−2 � 0. For all m,n ∈ Z∪{±∞} we write ]m,n[ :=
{t ∈ Z | m < t < n}. Using this notation we set

t−1 := ∞; td−s−1 := −∞; ti := max{d − s − i − 2,ni+s}, ∀i ∈ {0, . . . ,d − s − 2},

and write

P :=
d−s−1⋃

i=0

({i} × ]ti, ti−1[
)
.

Observe, that by our choice of the pairs (i,ni) we have

(∗) if s � i � d − 1 and (i,n) ∈ S, then (i − s,n) /∈ P .
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Moreover by [5, 2.7] the set P ⊆ {0, . . . ,d − s − 1} × Z is a minimal combinatorial pattern of width
d − s − 1. So, by [5, Proposition 4.5], there exists a finitely generated Rd−s-module N , locally free of
rank � (d − s − 1)! on Proj(Rd−s) such that PN = P .

Now, consider the Segre product ring S := Rs+1 �K Rd−s and for each k ∈ N let Mk be the finitely
generated graded S-module Rs+1(−k) �K N , which is locally free of rank � (d − 1)!/s! on Proj(S).
Observe that

d j
Rs+1 ≡ 0 for all j �= 0, s and dl

N ≡ 0 for all l > d − s − 1.

Now, we get from the Künneth relations (cf. Reminder 4.5) for all i ∈ {0, . . . ,d − 1} and all n ∈ Z

di
Mk

(n) =

⎧⎪⎪⎨⎪⎪⎩
d0

Rs+1(−k + n)di
N (n) for 0 � i < s,

d0
Rs+1(−k + n)di

N (n) + ds
Rs+1(−k + n)di−s

N (n) for s � i � d − s − 1,

ds
Rs+1(−k + n)di−s

N (n) for d − s − 1 < i � d − 1.

As P = PN and in view of (∗) we have di−s
N (n) = 0 for all (i,n) ∈ S with s � i � d − 1. Moreover,

for all n ∈ Z and all k ∈ N we have d0
Rs+1 (−k + n) � d0

Rs+1 (n − 1). So for all k ∈ N and all (i,n) ∈ S we
get

di
Mk

(n)

{
� d0

Rs+1(n − 1)di
N(n) for 0 � i � d − s − 1,

= 0 if d − s − 1 < i � d − 1.

Therefore the set {di
Mk

(n) | k ∈ N} is finite for all (i,n) ∈ S .

Moreover dd−1
Mk

(−1) = ds
Rs+1 (−k − 1)dd−s−1

N (−1). As (d − s − 1,−1) ∈ P we have dd−s−1
N (−1) > 0

and hence ds
Rs+1 (−k − 1) = (k

s

)
implies that

lim
k→∞

dd−1
Mk

(−1) = ∞.

As dim(S) = d, there is a finite injective morphism R → S of graded rings, which turns S in an
R-module of rank (d − 1)!/s!(d − s − 1)!. So Mk becomes an R-module locally free of rank � [(d − 1)!/
s!(d − s − 1)!][(d − 1)!/s!] � ((d − 1)!)2 on Proj(R). Moreover, by Graded Base Ring Independence of
Local Cohomology, we get isomorphisms of graded R-modules D j

S+ (Mk) ∼= D j
R+ (Mk) for all j ∈ N0.

Now, our claim follows easily. �
Definition 4.7. A class D ⊆ Dd is said to be big, if for each t ∈ {1, . . . ,d} there is an infinite field K
such that D contains all pairs (R, M) in which R is the polynomial ring K [x1, . . . , xt].

Proposition 4.8. Let C ⊆ Dd be a big class and let S ⊆ {0, . . . ,d − 1} × Z be a set which bounds cohomology
in C . Then S contains a quasi-diagonal.

Proof. There is an infinite field K such that with R := K [x1, . . . , xd] we have (R, R(−k)) ∈ C for all
k ∈ N. The set {di

R(−k)
(n) | k ∈ N} is finite for all (i,n) ∈ {0, . . . ,d − 2} × Z and limk→∞ dd−1

R(−k)
(0) = ∞.

It follows that Sd−1 := S ∩ ({d − 1} × Z) �= ∅. This proves our claim if d = 1.
So, let d > 1. Clearly Dd−1 ∩ C ⊆ Dd−1 is a big class and S<(d−1) = S ∩ ({0, . . . ,d − 2} × Z) bounds

cohomology in Dd−1 ∩ C (see Remark 3.7(C)). So, by induction the set S<(d−1) contains a quasi-
diagonal. If S would contain no quasi-diagonal, Lemma 4.6 would imply that for our polynomial ring R
there is a class D of pairs (R, M) ∈ Dd which is not of bounded cohomology but such that the set
{di

M(n) | (R, M) ∈ D} is finite for all (i,n) ∈ S. As C is a big class, we have D ⊆ C , and this would
imply the contradiction that S does not bound cohomology in C . �
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Theorem 4.9. Let C ⊆ Dd be a big class and let S ⊆ {0, . . . ,d − 1}×Z. Then S bounds cohomology in C if and
only if S contains a quasi-diagonal.

Proof. Clear by Corollary 4.4 and Proposition 4.8. �
Corollary 4.10. The set S ⊆ {0, . . . ,d − 1} × Z bounds cohomology in Dd if and only if S contains a quasi-
diagonal.

Proof. Clear by Theorem 4.9. �
5. Bounding invariants

In this section we investigate numerical invariants which bound cohomology.

Definitions 5.1. (A) (See [2,8,9].) Let C ⊆ Dd be a subclass. A numerical invariant on the class C is a
map

μ : C → Z ∪ {±∞}

such that for any two pairs (R, M), (R, N) ∈ C with M ∼= N we have μ(R, M) = μ(R, N). We shall
write μ(M) instead of μ(R, M).

(B) Let (μi)
r
i=1 be a family of numerical invariants on the subclass C ⊆ Dd . We say that the family

(μi)
r
i=1 bounds cohomology on the class C , if for each (n1, . . . ,nr) ∈ (Z ∪ {±∞})r the class

{
(R, M) ∈ C

∣∣ μi(M) = ni for all i ∈ {1, . . . , r}}
is of bounded cohomology.

(C) A numerical invariant μ on the class C ⊆ Dd is said to be finite if μ(M) ∈ Z for all (R, M) ∈ C .
(D) A numerical invariant μ on the class C ⊆ Dd is said to be positive if μ(M) � 0 for all

(R, M) ∈ C .

Remark 5.2. (A) If μ : C → Z ∪ {±∞} is a numerical invariant on the class C ⊆ Dd and if D ⊆ C , then
the restriction μ �D : D → Z ∪ {±∞} is a numerical invariant on the class D. Clearly, if μ is finite
(resp. positive) then so is μ �D .

(B) If (μi)
r
i=1 bounds cohomology on the class C ⊆ Dd and if D ⊆ C , then (μi �D)r

i=1 bounds
cohomology in D.

(C) A family (μi)
r
i=1 of positive numerical invariants bounds cohomology in C if and only if for all

(n1, . . . ,nr) ∈ (N0 ∪ {∞})r the class

{
(R, M) ∈ C

∣∣ μi(M) � ni for all i ∈ {1, . . . , r}}
is of bounded cohomology.

(D) A family (μi)
r
i=1 of finite positive invariants bounds cohomology on C if and only if the sum

invariant
∑r

i=1 μi : C → N0 bounds cohomology in C .

Remark 5.3. Let i ∈ N0 and n ∈ Z. Then, the map

di•(n) : Dd → N0
(
(R, M) �→ di

M(n)
)

is a finite positive numerical invariant on Dd .
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Theorem 5.4. Let (ni)
d−1
i=0 be a sequence of integers such that n0 > n1 > n2 > · · · > nd−1 . Then the family of

numerical invariants (di•(ni))
d−1
i=0 bounds cohomology in Dd.

Proof. Clear by Proposition 4.2. �
Reminder 5.5. For each k ∈ N0 we may define the numerical invariant

regk : Dd → Z ∪ {−∞} (
(R, M) �→ regk(M)

)
.

Notation 5.6. For (R, M) ∈ Dd we set

�(M) :=
{

d0
M(reg2(M)) if dim(M) > 1,

d0
M(0) if dim(M) � 1.

Remark 5.7. (A) If (R, M) ∈ Dd with dim(M) � 1, the cohomological Hilbert function d0
M of M is

constant, and this constant is strictly positive if and only if dim(M) = 1.
(B) The function

� : Dd → N0
(
(R, M) �→ �(M)

)
is a finite positive numerical invariant on Dd .

Theorem 5.8. The pair of invariants (reg2,�) bounds cohomology in Dd.

Proof. Fix u, v ∈ Z and set

C := {
(R, M) ∈ Dd

∣∣ reg2(M) = u, �(M) = v
}
.

If (R, M) ∈ C we have d0
M(u) = d0

M(reg2(M)) = v .

Let i ∈ N. Then u − i = reg2(M) − i > ai+1(M) and hence di
M(u − i) = hi+1

M (u − i) = 0. Therefore
(R, M) belongs to the class

D := {
(R, M) ∈ Dd

∣∣ d0
M(u) = v and di

M(u − i) = 0 for all i ∈ {1, . . . ,d − 1}}.
But according to Theorem 5.4 the class D is of bounded cohomology. �

Lemma 5.9. Let (R, M) ∈ Dd be such that dim(R/p) �= 1 for all p ∈ AssR(M). Then

d0
M(n − 1) � max

{
0,d0

M(n) − 1
}

for all n ∈ Z.

Proof. For an arbitrary finitely generated graded R-module N let

λ(N) := inf
{

depth(Np) + height
(
(p + R+)/p

) ∣∣ p ∈ Spec(R)\Var(R+)
}
.

Clearly, for all n ∈ Z we have λ(N(n)) = λ(N). So, for all n ∈ Z, we get by our hypotheses that
λ(M(n)) = λ(M) > 1. Now, according to [8, Proposition 4.6] we obtain

d0
M(n − 1) = d0

M(n)(−1) � max
{

0,d0
M(n)(0) − 1

} = max
{

0,d0
M(n) − 1

}
. �
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Theorem 5.10. Let r, s ∈ Z and let p ∈ Q[t] be a polynomial. Let C ⊆ Dd be the class of all pairs (R, M) ∈ Dd

satisfying the following conditions:

(α) There is a finitely generated graded R-module N with Hilbert polynomial pN = p and reg2(N) � r such
that M ⊆ N.

(β) reg2(M) � s.

Then, C is a class of finite cohomology.

Proof. Let v := max{r, s}. We first show that for each pair (R, M) ∈ C we have

(∗) �(M) � p(v)

and

(∗∗) dim(M) � 1 or reg2(M) � −v − p(v).

So, let (R, M) ∈ C . Then, there is a monomorphism of finitely generated graded R-modules M
ε� N

such that pN = p and reg2(N) � r � v .
Assume first that dim(M) > 1. As reg2(M) � v we then get

�(M) = d0
M

(
reg2(M)

)
� d0

M(v) � d0
N(v) = pN(v) = p(v).

If dim(M) � 1, the function d0
M is constant and therefore

�(M) = d0
M(0) = d0

M(v) � d0
N(v) = pN(v) = p(v).

Thus we have proved statement (∗).
To prove statement (∗∗) we assume that dim(M) > 1. Then there is a short exact sequence of

finitely generated graded R-modules

0 → H → M → M → 0

such that dim(H) � 1 and AssR(M) does not contain any prime p with dim(R/p) � 1. As dim(H) � 1,
we have Hi

R+ (H) = 0 for all i > 1. Therefore Hi
R+ (M) ∼= Hi

R+ (M) for all i > 1 and hence reg2(M) =
reg2(M). Moreover by the observation made on AssR(M), we have (see Lemma 5.9)

d0
M

(n − 1) � max
{

0,d0
M

(n) − 1
}

for all n ∈ Z.

As D1
R+ (H) = H2

R+ (H) = 0, we have

d0
M

(v) � d0
M(v) � d0

N(v) = pN(v) = p(v)

and it follows that

d0
M

(n) = 0 for all n � −v − p(v) − 1.

One consequence of this is, that T := D0
R+ (M) is a finitely generated R-module. As Hi

R+ (M) ∼= Hi
R+ (M)

for all i > 1, we have reg2(T ) = reg2(M) = reg2(M). As Hi
R (T ) = 0 for i = 0,1, we thus get reg2(M) =
+



470 M. Brodmann et al. / Journal of Algebra 323 (2010) 458–472
reg(T ). As Tn = 0 for all n � −v − p(v) − 1, we finally obtain (see Reminder 2.2(E))

reg2(M) = reg(T ) � gendeg(T ) � beg(T ) � −v − p(v).

This proves statement (∗∗).
Now, we may write

C ⊆ C−∞ ∪
s⋃

t=−v−p(v)

Ct,

where

C−∞ := {
(R, M) ∈ Dd

∣∣ dim(M) � 1 and �(M) � p(v)
}

and, for all t ∈ Z with −v − p(v) � t � s,

Ct := {
(R, M) ∈ Dd

∣∣ reg2(M) = t, �(M) � p(v)
}
.

The class C−∞ clearly is of bounded cohomology.
Now, by Remark 5.2(C) and by Corollary 5.8, each of the classes Ct is of bounded cohomology. This

proves our claim. �
Corollary 5.11. Let r ∈ Z and let p ∈ Q[t] be a polynomial. Let C ⊆ Dd be the class of all pairs (R, M) ∈ Dd

satisfying the condition (α) of Theorem 5.10. Then, the invariant reg2 bounds cohomology in the class C .

Proof. This is immediate by Theorem 5.10. �
Corollary 5.12. Let r ∈ Z and let (R, N) ∈ Dd. If M runs through all graded submodules M ⊆ N with
reg2(M) � r, only finitely many cohomology tables dM and hence only finitely many Hilbert polynomials pM

occur.

Proof. This is clear by Theorem 5.10. �
Corollary 5.13. Let r ∈ Z and let (R, N) ∈ Dd. If M runs through all graded submodules of N with reg1(M) � r
only finitely many families

(
hi

M(n)
)
(i,n)∈N0×Z

and
(
hi

N/M(n)
)
(i,n)∈N0×Z

can occur.

Proof. Let P be the set of all graded submodules M ⊆ N with reg1(M) � r.
Now, for each M ∈ P we have the following three relations

di
M(n) = hi+1

M (n) for all i � 1 and all n ∈ Z;⎧⎪⎨⎪⎩
h1

M(n) � d0
M(n) for all n ∈ Z;

h1
M(n) = d0

M(n) for all n < beg(N);
h1 (n) = 0 for all n � r,
M
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and

h0
M(n) � h0

N(n) for all n ∈ Z.

So, by Corollary 5.12 the set

U := {(
hi

M(n)
)
(i,n)∈N0×Z

∣∣ M ∈ P
}

is finite.
For each M ∈ P the short exact sequence 0 → M → N → N/M → 0 yields that for all n ∈ Z and

all i ∈ N0

h0
N/M(n) � h0

N(n) + h1
M(n), (1)

di
N/M(n) � di

N(n) + hi+2
M (n). (2)

By the finiteness of U it follows that the set of functions

U0 := {(
h0

N/M(n)
)

n∈Z

∣∣ M ∈ P
}

is finite and that the set of cohomology diagonals

W := {(
di

N/M(−i)
)d−1

i=0

∣∣ M ∈ P
}

is finite.
In view of the theorem [6, Theorem 5.4] the finiteness of W implies that the set

U1 := {(
di

N/M(n)
)
(i,n)∈N0×Z

∣∣ M ∈ P
}

is finite. Moreover for all M ∈ P we have

end
(

H1
R+(N/M)

)
< reg1(N/M) � max

{
reg2(M) − 1, reg2(N)

}
� max

{
r − 1, reg1(N)

}
and

h1
N/M(n) � d0

N/M(n) for all n ∈ Z, with equality if n < beg(N).

As di
N/M ≡ hi+1

N/M for all i > 0 the finiteness of U0 and U1 shows that the set

{(
hi

N/M(n)
)
(i,n)∈N0×Z

∣∣ M ∈ P
}

is finite, too. �
Corollary 5.14. Assume that R is a homogeneous Noetherian Cohen–Macaulay ring with Artinian local base
ring R0 . Let s ∈ Z and let N be a finitely generated graded R-module. If M runs trough all graded submodules
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of N with gendeg(M) � s only finitely many families(
hi

M(n)
)
(i,n)∈N0×Z

and
(
hi

N/M(n)
)
(i,n)∈N0×Z

may occur.

Proof. By [4, Proposition 6.1] we see that reg(M) finds an upper bound in terms of gendeg(M),
reg(N), reg(R), beg(N), dim(R), the multiplicity e0(R) of R and the minimal number of homogeneous
generators of the R-module N . Now, we conclude by Corollary 5.13. �
Remark 5.15. If we apply Corollary 5.13 in the special case where N = R = K [x1, . . . , xr] is a polyno-
mial ring over a field, we get back the finiteness result [17, Corollary 14]. Correspondingly, if we apply
Corollary 5.14 in this special case, we get back [17, Corollary 20].
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