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We explore the duality between supersymmetric Wilson loop on null polygonal contours in maximally
supersymmetric Yang–Mills theory and next-to-maximal helicity violating (NMHV) scattering amplitudes.
Earlier analyses demonstrated that the use of a dimensional regulator for ultraviolet divergences, induced
due to presence of the cusps on the loop, yields anomalies that break both conformal symmetry and
supersymmetry. At one-loop order, these are present only in Grassmann components localized in the
vicinity of a single cusp and result in a universal function for any number of sites of the polygon that
can be subtracted away in a systematic manner leaving a well-defined supersymmetric remainder dual
to corresponding components of the superamplitude. The question remains though whether components
which were free from the aforementioned supersymmetric anomaly at leading order of perturbation
theory remain so once computed at higher orders. Presently we verify this fact by calculating a particular
component of the null polygonal super Wilson loop at two loops restricting the contour kinematics to
a two-dimensional subspace. This allows one to perform all computations in a concise analytical form
and trace the pattern of cancellations between individual Feynman graphs in a transparent fashion. As
a consequence of our consideration we obtain a dual conformally invariant result for the remainder
function in agreement with one-loop NMHV amplitudes.

© 2012 Published by Elsevier B.V.

The duality between scattering amplitudes in N = 4 super-Yang–Mills theory and a supersymmetric extension of the Wilson loop
spanned on a polygonal closed contour with its sites defined by particles’ momenta involved in scattering occupied an important niche in
devising new techniques for analysis of dynamics of gauge theories at weak and strong coupling regimes and interpolation between the
two. A distinguished role played by the maximal supersymmetry in four dimensions is that all particles of the theory can be combined into
a single CPT self-conjugated light-cone superfield Φ defined by a (finite) series in the Grassmann variable ηA with coefficients determined
by the fields of appropriate helicity to compensate for the deficit introduced by the η itself and matching SU(4) tensor structure [1,2].
Thus, the n-particle S-matrix of the theory is concisely represented by the amputated Green An functions of n superfields Φ . Extracting
the (super)momentum conservation laws allows one to cast the superamplitude An into the following form [2]

An = i(2π)4 δ(4)(
∑

i λĩλi)δ
(8)(

∑
i λiηi)

〈12〉〈23〉〈34〉 . . . 〈n − 1n〉 Ân(λi, λ̃i, ηi). (1)

The use of the spinor helicity formalism, adopted here and below, simplifies the representation of the amplitude. Namely, the massless
particles’ momenta pα̇α

i = λ̃α̇λα and their chiral charges qA,α = ηAλα are written by means of commuting Weyl spinors λα and λ̃α̇ ,
with their inner product defined as 〈i j〉 = λα

i λ jα and [i j] = λ̃iα̇ λ̃α̇
j , as well as anticommuting Grassmann variables ηA transforming in the

fundamental of SU(4). The reduced amplitude Ân admits an expansion in terms of η’s

Ân = Ân,0 + Ân,1 + · · · , (2)

that terminates at order1 k = n − 4, with each term being a homogeneous polynomial of degree η4k . Each term in this expansion describes
scattering of particle with total helicity −n + 4 + 2k, with the leading term being the maximal helicity-violating amplitudes (MHV), then
the next-to-maximal helicity-violating (NMHV) amplitude etc. At tree level, Â(0)

n,0 = 1, while the latter can be written as a sum [3]

E-mail address: Andrei.Belitsky@asu.edu.
1 Nilpotence of the Grassmann variables alone is not sufficient to produce this constraint, the reduction by maximal degree by four is a consequence of superconformal

symmetry.
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Â(0)
n,1 =

∑
1<q<r<n

Rn;qr, (3)

of superconformal invariants

Rn;qr = δ4(〈n,q − 1,q, r − 1〉χr + cyclic)

〈q − 1,q, r − 1, r〉〈q, r − 1, r,n〉〈r − 1, r,n,q − 1〉〈r,n,q − 1,q〉〈n,q − 1,q, r − 1〉 , (4)

written in terms of momentum twistors Za
j = (λα

j , xα̇α
j λ jα), with angle-brackets being 〈i jkl〉 = εabcd Za

i Zb
j Z c

k Zd
l . In what follows, the focus

of our analysis will be Ân,1 at higher orders of perturbation theory.
A profound realization of the past few years was that the superamplitude (1) is expected to admit a dual representation in terms of a

Wilson superloop [4,5] spanned on a closed polygonal supercontour with its vertices localized at (xi, θ
A
i ) such that its path segments are

proportional to the particles’ (super)momenta, pα̇α
i = (x1 − xi+1)

α̇α ≡ xα̇α
i,i+1 and qAα = (θi − θi+1)

A,α ≡ θ
A,α
ii+1,

〈
Wn(xi, θi)

〉 = 1

Nc

〈
tr(W[1n] . . .W[32]W[21])

〉
, (5)

where

W[i+1,i] = P exp

(
ig

1∫
0

dt Bi(t)

)
, (6)

where the path is parametrized by x[ii+1](t) = xi − txii+1, θ[ii+1](t) = θi − tθii+1 and the first few terms in the superconnection read2

Bi(t) = −1

2
〈i|A(t)|i] − i

2
χ A

i

[
ψ̄A(t)|i] − i

2
χ A

i

(
1

2

〈
θ A

i,i+1(t)
∣∣D|i] + ηB

i

)
φ̄AB(t) + · · · . (7)

The duality relation between the two objects is of the following form

〈
Wn;k(xi, θi)

〉 =
(

g2Nc

4π2

)k

Ân;k(λi, λ̃i, ηi). (8)

It is a generalization of the duality for the lowest k = 0 MHV component [6–10] elucidated by now through multi-loop calculations
[11–17]. The above equation has the unusual property of mixing orders of perturbation theory on both sides of the equation, for in-
stance, the -th order k = 1 NMHV amplitude emerges from a ( + 1)-loop computation of the superloop, however, from terms quartic in
Grassmann variables, etc.

To lowest order in coupling the amplitudes and their duals on the super Wilson loop side are expected to be invariant under the
so-called dual superconformal symmetry which acts on the dual coordinates (xi, θi) [3]. At subleading orders in coupling, some of the
symmetry generators are broken by the ultraviolet regulator in a predictable fashion. This was clearly demonstrated in great details for
MHV amplitudes and its dual bosonic Wilson loop in Ref. [9]. However, the first encounter with the superloop’s η4-component, dual to the
tree NMHV amplitudes, demonstrated that the former suffer from another anomalous effect [18]. Namely, the use of the Four-Dimensional
Helicity scheme [19], adopted for the bulk of higher loop calculations on the amplitudes side as it preserves the spinor helicity formalism,
induces a conformal and supersymmetric anomaly which breaks the above correspondence [18,20]. However, this anomalous contribution
has a universal form and can be subtracted away in a consistent manner, restoring the supersymmetry and conformal symmetry and
thus resuscitating the conjectured duality. It is important to realize at the NMHV level, the degree four Grassmannian structure becomes
anomalous provided it contains at most three adjacent indices [20], e.g., χ2

i−1χiχi+1, χ2
i−1χ

2
i etc. Therefore, any structure where at

least one of the indices is not adjacent to the rest will be conformal and given by the corresponding component of the R-invariants. The
question still remains whether those components that were not anomalous at leading order develop unexpected anomalies once computed
at subleading orders. This is the issue that we will address in the present study.

We will perform a two-loop computation of a non-anomalous component at leading order, picking χ2χ3χ6χ7 as the object of analysis.
In order to be able to track explicitly all intricacies of cancellations between Feynman diagrams without the complications of dealing with
higher-degree transcendental functions intrinsic to computations in the full four-dimensional kinematics, we will restrict the contour of
the superloop to a two-dimensional subspace [6,21,22]. In this situation, the highest transcendentality that one can expect in the result is
degree two, which encompasses dilogarithms and squares of logs (as well as their lower powers). Moreover, the first nontrivial loop has
the octagonal shape as shown in Fig. 1, along with the definition of the light-like directions of the segments. The component in question
of the tree NMHV amplitude is expressed in terms of R8;37,

R8;37 = χ2χ3χ6χ7

2〈23〉〈67〉x+
73x−

73

+ · · · . (9)

This results can be easily reproduced by evaluating the corresponding component of the one-loop super Wilson loop, which is determined
by the correlation function of two superconnections B each of which gets reduced to boundary terms3 with the scalar field localized at
the vertices x3 and x7,

2 These are the only components that we will need for the main calculation performed in the Letter.
3 For instance, W[32] = W[43] = 1 + 1

2 g2χ A
2 χ B

3 φ̄AB (x3)/〈23〉 and analogously for other two segments adjacent to the vertex x7.



A.V. Belitsky / Physics Letters B 718 (2012) 205–213 207
Fig. 1. Null octagonal Wilson loop contour in the two-dimensional kinematics. The exchanged scalar between the cusps x3 and x7 selects the one-loop χ2χ3χ6χ7 component
of the superloop and expressible in terms of the corresponding Grassmann projection of the R8;37 superinvariant.

〈
W(1)

8,1

〉 = − g2

4π2

C F

2

χ2χ3χ6χ7

〈23〉〈67〉x+
73x−

73

(−μ2x+
73x−

73

)ε
. (10)

Here we kept the regularized form of the one-loop result since it will be essential for the definition of the remainder function in the
discussion that follows. Notice that we absorbed transcendental constants into the rescaled mass parameter 2πeγE μ2 → μ2. Removing the
regulator, ε → 0, we immediately see that the one-loop superloop is expressible in terms of the R8;37 component of the superconformal
invariant. This is the expected result since the anomaly emerges only in adjacent Grassmann components as explained above.

The complexity level of the computation that follows is comparable to the two-loop calculation of the bosonic Wilson loop which is
dual to MHV amplitudes. Presently, the two-loop analysis yields the dual to the one-loop NMHV amplitude since we are extracting degree
four Grassmann component. As in our previous studies [18,20] we will adopt the Four-Dimensional Helicity scheme [19] to regularize
divergences in Feynman graphs. This regularization is the closest one to the way one tackles infrared divergent scattering amplitudes. The
details of the analysis are deferred to Appendix A.

Due to the choice of the particular Grassmann component, a number of Feynman graphs should not taken into account. Namely, at
second order in coupling, one has to include the effects from the covariant derivative (see the last term in Eq. (7)) along with emission
of scalar and gluon fields off the super Wilson links. However, a quick inspection demonstrates that the sum of two orderings of emis-
sion along with seagull terms vanish as shown in Fig. 2. The cancellation works as follows. Consider the [32]-superlink as an example.
Expanding it to second order in g , and keeping track of χ2χ3 component only (and ignoring fermions for a moment), we find

W[32]
χ2χ3= ig2

4

χ A
2 χ B

3

〈23〉

{ 1∫
0

dt t〈2|[A(t), φ̄AB(t)
]|2]

−
1∫

0

dt

t∫
0

dt′
[
〈2|A(t)|2]

(
t′ d

dt′ + 1

)
φ̄AB

(
t′) +

(
t

d

dt
+ 1

)
φ̄AB(t)〈2|A

(
t′)|2]

]}
. (11)

Here the argument of all functions involved stands for f (t) ≡ f (x[23](t)). The first line above displays the gauge field part of the covariant
derivative, while the terms involving derivatives in the second line emerge from its flat part. Finally, derivative-free contributions in the
integrand of the two-fold integrals come from two ordering of inserting the gluon and the scalar field into the [32]-link. The follow-up
simplification of this expression is straightforward and one finds that the scalar fields is nailed down to the vertex at x = x3 while the
gluon is emitted from any point on the link

W[32]
χ2χ3= − ig2

4

χ A
2 χ B

3

〈23〉 φ̄AB(x3)

1∫
0

dt 〈2|A(t)|2]. (12)

It takes the form of the leading order scalar emission vertex and a bosonic Wilson segment attached to it. Analogous arguments apply
with minor modifications to other superlinks adjacent to the cusps at x3 and x7 yielding contributions with the scalar localized at the
cusps and gluon strings attached to it.

As a consequence of this consideration, we are left with graphs where the scalar can only spill off the cusps at x3 and x7, thus
generating two-loop diagrams shown in Fig. 3(a)–(g) along with other attachment of gluons to other segments of the contour to form a
gauge-invariant set. Since the same Grassmann structures, either χ2χ3 or χ6χ7, can be induced by fermions emitted off the two adjacent
links, to the given order in coupling, there is an extra graph of the type (h). Notice that it is required by supersymmetry of the superloop
and it will be instrumental for the cancellation of the double pole divergences in the non-abelian color structure C F C A .

To present the result of our analysis, we will strip the dependence on the Grassmann variables and powers of the gauge coupling
constant from the component of the super Wilson loop that we are interested in

〈
W(2)

8;1
〉 = 1

2

(
g2

4π2

)2
χ2χ3χ6χ7

〈23〉〈67〉x+ x−
∑(

C2
F wA

α − 1

2
C F C A wNA

α

)
. (13)
37 37 α
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Fig. 2. Cancellation mechanism between the different ordering of gluon and scalar emission with the seagull terms stemming from the field component of the covariant
derivative Dφ̄AB .

Fig. 3. All topologies of Feynman diagrams contributing to the χ2χ3χ6χ7 component of the supersymmetric Wilson loop at two loop order. The blob on the scalar line in (i)
stands for the sum of vacuum polarization bubbles due to gauge fields and gauginos.

Here the sum runs over the diagrams displayed in Fig. 3 and split it into abelian and maximally non-abelian color Casimirs. The contri-
bution to the abelian part of the Wilson loop stems from the diagrams in (a), (b), (c), (d) and (e) and the result of rather elementary
computations gives

wA
(a) = −1

2

(−x+
73x−

73μ
2)ε[(−x+

72x−
83μ

2)ε + (−x+
72x−

87μ
2)ε + (−x+

76x−
74μ

2)ε
+ (−x+

63x−
74μ

2)ε + (−x+
36x−

34μ
2)ε + (−x+

23x−
83μ

2)ε](ε−2 + ζ2
)
, (14)

wA
(c) = −1

2
ln

x−
83

x−
73

ln
x+

73

x+
72

− 1

2
ln

x−
74

x−
73

ln
x+

73

x+
63

, (15)

wA = wNA, wA = wNA, wA = wNA, (16)
(b) (b) (d) (d) (e) (e)
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with wNA
(b,d,e)

displayed below. The abelian part of the expression has the following multiplicative structure

1

2

(
g2

4π2

)2
χ2χ3χ6χ7

〈23〉〈67〉x+
37x−

37

∑
α

C2
F wA

α = 〈
W(1)

8;1
〉〈
W(1)

8;0
〉
, (17)

where first factor is the one-loop correction to the superloop 〈W (1)
8;1〉 defining the tree NMHV amplitude and the second is the one-loop

correction to the bosonic loop which is equal to C F
∑

α wA
α up to factors of the coupling constant. Thus the remainder function, defined

by subtracting the ultraviolet divergent contributions conventionally by

R(2)
8;1 = 〈

W(2)
8;1

〉 − 〈
W(1)

8;1
〉〈
W(1)

8;0
〉
, (18)

is solely defined by the maximally non-abelian color. Therefore, the sum of all corresponding contributions has to be dual conformally
invariant.

The analysis of the maximally non-abelian contributions is more involved. The result of rather lengthy calculations can be cast to the
following form

wNA
(b) = −1

2

(−x+
73x−

73μ
2)ε[(−x+

23x−
34μ

2)ε + (−x+
76x−

87μ
2)ε](ε−2 + ζ2

)
, (19)

wNA
(d) = 1

2
ln

x+
72

x+
62

ln
x−

73

x−
78

+ 1

2
ln

x+
76

x+
73

ln
x−

84

x−
74

+ 1

2
ln

x+
63

x+
62

ln
x−

73

x−
34

+ 1

2
ln

x+
23

x+
73

ln
x−

84

x−
83

, (20)

wNA
(e) = 1

2
ln

x+
62

x+
67

ln
x−

78

x−
48

+ 1

2
ln

x+
62

x+
23

ln
x−

34

x−
84

, (21)

wNA
(f) = ε−1(−x+

73x−
73μ

2)2ε
[

1

2

[
1 − x+

73

2x+
23

]
ln

x+
72

x+
73

+ 1

2

[
1 − x+

73

2x+
76

]
ln

x+
63

x+
73

+ 1

2

[
1 + x−

73

2x−
87

]
ln

x−
83

x−
73

+ 1

2

[
1 + x−

73

x−
34

]
ln

x−
74

x−
73

+ 2

]

+ x+
73

2x+
23

Li2

(
x+

23

x+
73

)
+ x+

73

2x+
76

Li2

(
x+

76

x+
73

)
− x−

73

2x−
34

Li2

(
x−

43

x−
73

)
− x−

73

2x−
87

Li2

(
x−

78

x−
73

)
− 2

+ 1

4

[
1 − x+

73

2x+
23

]
ln2 x+

72

x+
73

+ 1

4

[
1 − x+

73

2x+
76

]
ln2 x+

63

x+
73

+ 1

4

[
1 + x−

73

2x−
87

]
ln2 x−

83

x−
73

+ 1

4

[
1 + x−

73

2x−
34

]
ln2 x−

74

x−
73

, (22)

wNA
(g) = ε−1(−x+

73x−
73μ

2)ε[1

4

(−x+
72x−

73μ
2)ε x+

73

x+
23

ln
x+

72

x+
73

+ 1

4

(−x+
63x−

73μ
2)ε x+

73

x+
76

ln
x+

63

x+
73

− 1

4

(−x+
73x−

83μ
2)ε x−

73

x−
87

ln
x−

83

x−
73

− 1

4

(−x+
73x−

74μ
2)ε x−

73

x−
34

ln
x−

74

x−
73

]

− 1

8

x+
73

x+
23

ln2 x+
72

x+
73

− 1

8

x−
73

x−
78

ln2 x−
83

x−
73

+ 1

8

x+
73

x+
67

ln2 x+
63

x+
73

+ 1

8

x−
73

x−
34

ln2 x−
74

x−
73

− ζ2

− 1

2
ln

x+
23x−

83

x+
73x−

73

ln
x+

73x−
78

x+
72x−

73

+ 1

2
ln

x+
36x−

34

x+
73x−

73

ln
x+

73x−
47

x+
67x−

73

+ ln
x−

38

x−
73

ln
x−

78

x−
73

+ ln
x+

63

x+
73

ln
x+

67

x+
73

+
[

1 − x+
73

2x+
23

]
Li2

(
x+

23

x+
73

)
+

[
1 − x+

73

2x+
76

]
Li2

(
x+

76

x+
73

)
+

[
1 + x−

73

2x−
87

]
Li2

(
x−

78

x−
73

)
+

[
1 + x−

73

2x−
34

]
Li2

(
x−

43

x−
73

)
, (23)

wNA
(h) = 1

2

(−x+
73x−

73μ
2)ε(−x+

23x−
34μ

2)ε[ε−2 + ζ2 − ε−1 ln
x+

72x−
74

x+
73x−

73

]

+ 1

2

(−x+
73x−

73μ
2)ε(−x+

76x−
87μ

2)ε[ε−2 + ζ2 − ε−1 ln
x+

63x−
83

x+
73x−

73

]

− 1

4
ln2 x+

72x−
73

x+
73x−

74

− 1

4
ln2 x+

63x−
73

x+
73x−

83

− Li2

(
x+

23

x+
73

)
− Li2

(
x−

43

x−
73

)
− Li2

(
x+

87

x+
73

)
− Li2

(
x+

76

x+
73

)
, (24)

wNA
(i) = −ε−1(−x+

73x−
73μ

2)2ε − 2. (25)

Summing up the diagrams, we find that, as anticipated, that all ultraviolet poles chancel among different graphs in the remainder
function. In particular, the fermionic graph (h) exactly cancels the maximally non-abelian color structure in diagram (b). The sum of
single poles vanish as well provided we set (−x+

i j x−
klμ

2)ε → 1, but otherwise they induce finite contributions. The latter are of paramount
importance in removing all terms proportional to squares of the logs that depend solely either on plus or minus components of the dual
coordinates. Finally, all dilogarithms present in individual graphs sum-up to zero in the remainder function as well. As a result the latter
takes a very simple form
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R(2)
8;1 =

(
g2

4π2

)2 C F C A

8

χ2χ3χ6χ7

〈23〉〈67〉x+
73x−

73

(26)

× [
ln u+ ln u− + ln u+ ln

(
1 + u−) + ln

(
1 + u+)

ln u− − ln
(
1 + u+)

ln
(
1 + u−) + 2ζ2

]
,

upon the introduction of the conformal cross-ratios

u+ = x+
32x+

67

x+
62x+

73

, u− = x−
87x−

34

x−
84x−

73

. (27)

This expression is an agreement with the result of a recent analysis that bypasses the calculation of the Feynman graphs and finds the
result in question by integrating the Ward identities associated with Q̄ supersymmetry from the tree-level NNMHV amplitude [23].

Presently, we verified by a brute-force Feynman graph calculation the duality between the supersymmetric extension of the null
polygonal Wilson loop and the superamplitude in maximally supersymmetric gauge theory. Our analysis elucidates the validity of the
correspondence for Grassmann components which do not involve at least three adjacent particle indices. The latter were shown to be
anomalous already at one-loop order. However, once the universal conformal anomaly is subtracted out, the duality gets restored. In the
forthcoming work [24], we will demonstrate how one can perform a super-gauge transformation on the super Wilson loop in order to
gauge away in a systematic manner the notorious anomalous contributions.
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Appendix A. Details of the calculation

The bulk of graphs is easy to compute. Let us pay special attention to a couple of them that are not as straightforward, namely diagrams
(g) and (h) in Fig. 3.

A.1. Diagram (g)

Using the usual Feynman rules, we find the following integral representation for the graph (g),

W(2)

8;1(h)
= i

g4C F C A

(4π2−ε)3
x−

12
χ2χ3χ6χ7

〈23〉〈67〉 Γ 2(1 − ε)Γ (2 − ε)

1∫
0

dt J g(t),

where

J g(t) =
∫

d4−2εz
1

[−(z − x[12](t))2]1−ε[−(z − x3)2]1−ε[−(z − x7)2]1−ε

[
(z − x7)

+

(z − x7)2
− (z − x3)

+

(z − x3)2

]
. (28)

As a first step, we use the Feynman parametrization to put J g into the form

J g(t) = − iπ2−εΓ (2 − 2ε)

Γ 2(1 − ε)Γ (2 − ε)
μ4ε

1∫
0

ds1 ds2 ds3 δ(
∑3

i=1 si − 1)(s1s2s3)
−ε

[−s1s2x2[12]7 − s1s3x2[12]3 − s2s3x2
73]2−2ε

[
s1s3x+

[12]3 − s1s2x+
[12]7 + 2s2s3x+

73

]
. (29)

Now, expressing s3 in terms of the other two variables via the δ-function constraint and changing the integration variables as4 s2 → s̄1s2
and as a consequence s3 → s̄1 s̄2, we can integrate with respect to t to get

1∫
0

dt J g(t) = iπ2−εΓ (1 − 2ε)

Γ 2(1 − ε)Γ (2 − ε)

(−2μ2)2ε

4x−
12

1∫
0

ds1

s1+ε
1

1∫
0

ds2

(s2 s̄2)ε

s1 s̄2x+
23 − s1s2x+

17 + 2s̄1s2 s̄2x+
73

s2x+
17 + s̄2x+

23

×
[

1

[s1s2x+
71x−

71 + s1 s̄2x−
12x+

23 + s̄1s2 s̄2x+
73x−

73]1−2ε
− 1

s1−2ε
2 (x−

73)
1−2ε

1

[s1x+
71 + s̄1 s̄2x+

73]1−2ε

]
. (30)

It might appear that there is a double pole emerging from this integrals, however, the only pole that realizes is from the s2 integration in
the vicinity of s2 = 0, while the expression in curly brackets scales as s1 and it tends to zero canceling the potential singular behavior. We
extract the pole in the s2 integral via the following formula

1∫
0

ds2

s1−ε
2

f (s2) = ε−1 f (0) +
1∫

0

ds2

s1−ε
2

[
f (s2) − f (0)

]
. (31)

4 Here and below s̄ ≡ 1 − s for any variables.
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This allows us to cast the result after some manipulations into the form

1∫
0

dt J g(t) = − iπ2−εΓ (1−2ε)

4Γ 2(1 − ε)Γ (2 − ε)

1

x−
12x−

73

[
ε−1(−2μ2x−

73

)2ε
I1 + (

x−
73 − 2x−

71

)
I2 + x+

73 I3
]
, (32)

with the set of Ii integrals that can be evaluated with the result

I1 =
1∫

0

ds1

sε1

1

[x+
71s1 + x+

73 s̄1]1−2ε

= (−2μ2x−
73

)−2ε 1

x+
23

[(−2μ2x+
71x−

73

)ε(−2μ2x+
73x−

73

)ε
ln

x+
71

x+
73

− ε Li2

(
x+

23

x+
73

)]
, (33)

I2 =
1∫

0

ds1 ds2
1

x+
71x−

71s1s2 + x+
23x−

12s1 s̄2 + x+
73x−

73 s̄1s2 s̄2

= 1

x+
71x−

73 − x+
73x−

71

[
ln

x+
73x−

71

x+
71x−

73

ln
x+

23x−
12

x+
73x−

73

+ 2 Li2

(
x−

12

x−
73

)
− 2 Li2

(
x−

23

x+
73

)]
, (34)

I3 =
1∫

0

ds1 ds2
s̄1

[x+
71s1 + x+

73 s̄1][x+
71s1 + x+

73 s̄1 s̄2]
= − 1

x+
23x+

73

[
ln2 x+

71

x+
73

+ 2 Li2

(
x+

23

x+
73

)]
. (35)

Notice that the second integral involves a denominator that mixes both plus and minus components. This effects disappears one we add
a mirror symmetric diagram yielding a factorized product of function of plus and minus variables. Summing all diagrams of this topology
we get the expression in Eq. (23).

A.2. Diagram (h)

Now, we turn to the second graph.

W(2)

8;1(h)
= −i

g4C F C A

(4π2−ε)3
χ2χ3χ6χ7

[23]
〈67〉Γ (1 − ε)Γ 2(2 − ε)

1∫
0

ds

1∫
0

dt Jh(t, s),

where we have used the identity [2|(z − x23(t))(z − x[34](s))|3] = [23](z − x3)
2 in order to define the coordinate integral

Jh(t, s) = μ4ε

∫
d4−2εz

(z − x3)
2

[−(z − x7)2]1−ε[−(z − x[23](t))2]2−ε[−(z − x[34](s))2]2−ε
. (36)

By means of the standard Feynman parametrization, one can cast it in the form after integration over z

Jh(t, s) = − iπ2−εΓ (2 − 2ε)

Γ (1 − ε)Γ 2(2 − ε)

[
4(1 − ε) x+

73x−
73 I1(t, s) − I2(t, s)

]
, (37)

where

I1(t, s) = μ4ε

1∫
0

ds1 ds2 ds3 δ(
∑3

i=1 si − 1)(s1s2s3)
1−ε

[−s1s2x2
7[23] − s1s3x2

7[34] − s2s3x2[23][34]]3−2ε
, (38)

I2(t, s) = εμ4ε

1∫
0

ds1 ds2 ds3 δ(
∑3

i=1 si − 1)s−ε
1 (s2s3)

1−ε

[−s1s2x2
7[23] − s1s3x2

7[34] − s2s3x2[23][34]]2−2ε
. (39)

To perform the integrations efficiently, we remove the s3 variable with the δ-function and then rescale s2 → s̄1s2 which implies s3 → s̄1 s̄2.
The denominator admits a factorized form with two factors both linear in s1, s1s2x2

7[23] + s1s3x2
7[34] + s2s3x2[23][34] = 2s̄1[As1 + B] with

A = (
x+

73 − t̄s2x+
23

)(
x−

73 + ss̄2x−
34

)
, B = s2 s̄2t̄sx+

23x−
34. (40)

The next integration to be performed is with respect to s1, which produces a hypergeometric functions 2 F1. However, we notice that the
small-s1 region yields a contribution inverse in B such that the two subsequent s- and t-integration induce divergencies. This allows us
to extract the leading inverse-power behavior of the regularized integral at small B and then resum the rest for ε = 0. This gives

1∫
ds1 s1−ε

1

[As1 + B]3−2ε
= Γ (1 − ε)Γ (2 − ε)

Γ (3 − 2ε)

1

B1−ε A2−ε
− 1

2A(A + B)2
− 1

2A2(A + B)
+O(ε). (41)
0
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Then integrating over the s and t variables, we get the following representation for the integral

1∫
0

dt

1∫
0

ds I1(t, s) = 1

16

1∫
0

dt

1∫
0

ds

1∫
0

ds2 s2 s̄2

[
1

A(A + B)2
− 1

A2(A + B)

]

− (−2μ2x+
23x−

34)
ε(−2μ2x+

73x−
73)

ε

8x+
23x−

34(x+
73x−

73)
2

Γ (1 − ε)Γ (2 − ε)

Γ (3 − 2ε)

1∫
0

ds2 Sε(s2)Tε(s2), (42)

where the divergent one-dimensional contributions are given by

Sε(s2) =
1∫

0

ds

s1−ε

1

[1 + ss̄2 x−
34/x−

73]2−ε
, Tε(s2) =

1∫
0

dt

t̄1−ε

1

[1 − t̄s2 x+
23/x+

73]2−ε
. (43)

Their ε-expansion is easy to construct and reads to order O(ε), e.g., for Tε(s2)

Tε(s2) = 1

ε
+ x+

23s2

x+
73 − x+

23s2
− ln

(
1 − s2

x+
23

x+
73

)

+ ε

[
x+

23s2

x+
73 − x+

23s2
+ 2x+

73 − x+
23s2

x+
73 − x+

23s2
ln

(
1 − s2

x+
23

x+
73

)
− 1

2
ln2

(
1 − s2

x+
23

x+
73

)
− 2 Li2

(
s2

x+
23

x+
73

)]
, (44)

and the one for Sε(s2) being analogous with the obvious substitutions of the defining variables. With poles being extracted explicitly,
the remaining integrations can be performed with Mathematica. The output is given however, in a form that involves dilogarithms with
arguments depending of products of plus and minus variables. Instead of relying on known identities between the dilogarithms to simplify
the result and cast it as sum of functions depending either on plus or minus variables, the use of the formalism of symbols [25,15]
becomes very instrumental for fast and efficient derivations of the sought identities. Just to give an example, we encounter the following
combination of dilogarithms in the output,

L(u, v) = Li2

(
1 + v

uv̄

)
− Li2

(
1 + vū

u

)
− Li2(ū v̄), (45)

where u = x+
23/x+

73 and v = x−
43/x−

73. In order to disentangle the u and v dependence, we calculate the symbol of the right-hand side of
this identity and find after simple manipulations

S
[
L(u, v)

] = − v

uv̄
⊗

(
1 + v

uv̄

)
+ vū

u
⊗

(
1 + vū

u

)
+ (u + vū) ⊗ (ū v̄) (46)

= (u + vū) ⊗ (ū v̄) + (ū v̄) ⊗ (u + vū) − v̄ ⊗ u − u ⊗ v̄ − v̄ ⊗ v̄ − ū ⊗ u + v ⊗ v̄.

From here, we can immediately read off the expression for the function itself (with a potentially present additive transcendental constant
fixed by comparing both sides of the equation numerically),

L(u, v) = ln(ū v̄) ln(u + vū) − ln v̄ ln u − 1

2
ln2 v̄ + Li2(u) − Li2(v̄). (47)

The same technique is applicable to all other terms. The sum of all terms yields expressions with arguments being functions of either u
or v variables separately.

Finally, we get for the integral I1,

1∫
0

dt

1∫
0

ds I1(t, s) = − (−2μ2x+
23x−

34)
ε(−2μ2x+

73x−
73)

ε

8 x+
23x−

34(x+
73x−

73)
2

Γ (1 − ε)Γ (2 − ε)

Γ (3 − 2ε)

[
1

ε2
− 1

ε
ln

x+
72

x+
73

− 1

ε
ln

x−
74

x−
73

]

+ 1

8 x+
23x−

34(x+
73x−

73)
2

+ ln(x+
72/x+

73)

16 (x+
23)

2x−
34x+

73(x−
73)

2
− ln(x−

74/x−
73)

16 x+
23(x−

34)
2(x+

73)
2x−

73

+ ln2(x+
72x−

73/x+
73x−

34)

32 x+
23x−

34(x+
73x−

73)
2

+ Li2(x−
23/x+

73)

8 x+
23x−

34(x+
73x−

73)
2

+ Li2(x−
43/x−

73)

8 x+
23x−

34(x+
73x−

73)
2
. (48)

The calculation of the second contribution I2 is much simpler since all one is after is the double and single pole part of the integral
since they get compensated by the overall factor of ε. Then in the analogous to Eq. (41) integral with respect to s1, one has to keep only
the first term. The subsequent integrations over s and t like done above in Eq. (44), immediately gives the final answer

1∫
0

dt

1∫
0

ds I2(t, s) = (−2μ2x+
23x−

34)
ε(−2μ2x+

73x−
73)

ε

4 x+
23x−

34x+
73x−

73

Γ 2(1 − ε)

Γ (2 − 2ε)

[
1

ε
− x+

72

x+
23

ln
x+

72

x+
73

+ x−
74

x−
43

ln
x−

74

x−
73

]
. (49)

Summing both contributions together, we find half of the result displayed in Eq. (24). The other half is given by the mirror symmetric
diagram, computed via the formalism outlined above.



A.V. Belitsky / Physics Letters B 718 (2012) 205–213 213
References

[1] L. Brink, O. Lindgren, B.E.W. Nilsson, Nucl. Phys. B 212 (1983) 401;
S. Mandelstam, Nucl. Phys. B 213 (1983) 149.

[2] V.P. Nair, Phys. Lett. B 214 (1988) 215.
[3] J.M. Drummond, J. Henn, G.P. Korchemsky, E. Sokatchev, Nucl. Phys. B 828 (2010) 317, arXiv:0807.1095 [hep-th].
[4] L.J. Mason, D. Skinner, JHEP 1012 (2010) 018, arXiv:1009.2225 [hep-th].
[5] S. Caron-Huot, JHEP 1107 (2011) 058, arXiv:1010.1167 [hep-th].
[6] L.F. Alday, J.M. Maldacena, JHEP 0706 (2007) 064, arXiv:0705.0303 [hep-th];

L.F. Alday, J.M. Maldacena, JHEP 0711 (2007) 068, arXiv:0710.1060 [hep-th].
[7] G.P. Korchemsky, J.M. Drummond, E. Sokatchev, Nucl. Phys. B 795 (2008) 385, arXiv:0707.0243 [hep-th].
[8] A. Brandhuber, P. Heslop, G. Travaglini, Nucl. Phys. B 794 (2008) 231, arXiv:0707.1153 [hep-th].
[9] J.M. Drummond, J. Henn, G.P. Korchemsky, E. Sokatchev, Nucl. Phys. B 826 (2010) 337, arXiv:0712.1223 [hep-th].

[10] J.M. Drummond, J. Henn, G.P. Korchemsky, E. Sokatchev, Nucl. Phys. B 795 (2008) 52, arXiv:0709.2368 [hep-th];
J.M. Drummond, J. Henn, G.P. Korchemsky, E. Sokatchev, Phys. Lett. B 662 (2008) 456, arXiv:0712.4138 [hep-th];
J.M. Drummond, J. Henn, G.P. Korchemsky, E. Sokatchev, Nucl. Phys. B 815 (2009) 142, arXiv:0803.1466 [hep-th].

[11] C. Anastasiou, Z. Bern, L.J. Dixon, D.A. Kosower, Phys. Rev. Lett. 91 (2003) 251602, arXiv:hep-th/0309040.
[12] Z. Bern, L.J. Dixon, V.A. Smirnov, Phys. Rev. D 72 (2005) 085001, arXiv:hep-th/0505205.
[13] C. Anastasiou, A. Brandhuber, P. Heslop, V.V. Khoze, B. Spence, G. Travaglini, JHEP 0905 (2009) 115, arXiv:0902.2245 [hep-th].
[14] V. Del Duca, C. Duhr, V.A. Smirnov, JHEP 1003 (2010) 099, arXiv:0911.5332 [hep-ph];

V. Del Duca, C. Duhr, V.A. Smirnov, JHEP 1005 (2010) 084, arXiv:1003.1702 [hep-th].
[15] A.B. Goncharov, M. Spradlin, C. Vergu, A. Volovich, Phys. Rev. Lett. 105 (2010) 151605, arXiv:1006.5703 [hep-th].
[16] Z. Bern, L.J. Dixon, D.A. Kosower, R. Roiban, M. Spradlin, C. Vergu, A. Volovich, Phys. Rev. D 78 (2008) 045007, arXiv:0803.1465 [hep-th].
[17] F. Cachazo, M. Spradlin, A. Volovich, Phys. Rev. D 78 (2008) 105022, arXiv:0805.4832 [hep-th].
[18] A.V. Belitsky, G.P. Korchemsky, E. Sokatchev, Nucl. Phys. B 855 (2012) 333, arXiv:1103.3008 [hep-th].
[19] Z. Bern, A. De Freitas, L.J. Dixon, H.L. Wong, Phys. Rev. D 66 (2002) 085002, arXiv:hep-ph/0202271.
[20] A.V. Belitsky, Nucl. Phys. B 862 (2012) 430, arXiv:1201.6073 [hep-th].
[21] V. Del Duca, C. Duhr, V.A. Smirnov, JHEP 1009 (2010) 015, arXiv:1006.4127 [hep-th].
[22] A.V. Belitsky, Phys. Lett. B 709 (2012) 280, arXiv:1110.1063 [hep-th].
[23] S. Caron-Huot, S. He, Jumpstarting the all-loop S-matrix of planar N = 4 super Yang–Mills, arXiv:1112.1060 [hep-th].
[24] A.V. Belitsky, S. Caron-Huot, Superpropagator and superconformal invariants, arXiv:1209.0224 [hep-th].
[25] A.B. Goncharov, A simple construction of Grassmannian polylogarithms, arXiv:0908.2238 [math.AG].


	A note on two-loop superloop
	Acknowledgements
	Appendix A Details of the calculation
	A.1 Diagram (g)
	A.2 Diagram (h)

	References


