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SUMMARY

Mostneurons in the adultmammalianbrain survive for
the entire life of an individual. However, it is not known
which transcriptional pathways regulate this survival
in a healthy brain. Here, we identify a pathway regu-
lating neuronal survival in a highly subtype-specific
manner. We show that the transcription factor Pax6
expressed in dopaminergic neurons of the olfactory
bulb regulates the survival of these neurons by
directly controlling the expression of crystallin aA
(CryaA), which blocks apoptosis by inhibition of
procaspase-3 activation. Re-expression of CryaA
fully rescues survival of Pax6-deficient dopaminergic
interneurons in vivo and knockdown of CryaA by
shRNA inwild-typemice reduces thenumberofdopa-
minergic OB interneurons. Strikingly, Pax6 utilizes
different DNA-binding domains for its well-known
role in fate specification and this role of regulating
the survival of specific neuronal subtypes in the
mature, healthy brain.

INTRODUCTION

Despite their well characterized role in development, functions of

homeobox transcription factors in the adult brain still remain

elusive. For example, members of the paired-type homeobox

(Pax) transcription factor family are expressed in specific

neurons in the midbrain and the olfactory bulb (Stoykova and

Gruss, 1994), but neither their targets nor the physiological role

of this late expression is known. As almost all Pax transcription

factors act as fate determinants during development (Osumi

et al., 2008), it is possible that they function similarly in adulthood

to maintain neuronal identity. Alternatively, Pax transcription

factors expressed in mature neurons may regulate novel targets

important for specification or regulation of neuronal function and
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activity. Finally, it is conceivable that Pax transcription factors

regulate pathways involved in neuronal survival. Indeed, it is

puzzling that specific types of neurons succumb to neurodegen-

eration, despite the rather widespread expression of the genes

affected by the disease-causing mutations (Alavian et al.,

2008; Friedlander, 2003; Zhao et al., 2008). Thus, neuronal

subtype-specific expression of regulatory transcription factors

may contribute to selective cell death.

Here, we examined the role of Pax6 in mature dopaminergic

neurons of the olfactory bulb (OB) in mice. Pax6 is expressed in

stem and progenitor cells in some regions of the developing

CNS during neurogenesis (Ericson et al., 1997; Heins et al.,

2002; Kohwi et al., 2005; Stoykova and Gruss, 1994; Stoykova

et al., 2000) but only in very few neuronal subpopulations in the

adult brain, such as the dopaminergic neurons in the glomerular

layer of the OB, granule neurons in the cerebellum, and amacrine

and ganglion cells of the retina (Stoykova andGruss, 1994). Pax6

expression in progenitors ceases at early postnatal stages and

persists only in progenitors in the adult neurogenic regions (Brill

et al., 2009; Hack et al., 2005; Kohwi et al., 2005; Stoykova and

Gruss, 1994). Pax6actsproneurogenic inadult neural progenitors

(Hack et al., 2005), similar to its role during development (Heins

et al., 2002), but also plays a role to specify neuronal subtype

identity in the adult anddevelopingbrain (Hack et al., 2005; Kohwi

et al., 2005; Kroll and O’Leary, 2005; Nikoletopoulou et al., 2007;

Stoykova et al., 2000; Tuoc et al., 2009). Pax6 cooperates with

Dlx2 in adult neuroblasts to specify the dopaminergic identity of

periglomerular neurons (PGNs) in the olfactory bulb (Brill et al.,

2008; Hack et al., 2005). As only these dopaminergic neurons

continue to express Pax6 lifelong, it is also conceivable that

Pax6 may be further required to maintain this neuronal subtype

identity. Interestingly, the dopamine levels are subject to activity

dependant regulation in PGNs (Bastien-Dionne et al., 2010).

Here, we used genetic ablation of Pax6 exclusively in mature

dopaminergic neurons and found that Pax6 is essential to inhibit

programmed cell death of these neurons by controlling the

expression of CryaA which prevents activation of procaspase-

3. These data reveal a pathway of transcriptional regulation of
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Figure 1. Pax6 Function Is Necessary for

the Survival of Dopaminergic Periglomeru-

lar Neurons

(A and B) Schematic representation of the main

neuronal layers in the OB (A) and neuronal

subtypes in the GL (B, region depicted as white

square in A).

(C)Fluorescencemicrographdepicting that virtually

all TH-immunoreactive dopaminergic periglomeru-

lar neurons (red) also contain Pax6 (green) in

3-month-old mice.

(D–F) Loss of Pax6 in homozygous Pax6fl/fl mice

after DAT::Cre mediated recombination and indi-

cated by GFP reporter (green) results in reduced

reporter+ (D, E0, F0) and TH+ (red) (D, E00, F00) cells
(11 animals for control and 7 for Pax6fl/fl). (E and F)

Fluorescence micrographs depicting the GL (out-

lined with dotted lines) of Pax6 deficient animals

(F) and heterozygote siblings (E) immunostained

for TH (red) and GFP reporter (green). Note the

reduced number of cells positive for the GFP

reporter (indicating Pax6-deficient cells) and for

TH in Pax6fl/fl animal (arrows in (F).

Abbreviations: GL, glomerular layer; EPL, external

plexiform layer; ML, mitral cells; GCL, granular cell

layer; RMS, rostral migratory stream; IPL, internal

plexiform layer; Gm, glomerulus; TH, tyrosine

hydroxylase; CR, calretinin; CB, calbindin. Scale

bars: 50 mm. ***p < 0.001 and brackets in (D) repre-

sent SEM. See also Figure S1.
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neuronal survival in a highly subtype-specific manner in the

adult brain.
RESULTS

Pax6 Is Necessary for Survival of Dopaminergic PGNs
Periglomerular neurons (PGNs) represent a heterogeneous popu-

lationof bothexcitatory and inhibitory interneurons in the olfactory

bulb (Figures 1A and 1B; Brill et al., 2009; Kosaka et al., 1988;

Kosaka and Kosaka, 2007; Nakamura et al., 2005). A subpopula-

tion of about 20% of the inhibitory PGNs employs the transmitter

dopamineandexpresses the transcription factorPax6 (Figure1C).

Consistent with previous data (Hack et al., 2005), we found that
Neuron 68, 682–694, N
virtually all dopaminergic PGNs identified

as immunoreactive to thedopamine trans-

porter (DAT), which is expressed only in

fully mature dopaminergic neurons

several weeks after their birth (Revay

et al., 1996), are also Pax6 immunoreac-

tive (91% ± 3%, n[animals] = 11, at least

1000 cells per animal analyzed). Similarly

neurons expressing tyrosine hydroxylase

(TH), the rate-limiting enzyme for dopa-

mine biosynthesis, in the glomerular layer

are positive for Pax6 (Figure 1C).

To address the function of Pax6 in

these fully mature postmitotic neurons

we genetically ablated Pax6 by Cre-Lox
recombination in mice with Cre expressed from the DAT locus

(DAT::Cre [Zhuang et al., 2005]) and exons 4–6 of the Pax6

gene flanked by loxP sites (Pax6fl/fl) (Ashery-Padan et al.,

2000). Since Pax6 is not expressed in any other dopaminergic

neuron population in the brain (Stoykova and Gruss, 1994), this

allowed us to specifically examine the role of Pax6 in dopami-

nergic OB interneurons. Recombination mediated by DAT::Cre

and indicated by a GFP reporter (Novak et al., 2000) was specific

to mature DAT-expressing neurons (no DAT-negative cells were

recombined and GFP+ [see Figures S1A and S1B available

online]) and efficient (70% ± 6% of all DAT+ PGNs were GFP+;

5 animals; 450 cells analyzed per animal; Figures S1A and

S1B). Notably, however, we also observed a small fraction of

calretinin+ PGNs expressing DAT and hence also being
ovember 18, 2010 ª2010 Elsevier Inc. 683
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recombined by DAT::Cre (Figure S1F), while no overlap was

found with calbindin+ PGNs (Figure S1H).

We were surprised to see that Cre+ cells in 2-month-old DAT::

Cre//Pax6fl/fl mice were still Pax6 immunoreactive (Figure S1E).

To examine whether this is due to a failure to recombine the

Pax6 floxed alleles or to stability of the Pax6 protein, we exam-

ined Pax6 mRNA in the GFP+ PGNs isolated by FACS. We

observed that Pax6 mRNA levels were severely decreased in

GFP+ PGNs of DAT::Cre//Pax6fl/fl mice to 10% ± 3% of its level

in their DAT::Cre//Pax6fl/+ siblings, while Pax6 protein levels

were not yet reduced, suggesting a high stability of Pax6 protein

in postmitotic neurons. When we examined DAT::Cre// Pax6fl/fl

mice at 3.5 months of age, virtually all Cre+ PGNs had lost

Pax6 protein (Figures S1C, S1D, and S1E).

After Pax6 had disappeared, we noted a profound reduction in

GFP+ and TH+ or DAT+ neuron numbers in the OB (Figures 1D–

1F). This decrease in the number of dopaminergic PGNs may

result from a fate conversion upon loss of Pax6, as Pax6 acts

as a fate determinant of the dopaminergic PGN subtype

throughout adulthood (Brill et al., 2008; Hack et al., 2005).

However, we saw neither an increase in any other neuronal

subtypes (calretinin+ or calbindin+) in the GL of DAT::Cre//

GFP//Pax6fl/fl mice in comparison to their WT siblings (Figures

1D and S1F–S1I), nor reporter positive cells immunoreactive

for typical glial markers such as GFAP, S100b, O4, or GST-p

(data not shown) in the OBs of DAT::Cre//GFP//Pax6fl/fl. More-

over, no other abnormalities were detectable in the OBs of

DAT::Cre//GFP//Pax6fl/fl mice (Figures S1J–S1P), suggesting

that neither fate conversion nor non-cell-autonomous effects

took place after Pax6 deletion in dopaminergic PGNs. Instead,

we observed a significant decrease in the number of GFP

reporter+ cells in the OBs of DAT::Cre//GFP//Pax6fl/fl compared

to heterozygous or WT littermate mice (Figure 1D), suggesting

that the dopaminergic neuronsmay succumb to cell death rather

than acquire a different fate. This loss of dopaminergic PGNs

was not due to unspecific effects of expressing high levels of

Cre or GFP in dopaminergic neurons, as DAT::Cre//GFP+

neurons did not die in the OB of heterozygous floxed mice nor

in themidbrain where Pax6 is not expressed in the dopaminergic

neurons (data not shown). Therefore, these data suggest that

loss of Pax6 affects specifically the survival of mature dopami-

nergic PGNs.

To elucidate the mechanism by which Pax6-deficient neurons

die, we stained dissociated cells of the adult OB for propidium

iodide (PI) and annexinV (Casciola-Rosen et al., 1996) to discrim-

inate live (annexinV-negative, PI-negative), early apoptotic

(annexinV-positive, PI-negative) and necrotic/late apoptotic (an-

nexinV-positive, PI-positive) cells (Figures 2A and 2B). Reporter-

positive (Figure 2C), Pax6fl/fl cells from the OB of 3.5 month old

mice contained significantly (p < 0.01) more early apoptotic cells

(21.1% ± 1.5%; 3 animals, 10,000 events per animal) than cells

from the OB of their heterozygous siblings (13.2% ± 1.0%; 3

animals, 10000 events per animal) (Figures 2D and 2E) that did

not differ fromWT animals (data not shown). Among adult gener-

ated neuroblasts that newly arrive in theOB, about 50%succumb

to cell death and the remainder incorporate into the neuronal

network (Petreanu and Alvarez-Buylla, 2002). Several thousand

new neurons, including dopaminergic neurons, arrive per day in
684 Neuron 68, 682–694, November 18, 2010 ª2010 Elsevier Inc.
the OB (Lois and Alvarez-Buylla, 1994), which explains the high

proportion of cells in the early apoptotic phase among GFP+ cells

in the OB of WT and heterozygous Pax6fl/+ mice. Also, there was

no difference in annexinV-positive nonrecombined reporter

negative cells (data not shown), supporting the specificity and

cell-autonomous nature of apoptosis induced in dopaminergic

OB neurons upon loss of Pax6. To further assay for apoptotic

death of dopaminergic PGNs in these mice we performed

activated caspase-3 immunostaining. We observed a significant

3-fold increase (p < 0.05) in the number of activated caspase-3

immunoreactive cells among the Pax6-deficient dopaminergic

neurons at 3months of age (Figure 2F), the timewhenPax6 immu-

noreactivity is lost in the OB dopaminergic neurons (Figure S1E).

Loss of CryaA Expression Causes Neuronal Death upon
Pax6 Depletion
To further elucidate the role of Pax6 in preventing programmed

cell death (PCD) in dopaminergic PGNs, we examined the path-

ways that commit dopaminergic PGNs to the PCD in the absence

of Pax6 function. p75 and galectin have been implicated in

regulatingneuronal cell death (Nikoletopoulouetal., 2007;Plachta

et al., 2007), including the death of misspecified neurons in the

embryonic cortex andmidbrain (Alavian et al., 2009; Nikoletopou-

lou et al., 2007; Plachta et al., 2007). We examined p75 and

galectin in the adult OB upon loss of Pax6. The number of cells

immunoreactive for p75 and galectin (Figures S2A–S2C and

data not shown) and the mRNA expression levels of p75

(Figure S2D) among the reporter positive cells isolated by FACS

did not differ between the genotypes. As this analysis was carried

out at the stage when the annexinV+ fraction of dopaminergic OB

neurons was increased (3.5-month-old mice; Figures 2D and 2E),

we concluded that p75 and galectin are not altered and not

responsible for the death of dopaminergic PGNs devoid of Pax6.

Next, we examined the crystallin gene family (Lanneau et al.,

2008) since its members are well-known targets of Pax6 in the

lens (Cvekl and Duncan, 2007) and also regulate cell survival

(Morozov and Wawrousek, 2006). Among the crystallins, aB-

and bB2-crystallin have been reported to be expressed in the

brain (Graw,2009).However, in neuronsof theOB includingdopa-

minergic PGNs, we surprisingly detected crystallin aA (CryaA),

which had not yet been reported to be expressed in the brain

(Graw, 2009; Figures 3A, 3B, andS3). Interestingly,CryaAexpres-

sion was confined to the mature neurons immunoreactive to the

panneuronal marker NeuN (Figures S3C–S3E). While 97% of

DAT::Cre+ cells were CryaA+ in WT and heterozygous Pax6fl/+

mice (704 cells counted, 6 animals), only 20% (820 cells counted,

9 animals) were double positive in Pax6fl/fl mice at 3.5 months of

age (Figures 3B and 3C), demonstrating a specific loss of CryaA

in the Pax6-deficient neurons. These data raised the possibility

that the reduced levels of CryaA may be causative for the death

of dopaminergic PGNs after loss of Pax6.

To test this hypothesis, we transduced adult neuronal progen-

itors in theRMSof 2.5-month-oldmicewith lentiviruses encoding

for CryaA-specific shRNA 5 (Figures 3E, S4A, and S4B) or for

a control shRNA (Figure 3D). Both virus constructs expressed

GFP from an independent promoter to identify transduced cells.

As CryaA shRNA 5 efficiently knocks down CryaA (Figures S4A

and S4B), we depleted CryaA from all adult-generated OB



Figure 2. Propidium Iodide (PI)/AnnexinV-Based Cell Death Analysis of OB Cells after DAT::Cre-Mediated Pax6 Deletion

This method is based on the difference in integrity of the plasma membrane in apoptosis and necrosis. One of the earliest features of apoptotic cells is the

translocation of the phospholipid phosphatidylserine (PS) from the inner to the outer leaflet of the plasma membrane. Therefore, early apoptotic cells can be effi-

ciently labeled with annexinV, which has a high affinity to PS. Loss of plasma membrane integrity, characterizing both necrosis and the late phase of apoptosis,

allows passage of propidium iodide (PI) through the plasmamembrane and labeling of DNA. Assessing recombined, reporter positive cells (P2) population in (C) in

the DAT::Cre//GFP//Pax6fl/fl (E) and DAT::Cre//GFP//Pax6fl/+ control animals (D) for PI and annexinV, allowed us to distinguish between live (annexinV-negative,

PI-negative), early apoptotic (annexinV-positive, PI-negative) and necrotic/late apoptotic (annexinV-positive, PI-positive) cells (B).

(A and B) Dot blots illustrating gate definition for the GFP (A), PI, and annexinV (B) based on analysis of WT (GFP-negative) not stained cells.

(C–E) Dot blots showing the analyses of recombined cells (P2 population) in Pax6 mutant (DAT::Cre//GFP//Pax6fl/fl) (E) and its control sibling (D).

(F) Histogram depicting the proportion of recombined cells immunoreactive to activated caspase-3 before (1 month) and after (3 month) the loss of Pax6 protein

(three animals analyzed per genotype, per time point and at least 150 cells analyzed per animal). Data are shown as mean value ± SEM.

See also Figure S2.
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neurons.DespiteCryaAknockdown, neuronal differentiationwas

not changed 8weeks after viral vector injection, andwe could not

observe any differences in the distribution ofGFP-positive cells in

the OB between control and CryaA shRNA transduced cells

(Figure 3F). However, when we analyzed the proportion of trans-

duced cells with dopaminergic identity 8 weeks after the viral

transduction, we observed a significant decrease (p < 0.005) in

DAT+ cells among transduced cells to 25% of the proportion

observed in the control shRNA transduced cells (Figure 3F).

Thus, CryaA is specifically required for the survival of dopami-

nergic, but not of all adult generated OB interneurons.

To test whether CryaA is sufficient to maintain dopaminergic

neurons even in the absence of Pax6, we examined whether

CryaA expression rescues Pax6-deficient dopaminergic PGNs

from apoptosis. We infected adult neuronal progenitorsmigrating

in the rostral migratory stream toward the OB with a MLV-based

retroviral vector encoding forCryaAanddsRedor a control vector
containing dsRed only (Figures 3G and 3H). Thereby we target all

adult generated neuroblasts with a permanent, Pax6-indepen-

dent expression of CryaA. To allow sufficient differentiation time

and to examine whether migration and differentiation occurs

normally despite the overexpression of CryaA, we examined the

OBs 2 months after viral vector injection into the RMS of 2.5-

month-old DAT::Cre//GFP//Pax6fl/+ or DAT::Cre//GFP//Pax6fl/fl

mice. Virus-transduced (dsRed+; white arrow in Figures 3G and

3H)cells had reached theOBanddifferentiated intodopaminergic

neurons (yellow arrow in Figure 3H). These dopaminergic neurons

also expressed DAT::Cre and were GFP+ (Figures 3D–3F). The

proportion of dopaminergic neurons labeled by GFP (in green)

among the virally transduced cells expressing dsRed (in red) in

DAT::Cre//GFP//Pax6fl/+ mice was similar to previous analyses

(Brill et al., 2008;Hack et al., 2005) anddid not differ between virus

expressing CryaA and control virus expressing only dsRed

(Figure 3I). These data indicate that overexpression of CryaA
Neuron 68, 682–694, November 18, 2010 ª2010 Elsevier Inc. 685



Figure 3. CryaA Is Sufficient to Rescue the

Survival of Pax6-Ablated Periglomerular

Neurons

(A and A0) Micrographs depicting CryaA mRNA

expression in the adult brain confined to the OB.

(B and C) Micrographs depicting the reduced

proportion of Cre+ (red) cells double-labeled for

CryaA (green; yellow arrows indicate double+

cells) after loss of Pax6 in DAT::Cre//GFP//Pax6fl/fl

mice (C, 20% ± 4% double+; 9 animals) compared

to the control (B, 97% ± 3% double+; 6 animals).

(D–E) Micrographs depicting dopaminergic

neuronal population in the olfactory bulb (TH,

red) after lentivirus-mediated CryaA knockdown

(E and E0) and overexpression of the control

shRNA (D and D0). Transduced cells are GFP-

immunoreactive and (D0 ) and (E0) are magnifica-

tions of boxed areas in (D) and (E), respectively.

(F) Histograms showing the distribution of CryaA

(gray bars) or control shRNA (open bars) trans-

duced cells in the OB 8 weeks after transduction

(left histogram) and the proportion of dopami-

nergic neurons (right histogram). Note significant

decrease (p < 0.005) in CryaA-deficient cells with

dopaminergic identity (2% ± 0.5% of all trans-

duced cells in the GL, 4 animals analyzed),

compared with the control shRNA transduced

cells (8% ± 2% of all transduced cells in the GL,

4 animals analyzed).

(G–J) Retrovirus-mediated CryaA expression (red

in H and I) rescues the loss of dopaminergic

PGNs (green as GFP+ by DAT::Cre//GFP; yellow

arrow) in DAT::Cre//GFP//Pax6fl/fl mice (three

animals), while control virus expressing DsRed

only (G and I) fails to rescue (three animals). (J)

Histogram depicting the annexinV-positive, dying

cells 6 weeks after the re-expression of CryaA

(GFP and dsRed) or control vector (dsRed only)

in the Pax6-depleted periglomerular neurons iden-

tified by the GFP immunoreactivity (three animals

analyzed).

Abbreviations: as in Figure 1 and Ctx, cortex; LV, lateral ventricle; SEZ, subependymal zone; OB, olfactory bulb. Scale bars: 20 mm in (B) and (C); 50 mm in (D), (E),

(G), and (H) and 100 mm in (D0 ) and (E0). ***p < 0.001 and brackets in (F) and (I) are SEM.

See also Figure S3.
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does not interferewithmigration and differentiation of the infected

cells. Moreover, the proportion of dopaminergic GFP+ neurons is

equal between cells overexpressingCryaA and cells infectedwith

the control virus in the OB of DAT::Cre//GFP//Pax6fl/+ mice

(Figure 3I), suggesting that endogenous levels of CryaA are suffi-

cient formaximal survival. Conversely, in DAT::Cre//GFP//Pax6fl/fl

the proportion of dopaminergic GFP+ neurons among the control

dsRed+-labeled cells was reduced to less than 20% of control

levels (Figure3I)demonstrating that thesurvivalof adult generated

dopaminergic PGNs depends on the maintenance of Pax6

expression in their mature state. In pronounced contrast, the

proportion of GFP+ dopaminergic neurons among the CryaA

transduced cells was equal to the controls even in DAT::Cre//

GFP//Pax6fl/fl (Figures 3E and 3F), demonstrating that CryaA

expression is able to fully rescue the dopaminergic neurons

upon loss of Pax6protein. Notably, this rescue alsodemonstrated

that these cells do not need Pax6 expression per se to maintain

their dopaminergic identity, as deletion of Pax6 inmatureDAT-ex-
686 Neuron 68, 682–694, November 18, 2010 ª2010 Elsevier Inc.
pressing neurons did not alter the proportion of this neuronal

subtype when its survival was rescued by CryaA expression.

To determine whether CryaA re-expression in Pax6-deficient

dopaminergic PGNs rescues their numbers due to improved

survival, we analyzed the proportion of dying cells using the

annexinV-based assay in DAT::Cre//GFP//Pax6fl/fl animals with

or without CryaA-mediated rescue by FACS. We observed

a 2-fold decrease in the proportion of dying cells after retroviral

vector expression of CryaA compared to the control vector

(Figure 3J; cells double-positive for dsRed and GFP). Impor-

tantly, the overexpression of CryaA did not affect the survival

of nondopaminergic cells that had a similar rate of 10% cell

death in both CryaA and control virus-transduced cells

(Figure 3J; dsRed only cells) in agreement with no change in

the number of nondopaminergic cells upon retroviral expression

of CryaA (Figures 3G–3I). Taken together, CryaA does not alter

the fate and the specification of PGN but prevents PCD of

dopaminergic PGNs downstream of Pax6.



Figure 4. CryaA Knockdown Induces Apoptosis via Caspase-3 Activation
(A–C) Confocal images showing reduction in numbers of P19 cells transfected with the virus expressing GFP and CryaA-specific shRNA5 (B and B0) compared to

the controls (A, A0, C, and C0).
(D) Caspase specific inhibitor ZVAD-fmk blocks the effect of CryaA-specific shRNA5 on number and morphology of P19 cells (compare D and B).

(E) Histogram depicting the increase in the proportion of early apoptotic and late apoptotic/necrotic cells after CryaA knockdown as detected by annexinV and PI

staining and FACS analyses (3 experiments, 10,000 events per condition).

(F) Western blot depicting the activation of procaspase-3 (upper band, 30 kDa) and release of active caspase-3 form (lower bands, 13 and 17 kDa) only after the

transient transfection of P19 cells with CryaA specific shRNA5.

Abbreviations: hpt, hours after transfection; ***p < 0.001; ****p < 0.0001. Brackets in (E) are SEM. Scale bars: 50 mm in (A), (B), (C) and (D); 10 mm in (A0), (B0 ) and (C0).
See also Figure S4.
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CryaA Prevents Activation of Caspase-3
We performed shRNA mediated knockdown of CryaA in the P19

cell line grown under both undifferentiated and differentiated

conditions (see Experimental Procedures). P19 cells express

Pax6 and CryaA in both conditions investigated (Figures S4B

and S5C) and the CryaA protein can be efficiently depleted

from these cells by CryaA-specific shRNA5 expression as

described above (Figures S4A and S4B). Supporting the idea

that a reduction of CryaA results in apoptosis, shRNA5-mediated

CryaA knockdown in P19 cells resulted in reduced numbers of

CryaA-shRNA5-transfected cells compared to the control

shRNAs (Figures 4A–4C) by 30 hr after the transfection. CryaA

shRNA5-expressing cells display cell rounding, pyknotic nuclei

and nuclear fragmentation (Figure 4 and data not shown), the

typical hallmarks of cells undergoing PCD (Boldyrev, 2000).

Significantly increased fractions of early apoptotic and late

apoptotic/ necrotic cells preceded the reduction in the number

of CryaA-shRNA5 transduced cells, as revealed by PI and

annexinV staining 24 hr after transduction (Figure 4E). As the

activation of caspase-3 is the key event in the commitment of

cells to PCD (Conradt, 2009), we examined caspase-3 protein

following CryaA knockdown. When protein extract from control

or CryaA-shRNA5 transduced P19 cells was probed with an

anti-caspase antibody recognizing both active (13 and 17 kDa)

and pro-form (39 kDa), only cells exposed to CryaA knockdown
showed activated caspase-3 (Figure 4F). Conversely, these

bands were undetectable after control transfection or in the

protein extracts of nontransfected cells (Figure 4F). Consistent

with a role of caspase-3 activation inmediating the CryaA knock-

down triggered apoptosis, treatment of CryaA shRNA5-trans-

fected cells with the caspase inhibitor ZVAD-fmk fully abolished

cell death (Figure 4D). As activation of caspase-3 has also been

implicated in cellular functions other than PCD, such as neuronal

differentiation (Chen et al., 1998), we performed time-lapse

imaging (Costa et al., 2008; Eilken et al., 2009) to further examine

the role of CryaA. Although 90% of the progeny of CryaA-

specific shRNA5 transfected cells died within 35 hr of observa-

tion (Figures S4C and S4D), CryaA knockdown did not interfere

with cell cycle length or themode of division of P19 cells grown in

undifferentiated conditions (Figure S4E), compatible with our

in vivo results showing no influence on proliferation, migration

and cell fate after viral vector-mediated knockdown or overex-

pression in vivo. Taken together, these data identify CryaA as

a key regulator of the apoptotic pathway in neurons.

Pax6 Homeodomain Controls CryaA Expression
Downregulation of CryaA expression in dopaminergic PGNs after

loss of Pax6 suggests that Pax6 may directly control CryaA

expression. Pax6 regulates target gene expression by three

DNA-binding domains, the paired domain (PD) with the PAI and
Neuron 68, 682–694, November 18, 2010 ª2010 Elsevier Inc. 687



Figure 5. Pax6 Homeodomain Activates

CryaA Expression

(A) Scheme depicting different forms of the Pax6

transcription factor (B). The canonical, 5a, and

PD-less Pax6 forms activate reporter gene

expression driven by the 2.1 kb CryaA promoter

(Yang et al., 2006), while introduction of a point

mutation interfering with the homeodomain DNA-

binding in the PD-less form (blue ring in A)

abolishes the reporter activation (five experiments)

in the Pax6-expressing P19 cell line.

(C) The relative abundance of different Pax6 forms

measured at RNA (qRT-PCR) and protein (western

blot) level in the adult OB and SEZ.

(D) Western blot for Pax6 depicting enrichment of

PDless Pax6 form (arrow) in the OB compared to

the SEZ lysates. Note that both SEZ and OB

contain canonical Pax6 and Pax65a (50–55 kD

bands).

(E) HEK293T cells do not express any Pax6 forms.

Western blot for Pax6 in nontransfected (right line)

and HEK293T cells transfected with constructs

expressing Pax6 (left line) or Pax65a (middle line)

using AB2237 antibody that recognize all Pax6

forms because of C-terminal binding.

(F) InHEK293T cells lacking endogenousPax6, co-

expression of canonical andPD-less forms of Pax6

is necessary to activate 2.1 kb CryaA promoter

(Yang et al., 2006) (red bar), while Pax6, Pax65a,

and PD-less alone do not activate the reporter

construct. Note that the point mutation affecting

DNA binding capacity of HD abolished CryaA

promoter activation.

(G) PD-less interacts with canonical Pax6 in the

OB. Western blot for all Pax6 forms (rabbit anti-

Pax6 antibody [see Figure S4]) in immunoprecipi-

tates of canonical Pax6 (immunoprecipitated with

the N-terminal Pax6 antibody [see Figure S4])

from total lysates of the adult OB. No signal for

Pax6 forms was detected in the wash fraction or

immunoprecipitates using IgG control, whereas

signals for both canonical (black arrow) and PD-

less Pax6 (red arrow) forms were detected after

both EtBr and benzonase treatment indicated

direct protein-protein interaction in the adult OB

between full length Pax6 and PD-less.

(H and I) Histograms depicting Pax6 (H) and H3 K9ac (I) distribution at the mouse aA-crystallin gene locus in OB chromatin. The numbers on x axis represent the

primer position in CryaA locus (Yang et al., 2006). The red line indicatesmedian background signal averaged through theCryaA locus. The relative enrichment (RE)

unit represents 10% of the input.

*p < 0.05; ***p < 0.001 and brackets in (B), (C), (F), (H), and (I) are SEM. See also Figure S5.
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the RED subdomains and the paired-type homeodomain (HD;

Figure 5A). Alternative splicing (Epstein et al., 1994) or different

transcription initiation (Glaser et al., 1992) generate mainly three

Pax6 forms, the canonical Pax6 containing all three DNA-binding

motifs, the Pax6(5a) form in which binding of the PAI domain to

DNA is abolished and the PDless form that lacks the entire paired

domain (PD-less) and can bind DNA only via its homeodomain

(Figure 5A; see also Haubst et al., 2004). To test whether any of

these Pax6 proteins would regulate CryaA we examined

transcriptional activation of the 2.1 kb CryaA promoter (Yang

et al., 2006) in luciferase assays performed in N2A and P19 cells

(Figures 5A and 5B). Consistent with previous data obtained

with lens cells (Yang et al., 2006), transduction of Pax6 forms

containing the PD and HD (canonical and 5a) led to a significant
688 Neuron 68, 682–694, November 18, 2010 ª2010 Elsevier Inc.
increase in CryaA promoter mediated luciferase expression

(Figure 5B). In contrast to the data obtained with lens cells, we

also observed activation by the PDless protein (Figures 5A and

5B). DNAbinding of this HD is essential for activation of theCryaA

promoter as a point mutation abolishing DNA binding of the HD

(Pax64Neu) (Favor et al., 2001) also abolished the activation of

this promoter (Figure 5B). Taken together, these data suggest

that Pax6 directly regulates CryaA expression by DNA binding

of the HD.

We next examined the expression of the different forms of

Pax6 in the OB in vivo and found expression of the PDless

form, which was virtually absent in the subependymal zone,

where adult neural progenitor cells and neuroblasts express

Pax6 (Brill et al., 2008; Hack et al., 2005). In contrast, canonical
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Pax6 form was present in both SEZ and OB (Figures 5C, 5D, and

S6J). These data suggest the intriguing concept that mature

neurons expressing Pax6 in the OB specifically upregulate the

PD-less form of Pax6.

Given the coexistence of canonical and PD-less forms of Pax6

in vivo (Figures 5C and 5D), we further tested the influence of

endogenous Pax6 expressed in P19 cells (Figure S5) by using

a cell line lacking endogenous Pax6 expression, HEK293T.

When we transduced these cells with the canonical or PD-less

form of Pax6, no activation of the CryaA promoter was observed

(Figure 5F) in striking contrast to the results obtained in the cell

line with endogenous Pax6 levels (Figure 5B). However, cotrans-

duction of the canonical and PD-less form of Pax6 resulted in

very strong transcriptional activation of the CryaA promoter

(Figure 5F), demonstrating the necessity of these forms to

interact. This potent activation was fully abolished by cotrans-

duction of the canonical Pax6 with the PD-less homeodomain

mutant (PD-less Pax64Neu) (Figure 5F). These results show that

CryaA transcription depends exclusively on the DNA binding

activity of the Pax6 HD of the PDless protein, since it cannot

be compensated by the nonmutant HD of the canonical Pax6,

and requires interaction of the PD-less form with the canonical

form of Pax6.

To examine whether the requirement for both the full length

and PD-less form of Pax6 depends on a physical interaction of

the two proteins, we performed coimmunoprecipitation experi-

ments in protein extracts from the adult OB. To do so we took

advantage of an N-terminal Pax6 antibody that does not recog-

nize the PD-less protein lacking the N terminus (Figures S4F and

S4G). Precipitation with this antibody should therefore precipi-

tate only Pax6 forms containing a PD (either canonical or 5a).

The immunoprecipitates were then probed with a C-terminal

Pax6 antibody recognizing all Pax6 forms (Figure S4F). We

observed the PDless protein in Western blots (red arrowhead

in Figure 5G). As these experiments were performed after

treatment with ethidium bromide or benzonase blocking protein

DNA interactions, the data suggest a direct protein-protein

interaction between the full length and PDless Pax6 proteins

(Figure 5G). Taken together with the data obtained in the

luciferase experiments, we conclude that CryaA expression is

regulated by HD-mediated DNA binding of a complex consisting

of the Pax6 full length and PD-less protein. To demonstrate that

Pax6 interacts with the CryaA locus in vivo, we isolated

chromatin from OBs of 3-month-old animals and performed

a series of qChIP analyses (Figure 5H). The enrichment of Pax6

was found in the CryaA promoter region (regions �500 and

�250 bp; Figure 3H). In addition, the �500 bp promoter region

showed increased signals corresponding to H3 K9 acetylated

histones (Figure 3I), a mark localized to the 50 regions of tran-

scriptionally active genes (Liang et al., 2004). Taken together,

these data suggest that Pax6 directly regulates CryaA expres-

sion through association with the upstream promoter regions

in chromatin of OB cells.

Paired-Type Homeodomain Dysfunction Impairs
Survival of Dopaminergic PGNs
The above experiments suggested a critical role of the HD in

regulating CryaA expression and hence dopaminergic PGN
survival.Wetestedthis invivo inamouse lineharboringapointmu-

tation in the Pax6 HD abolishing DNA binding, the Pax6132-14Neu

(further named Pax614Neu) mice (Favor et al., 2008). In contrast

tomostPax6mutants (Favoretal., 2008;Grawetal., 2005;Haubst

et al., 2004), Pax614Neu is not homozygous lethal. Consistent with

normal forebrain development in Pax6 mutants with a defective

HD (Haubstet al., 2004), adultmicehomozygous for thePax614Neu

allele also do not show gross morphological changes in the

forebrain (Figures S6A–S6C). This allowed us to further study

both neurogenesis and survival of dopaminergic neurons in these

animals. First, we examined the presence and number of adult

neural stem cells in the subependymal zone of Pax614Neu mice

by the neurosphere assay. The number of neurospheres

generated, their size and their self-renewing capacity did not

differ in Pax614Neu mice compared to their WT siblings (Figures

S6D–S6F). Moreover, neurospheres from the Pax14Neu mutants

were tripotent and not different from WT cells in regard to the

proportion of neurons, oligodendrocytes and astrocytes

generated 7 days after withdrawal of growth factors (Figures

S6G–S6H).

As the full length form of Pax6 was previously implicated in

adult neurogenesis (Hack et al., 2005; Kohwi et al., 2005), we

examined neuroblasts in sections by immunostaining for double-

cortin (DCX) and by FACS using live staining for PSA-NCAM.

Neuroblasts were present in equal numbers and locations in

the Pax614Neu/14Neu mutants and their heterozygote or WT litter-

mates in both read-outs (Figure S6I and data not shown). As the

proportion of PSA-NCAM-positive was quantified in the OB, we

can further conclude that an equal number of young neurons

arrive to the OB of Pax614Neu/14Neu animals as in their WT siblings

(Figure S6I), demonstrating that neurogenesis and neuronal

migration are normal in these mutant mice. This is in full agree-

ment with previous work demonstrating that the DNA-binding

mutations of the HD of Pax6 do not affect proliferation,

neurogenesis, and neuronal migration during development

(Haubst et al., 2004).

However, when we examined the composition of PGNs in the

glomerular layer of 3.5-month-old Pax614Neu/14Neu mice, we

observed a significant reduction of DAT+ PGNs to 20% of that

of control mice (Figures 6B and 6G). All other PGN subtypes

were unaffected (Figures 6C–6G). To examine whether this

was due to a failure of DAT+ neurons to be generated or to

survive, we applied BrdU to label recently generated dopami-

nergic neurons. The recently (4–6 weeks before) generated

DAT+ neurons comprise only 10% ± 3% of all DAT+ PGNs in

control mice (3 animals examined and at least 500 cells counted

per genotype). In contrast, the vast majority of the few DAT+

neurons present in the OB of homozygous Pax614Neu mice

were all recently generated (80% ± 5% BrdU+), suggesting

that in Pax614Neu mice DAT+ neurons are generated but

quickly lost. Taken together, these data strongly suggest that

survival of dopaminergic PGNs is severely compromised in

Pax614Neu/14Neu mice.

Consistent with the evidence presented above that the HD of

Pax6 is essential to regulate CryaA, we detected a significant

reduction in the density of CryaA+ cells in the Pax614Neu/14Neu

selectively in the glomerular layer (Figure 6H) which was due

to a strong reduction in the number of DAT and CryaA
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Figure 6. Pax6 Homeodomain Is Necessary for the Maintenance of Dopaminergic OB Interneurons

(A, B, and G) Mature dopaminergic neurons immunoreactive for DAT (green) are significantly decreased in the Pax614Neu mutant (six animals) deficient for

homeodomain function (A and G) compared to theWT (four animals) (B andG) or heterozygous (six animals) siblings (G). The proportion of calretinin and calbindin

positive cells did not significantly differ between the mutant and heterozygote or WT animals (G).

(C–F) Micrographs depicting calretinin (C and D) and calbindin (E and F) immunoreactive populations in the OB of Pax614Neu/14Neu mice (D and F) and their WT

siblings (C and E). Note the comparable number of calretinin+ or calbindin+ PGN subtypes in mutant andWT (G). All images are maximum intensity projections of

30 mm optical z stacks.

(H) The density of CryaA-positive cells is significantly reduced in the GL of Pax614Neu mutants compared to their WT or heterozygous siblings but did not differ in

any other OB layer analyzed (three animals analyzed per genotype).

(I) Histogram depicting the reduction in CryaA-positive dopaminergic periglomerular neurons in Pax614Neu mutants compared to their WT or heterozygous

siblings (three animals analyzed per genotype).

Abbreviations: DAT, dopamine transporter; GL, glomerular layer; GCL, granular cell layer; ***p < 0.001 and *p < 0. 05; brackets in (G), (H), and (I) are SEM. Scale

bars 50 mm. See also Figure S6.
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double-positive cells (Figure 6I; p < 0.05, 5 animals per genotype

analyzed) compared to their WT or heterozygous siblings. Thus,

these data are consistent with the concept that the DNA-binding

mutation in the HD of Pax614Neu causes a downregulation of

CryaA in dopaminergic PGNs which results in death of this

population. Importantly, no changes in mRNA of either PD or

HD containing forms of Pax6 as measured by qPCR were

detectable in E14 cortices and adult OBs of Pax614Neu/14Neu

mutants and their age-matched Pax614Neu/+ siblings (Figure S6K

and data not shown), supporting the concept that the loss

of DAT+ PGNs via loss of CryaA is indeed due to the point muta-

tion in the HD rather than alterations in the overall expression

levels of Pax6 that are observed in the full Pax6 mutants and can

cause cell death (Holm et al., 2007; Tuoc and Stoykova, 2008).

DISCUSSION

Here, we revealed a function of Pax6 in regulating the survival of

specific neuron subtypes in the adult brain. We demonstrated

that this function is achieved by utilizing a different DNA-binding
690 Neuron 68, 682–694, November 18, 2010 ª2010 Elsevier Inc.
domain as used in the developmental functions of Pax6 and is

exerted by the regulation of CryaA. CryaA is required to prevent

the activation of the caspase cascade and thereby inhibits

progression of the dopaminergic OB interneurons to PCD in

the adult mouse brain. These results thereby demonstrate

a pathway to regulate neuron survival in the adult brain in

a subtype-specific manner.

Neuron Survival in the Adult Brain
During development, especially of the peripheral nervous

system, PCD is part of the program sculpturing neuron numbers

and thereby neuronal connectivity (Dicou and Perez-Polo, 2009).

PCD is actively inhibited by external survival cues (Chang and

Johnson, 2002) or cell intrinsic mechanisms (Hatzold and

Conradt, 2008) regulating different signaling cascades to inhibit

the activation of procaspase-3 and thereby promoting the

survival of the correct cell types in appropriate numbers (for

review see Conradt (2009).

In contrast, little is known about the regulation of neuronal

survival in the normal, uninjured adult brain. The number of
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neurons inmost regions of the adult brain is constant and virtually

no neuronal cell death occurs. However, in the regions of the

adult brain where neurogenesis continues also PCD continues

and only about half of all newly arriving neuroblasts survive

(Petreanu and Alvarez-Buylla, 2002). The turnover mode of

neurons with replacement of about 10% by newly arriving

neurons has been most clearly established in the dentate gyrus

(Lagace et al., 2007; Ninkovic et al., 2007) and implies a rather

specific regulation of neuronal survival. Notably, the mode of

neuron incorporation in the glomerular layer (GL) is very different.

Long-term fatemapping of adult generated neurons has revealed

a constant increase in their proportion in the GL (Ninkovic et al.,

2007), suggesting the addition of new neurons to this network

rather than a replacement of preexisting neurons.

Our data now demonstrate mature neurons in the GL require

the direct transcriptional orchestration of a survival pathway.

We showed that CryaA is expressed in the brain in a highly

region-specific manner and acts as an essential survival factor

in dopaminergic OB interneurons in the adult mouse brain

(Figure 3). CryaA prevents procaspase-3 activation possibly by

interaction with Bax and Bcl-Xl as demonstrated in the lens

(Mao et al., 2004) or by physical interaction and inhibition of its

autocatalytic activation (Kamradt et al., 2001). Moreover, crystal-

lins, as molecular chaperons, interact with the cytoskeleton (Bai

et al., 2007) and prevent the deposition of protein aggregates

(Bai et al., 2007; Narayanan et al., 2006; Rekas et al., 2004)

thereby promoting cell survival (Andley, 2007) in a caspase-inde-

pendent manner. However, our data are not consistent with the

lattermechanisms ofCryaA function since cell death by aggrega-

tion of proteins would be expected to occur at a slower pace than

observed after shRNA-mediated knockdown and the loss of

Pax6 and CryaA in the Pax6 mutant OBs. Moreover, our in vitro

experiments also support a direct role of CryaA in the regulation

of cell survival by influencing procaspase-3 activation. It has

beenpreviously shown that deletion ofCryaA leads to adecrease

in Bad S136 phosphorylation, a potent signal for apoptosis (Xi

et al., 2008). In addition, CryaA also interacts with p53 and hence

its loss may affect cell death at various levels (Andley, 2007).

Oneof themost important aspects of thiswork is the specificity

of this pathway affecting exclusively dopaminergic OB interneu-

rons. Knockdown of CryaA in other adult generated neurons did

not affect their survival. This is particularly relevant in regard to the

alterations of dopaminergic OB interneuron numbers which have

been observed in Parkinson’s disease patients (Hirsch et al.,

1987; Shih et al., 2007; Sulzer, 2007). Interestingly, P19 cells

that also depend on CryaA for suppression of caspase-3-depen-

dent cell death are also both GABAergic and dopaminergic

(Staines et al., 1994) and express Pax6 as well as CryaA. It may

thusbe thatCryaA is involved in a specific survival pathwayactive

in OB dopaminergic neurons. While we did not observe CryaA

expression in midbrain dopaminergic neurons, different

members of the crystallin family are expressed in different brain

regions and may be implicated in regulating neuronal

survival (Ganguly et al., 2008; Magabo et al., 2000; Renkawek

et al., 1992).Other homeobox transcription factors could regulate

crystallins in other neuronal subtypes, such that this survival

pathway may play a general role in specific neurons of the adult

brain. The finding that neuronal survival in a healthy adult brain
is regulated in a subtype-specific manner is therefore highly

relevant to the subtype-specific vulnerability of neurons in

many neurodegenerative diseases.
Pax6 Exerts Different Functions via Distinct
DNA-Binding Domains
The survival pathway in dopaminergic OB neurons is mediated

by the same TF specifying these neurons, but utilizes a different

DNA-binding domain, namely the homeodomain. Interestingly,

the regulation of CryaA via the HD in the brain is not semidomi-

nant as PD-regulated effects of proliferation, neurogenesis,

and patterning during development (Ellison-Wright et al., 2004;

Estivill-Torrus et al., 2002; Götz et al., 1998; Heins et al., 2002;

Kroll and O’Leary, 2005; Stoykova et al., 2000; Toresson et al.,

2000; Yun et al., 2001). This is rather different in eye develop-

ment, where mutations of the HD exhibit strong and early

phenotypes (Favor et al., 2001, 2008). Notably, the regulation

of crystallins is mediated by the PD in the eye and in lens cells

(Chauhan et al., 2002; Cvekl and Duncan, 2007; Cvekl et al.,

1994; Wolf et al., 2009), while we show here that it requires the

interaction with a full-length and a PDless Pax6 to mediate

HD-dependent target regulation.

Lack of Pax6 function can also result in cell death in the devel-

oping forebrain (Nikoletopoulouet al., 2007). Interestingly, this cell

death is mediated by p75 and occurs as a consequence of

misspecification as the misspecified Pax6 mutant GABAergic

neurons survive well in other brain regions where GABAergic

neurons are normally generated (Nikoletopoulou et al., 2007). In

thenormal casePax6-positiveprogenitorsgive rise toglutamater-

gic neurons (Kroll and O’Leary, 2005; Nikoletopoulou et al., 2007;

Stoykova et al., 2000). In the absence of Pax6, upregulation of the

transcription factors Gsh2,Mash1, andDlx2 occurs and results in

the generation of GABAergic neurons (Kroll and O’Leary, 2005;

SchuurmansandGuillemot, 2002;Stoykovaetal., 2000;Toresson

et al., 2000).When the transientwaveof early cell death is rescued

by p75 depletion, the misspecified GABAergic neurons survive

(Nikoletopoulou et al., 2007). Conversely, rescue of Pax6-defi-

cientdopaminergicOBneurons resulted in the survival of dopami-

nergic and not other misspecified neuronal subtype. Pax6

expression is transient in the stem and progenitor cells of the

developingcerebral cortexand it doesnotcontinue in thedifferen-

tiating glutamatergic neurons in this region (Götz et al., 1998). This

further highlights that the cell death ofmisspecified neurons in the

developing cortex is not a direct cause of absence of Pax6

function but depends on the local environment and neuronal

misspecification. Conversely, Pax6 exerts a primary role in the

regulation of neuronal survival in adult neurons, where it is contin-

uously expressed, by direct regulation of the survival component

CryaA that inhibits the apoptosis pathway. Taken together, Pax6

changes its role from PD-mediated transcriptional regulation

specifying fate in progenitor cells to HD-mediated transcriptional

regulation of cell survival in mature neurons.
EXPERIMENTAL PROCEDURES

Animals

DAT::Cre (Zhuang et al., 2005), Pax6fl (Ashery-Padan et al., 2000), and Z/EG

(Novak et al., 2000) were maintained on C57BL6/J background. Animals
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were housed in polypropylene cages lined with wood chips. All experimental

procedures were performed in accordance with German and European Union

guidelines. Stereotactic injections of retroviruses into the brain of adult mice

were approved by the Government of Upper Bavaria in license number 211-

2531-23/04 and 55.2-1-54-2531-144/07.

Histology and Immunostaining

Immunostainings and analyses were performed as previously described (Brill

et al., 2008). Antibodies used: anti-calbindin (Swant, mouse IgG, 1: 200), anti-

calretinin (Swant, mouse IgG, 1: 200), anti-Cre (Chemicon, rabbit, 1:200),

anti-crystallinaA (Abcam, rabbit, 1:1000), anti-DAT (Abcam, rat, 1:500), anti-

dsRed (Chemicon, rabbit, 1:1000), anti-doublecortin (DCX, Chemicon, Guinea

pig, 1:1000), anti-GFAP (SIGMA, IgG1, 1:100), anti-GFP (Chemicon, rabbit,

1:5000 or Aves, chicken 1:500), anti-NeuN (Chemicon, IgG1, 1:75), anti-Pax6

(Chemicon, rabbit, 1:700), anti-TH (Chemicon, chick, 1:200), anti-BrdU (rat,

1:200, Abcam) .

In Situ Hybridization

Digoxigenin-labeled RNA probes for CryaA, CryaB, CrybB2, and Cryg (kindly

provided by J. Graw) were made and used as described previously (Brill et al.,

2008).

Western Blot

Specific brain areas were dissected and lysed in RIPA buffer containing

protease and phosphatase inhibitors (Roche). Ten micrograms of total

proteins were separated by 10% SDS-PAGE and transferred to PVDF

membranes (Bio-Rad). Membranes were incubated with primary antibodies

followed by horseradish peroxidase labeled secondary antibodies (1:25 000;

Amersham). These were detected by ECL Western Blotting Detection (Chem-

icon). The abundance of the band was quantified using ImageJ software after

background correction.

Immunoprecipitations

Nuclear extracts were prepared from freshly dissected OBs and dialyzed to

100mMKCl as described previously (Dignam et al., 1983). For the immunopre-

cipitation, 10 mg of anti-Pax6 antibody (Hybridoma Developmental Bank) was

used for 300 ml of OB nuclear extract

FACS Analysis for Cell Death and Neuroblasts

Olfactory bulbs were dissected and dissociated to single-cell suspension as

previously described (Brill et al., 2008). Single-cell suspensions were assessed

for cell death using PI/annexinV kit (eBioscience) and FACS analysis according

to the manufacturers’ recommendations. To assess number of neuroblasts,

cells were labeled with mouse anti/PSA-NCAM antibody (Chemicon, 1: 500)

for 15 min on ice, followed with Cy-5 conjugated secondary antibody and

FACS analyses.

Luciferase Assay

Expression plasmids for luciferase reporter assays were constructed using

full-length cDNA of mouse Sox2, Pax6, Pax6(5a), and PDless cloned into the

pMXIG vector. The empty vector was used as control. The 2.1 kb CryaA

promoter was cloned into the pGL3 vector (Promega). The CryaA promoter

was PCR amplified from genomic DNA using the following primers:

50-TTTATGTATATGAGTACGCTGTTGC and 50-TCTATTTGGTGATGCAGGGA.

We used mouse neuroblastoma (Neuro-2A) and mouse embryonic carcinoma

P19 cells (0.5 3 105 cells/ cm2) and assays we performed according to the

manufacturer’s instructions (Promega).

Viral Constructs, Virus Production, and Stereotactic Injections

Full-length cDNA of mouse CryaA was cloned into CAG-RFP retroviral vector

(cytomegalovirus immediate-early enhancer-chicken b-actin hybrid-red

fluorescent protein). An empty CAG-dsRed vector was used as a control.

Retrovirus was produced in a packaging cell line (GPG-293) after transient

transfection with the retroviral expression plasmid. Estimation of the viral titer

was performed as described (Hack et al., 2005) and titered to 5 3 107

colony-forming units (cfu) ml�1. For all experiments, 10-week-old males were

stereotactically injected with 1 ml of either CAG-DsRed, CAG-CryaA-DsRed,
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or shRNA lentiviruses into the left and the right RMS (coordinates relative to

the bregma were (in mm): �2.8 anterior/posterior, 0.75 medial/lateral, and

�1.9 dorsal/ventral from the dura).

Short-Hairpin RNAs

The short-hairpin RNAs (shRNAs) were designed using BLOCK-iT RNAi

Designer (Invitrogen) against the full-length cDNA of CryaA and contain sense,

four nucleotides CGAA as the loop, antisense sequences and two adapters

for theBglII andHindIII sites.Thesynthesizeddouble-strandedDNAnucleotides

were annealed and ligated into pLVTH plasmids (Wiznerowicz and Trono,

2003) after the H1 promoter. Oligonucleotides designed for CryaA were

CryaA_shRNA5: GACTGTTCGACCAGTTCTTCG (21 bp) and CryaA_shRNA6:

GTCACCATTCAGCATCCTTGG (21 bp) and nonspecific shRNA: GGTTTGGCA

TATAATCTATCG (21 bp). P19 cells were transiently transfectedwith the shRNA

encoding plasmids using Lipofectamine2000 (Invitrogen) according to the

manufacturers’ specifications and assayed for either cell death or immunocyto-

chemistry as described above.

Chromatin Immunoprecipitation (ChIP) Assays

The qChIP experiments were performed as described (Cuddapah et al., 2009;

Lee et al., 2006) with minor modifications. The detailed protocol is available in

supplemental material. We used rabbit anti-Pax6 (Millipore/Chemicon, cat #

ab2237) or H3K9ac polyclonal antibodies (Abcam, cat #ab4441) for IP.

Quantitative Analysis

Quantifications (proportions of reporter-positive cells among particular cell

types) were done using ImageJ software to analyze confocal Z stacks. At least

10 (per animal) corresponding sections were sampled and analyzed at

different mediolateral positions and the number of animals is indicated for

every experiment. All results are presented as mean and standard error of

the mean. Statistical analysis was performed in Microcal Origin 7.5 using

ANOVA and Mann-Whitney U test.

SUPPLEMENTAL INFORMATION

Supplemental Information includes six figures, one table, and Supplemental

Experimental Procedures and can be found with this article online at doi:10.

1016/j.neuron.2010.09.030.
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Götz, M., Stoykova, A., and Gruss, P. (1998). Pax6 controls radial glia differen-

tiation in the cerebral cortex. Neuron 21, 1031–1044.

Graw, J. (2009). Genetics of crystallins: Cataract and beyond. Exp. Eye Res.

88, 173–189.
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(2007). Neurotrophin receptor-mediated death of misspecified neurons gener-

ated from embryonic stem cells lacking Pax6. Cell Stem Cell 1, 529–540.
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