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Distance in feature space determines exclusivity in visual rivalry
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Abstract

Visual rivalry is thought to be a distributed process that simultaneously takes place at multiple levels in the visual processing hierar-
chy. Also, the different types of rivalry, such as binocular and monocular rivalry, are thought to engage shared underlying mechanisms.
We hypothesized that the amount of perceptual suppression during rivalry as measured by the total duration of fully exclusive perceptual
dominance is determined by a distance in a neurally represented feature space. This hypothesis can be contrasted with the possibility that
the brain constructs an internal model of the outside world using full-fledged object representations, and that perceptual suppression is
due to an appraisal of the likelihood of the particular stimulus configuration at a high, object-based level. We applied color and stereo-
depth differences between monocular rivalry stimulus gratings, and manipulated color and eye-of-origin information in binocular rivalry
using the flicker & switch presentation paradigm. Our data show that exclusivity in visual rivalry increases with increased difference in
feature space without regard for real-world constraints, and that eye-of-origin information may be regarded as a segregating feature that
functions in a manner similar to color and stereo-depth information. Moreover, distances defined in multiple feature dimensions addi-
tively and independently increase the amount of perceptual exclusivity and coherence in both monocular and binocular rivalry. We con-
clude that exclusivity in visual rivalry is determined by a distance in feature space that is subtended by multiple stimulus features.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

In perceptual rivalry perception alternates between sev-
eral more or less equally valid interpretations of a stimulus
that are mutually exclusive. The fact that the stimulus
remains the same while phenomenal perception changes
has resulted in great interest from researchers attempting
to investigate the neural correlates of visual awareness
(Blake & Logothetis, 2002; Leopold & Logothetis, 1999).
In several types of rivalry, orthogonal gratings are pre-
sented to the observer. These gratings may be presented
dichoptically, resulting in binocular rivalry between the
two eyes’ images (Wheatstone, 1838), or dioptically, result-
ing in monocular rivalry between the two grating patterns
(Breese, 1899). Binocular rivalry has traditionally been cat-
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egorized separately from monocular and other types of per-
ceptual rivalry, occupying a category of its own, because of
the evident low-level and eye-based characteristics of bin-
ocular rivalry suppression (Blake, 1989; Blake, Westendorf,
& Overton, 1980). Not consciously accessible as an inde-
pendent information source (Helmholtz, 1910–1924), the
eye-of-origin information that plays a role in binocular riv-
alry is represented in low-level neural structures that sub-
serve interocular gain control (Ding & Sperling, 2006;
Sengpiel & Vorobyov, 2005). However, it is also widely
accepted that the mechanisms behind rivalrous alternations
are multifaceted (Alais & Parker, 2006; Freeman, 2005;
Grossmann & Dobbins, 2006) and must span multiple
functional areas in the brain (Blake & Logothetis, 2002).
This is evidenced by the fact that both the occurrence
and the strength of binocular rivalry suppression are sub-
ject to contextual modulation through center-surround
(Paffen, Alais, & Verstraten, 2005), grouping mechanisms
(Alais & Blake, 1999) and perceptual meaning (Andrews
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1 In monocular and binocular rivalry the complementary percepts of what
we term full exclusivity constitute different perceptual impressions. The
complement of full exclusivity in binocular rivalry is characterized by a
spatial break-up of exclusive perception such that the observer’s percept is
dominated by one stimulus half-image at a certain spatial location, whereas
the other stimulus half-image dominates the remainder of the spatial extent
of the stimulus. This type of perception is called piecemeal rivalry, as
opposed to the wholesale or coherent perceptual dominance that we term
full exclusivity. Therefore, in the case of binocular rivalry, ‘full exclusivity’
could be exchanged with ‘coherence’. In monocular rivalry however, the
percept seen when perception is not fully exclusive is a fusion of the two
constituent gratings into a plaid pattern. In contrast, these types of plaid
pattern percept do not occur in binocular rivalry apart from the first 150 ms
of presentation (false fusion, [Blake, Yang, & Westendorf, 1991]), and/or at
very low stimulus contrasts [Liu et al., 1992]. In the case of monocular
rivalry, the most coherent possible percept is a mixture of the two grating
patterns fused to a plaid percept and because of this, we cannot use the
phrase ‘coherence’ but refer to this most exclusive perceptual state as ’full
exclusivity’ in both binocular and monocular rivalry.

2 Note that what we term ‘full exclusivity’ does not imply strength of
suppression as defined by the difference in detection or discrimination
threshold during either dominance or suppression of the percepts. This long-
standing method [Fox & Check, 1972] for probing the depth of suppression
during binocular rivalry directly probes the strength of gain-control [Alais &
Parker, 2006; Alais & Melcher, 2006], whereas in our research we have not.
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& Lotto, 2004). Monocular or pattern rivalry is also subject
to center-surround pattern completion interactions (Maier,
Logothetis, & Leopold, 2005). Not only are the mecha-
nisms behind perceptual rivalry generally considered to
be distributed, there is also evidence that the different types
of visual rivalry are dependent on shared neural circuitry
(Bonneh, Sagi, & Karni, 2001; Logothetis, Leopold, &
Sheinberg, 1996; Pearson & Clifford, 2005; Wilson, 2003).

There are many examples of rivalrous stimuli for which
the rate of perceptual alternations depends on the strength
of the conflict between them (Brouwer & van Ee, 2006;
Hupe & Rubin, 2003; van Ee, van Dam, & Erkelens,
2002). When contrast, the main determinant of interocular
gain control (Ding & Sperling, 2006), is decreased in a bin-
ocular rivalry stimulus, the source of conflict decreases in
strength, resulting in fusion of the two stimulus half-
images: plaid percepts (Liu, Tyler, & Schor, 1992). We
hypothesized that, as a general mechanism, the neural inhi-
bition that results in completeness of perceptual suppres-
sion during visual rivalry is determined by a distance in a
low-level neurally represented space subtended by features
such as orientation, color, or eye-of-origin information,
before these features are integrated into object representa-
tions. Our hypothesis can be contrasted with the possibility
that the brain constructs an internal model of the outside
world, and that perceptual suppression is due to an apprai-
sal of the stimulus configuration likelihoods in this internal
model based on the properties of fully elaborated object
representations. This latter hypothesis would imply that
rivalry acts at a relatively high neural level as opposed to
a feature-based hypothesis, which assumes that integration
and suppression occur at lower levels in the visual process-
ing hierarchy. To test our hypothesis, we parametrically
varied the feature-based distance between the two grating
patterns of a monocular rivalry stimulus by applying dis-
tances in both stereo-depth and color feature spaces.

Color differences between stimulus gratings affect the
speed of monocular pattern rivalry alternations (Wade,
1975), as does the angle between the stimulus gratings
(Crassini & Broerse, 1982; Mapperson & Lovegrove,
1978). The stereo-depth difference causes the gratings to
appear at different depths. This change in stimulus config-
uration strongly decreases the likelihood that the two grat-
ings coincide spatially. Real-world occlusion constraints
play a profound role in determining whether binocular riv-
alry occurs at any location in the visual field (Ooi & He,
2006; Shimojo & Nakayama, 1990), and the addition of
stereo-depth difference provides a way to assess the role
of depth ordering in monocular rivalry. If, for instance,
the likelihood of real-world conflict (i.e. a collision in three
dimensional space) between the stimulus gratings when
represented as objects, plays a definitive role in the genera-
tion of perceptual suppression, the amount of time spent in
fully exclusive perceptual dominance should decrease as a
result of the addition of stereo-depth differences. Con-
versely, our hypothesis regarding the distance in a low-level
feature space between the neural representations of the two
gratings predicts that the amount of fully exclusive percep-
tual rivalry must increase.

Another issue is whether in binocular rivalry, eye-of-origin
information can be seen as a segregating signal, much as we
regard color and stereo-depth differences. That is, we wanted
to investigate whether a difference in eye-of-origin combines
with other stimulus features to produce perceptual suppres-
sion. Recently a new type of presentation paradigm has been
developed in which the stimulus presentation is dichoptic and
the stimulus halves are switched between the eyes at 3 Hz
while being flickered at a rate of ca. 20 Hz (Logothetis
et al., 1996). This flicker & switch (F&S) rivalry presentation
may, when using the right stimulus conditions (Bonneh et al.,
2001; Lee & Blake, 1999), result in percepts that survive
switches between the eyes, implying that perceptual suppres-
sion is not eye-image based but based on pattern identity
under these conditions. The fact that eye-of-origin informa-
tion is dissociated from alternations in visual awareness
allows us to specifically address the role of eye-of-origin infor-
mation as a segregating feature in binocular rivalry by varying
color differences between dichoptically presented orthogonal
gratings in situations of binocular and F&S rivalry.

Total dominance time is a measure of the vehemence of
the rivalry process as it is defined by the lack of intermediate,
non-exclusive states such as fused plaid percepts or piece-
meal rivalry.1 In our experiments, we have used the sum of
all perceptual durations in which observers reported a com-
pletely exclusive percept as a measure for the completeness of
suppression. So, observers were reporting full suppression of
one grating and the concomitant full dominance of the other
grating, a phenomenon we refer to as full exclusivity. The
dependent variable in our experiments was the sum of the
durations of full exclusivity in any one trial, divided by the
duration of that trial, yielding the ‘full exclusivity fraction’.2



T. Knapen et al. / Vision Research 47 (2007) 3269–3275 3271
2. Methods

2.1. Apparatus and stimuli

Eight observers participated in the different experiments, one of whom
was aware of the hypotheses (author T.K.). At least six observers partic-
ipated in each condition. All had normal or corrected-to-normal vision,
and could reliably discern the stereo-differences in our stimuli. Subjects
viewed orthogonal grating stimuli through a mirror stereoscope at a view-
ing distance of 47 cm. The stimuli were presented on a 2200 LaCie monitor
(1600 · 1200 75 Hz) with linear c using custom software.

A rendering of a monocular rivalry stimulus is shown in Fig. 1. Cen-
trally a fixation mark was projected, composed of half-rectified concentric
circular sine-wave gratings with a gaussian envelope and a total visible size
of 1.4. Surrounding the fixation mark a gaussian enveloped (eccentricity l
1.8, r 0.4) annulus filled by a plaid consisting of half-rectified sine-wave
grating (spatial frequency 1.1 cycles/degree) patterns was drawn. The
background was black (luminance 0.0 cd/m2), and a surrounding pattern
(white, luminance 69.8 cd/m2) of crosses together with a concentric circle
directly surrounding the stimulus provided ample aid for correct binocular
fusion, and a reference for any disparity signal in the stimulus. To control
one segregating signal, the colors of the gratings making up the plaid were
varied from isochromatic (i.e. both were yellow) to full color difference
(i.e. one was green, one was red) in eight steps. Care was taken to ensure
objective isoluminance of both gratings in all color separation conditions.
A control experiment with patterns made subjectively isoluminant using a
flicker isoluminance test showed highly similar results in two subjects (data
not shown). Peak luminance of the plaid was 12.6 cd/m2 at the junctions,
and each grating had a peak luminance of 6.3 cd/m2.

Stereo-depth differences between the two gratings were implemented
by varying the spatial phase of the gratings between the eyes to a maxi-
mum of 0.15 disparity in four steps. In a control experiment we examined
the possible effect of vergence eye position by placing the fixation mark in
the stereoscopic depth plane of either the nearer or farther grating.

For the second experiment, a binocular rivalry stimulus was con-
structed by projecting one of the monocular rivalry gratings in each eye,
with orthogonal orientations. Peak luminance of these gratings was set
to 12.6 cd/m2 to equate the total amounts of luminance in the stimuli of
binocular and monocular rivalry conditions. Binocular rivalry stimuli
were presented under conditions of normal continuous viewing, synchro-
nous on-off flicker at 19 Hz, and flicker and switch stimulation, during
which the stimulus was flickered at 19 Hz and the monocular half-images
were switched between the eyes with a full period of 660 ms, i.e. the dura-
Fig. 1. Monocular rivalry stimulus. The fixation mark, consisting of
concentric circles, ensures stable fixation and also provides a reference for
stereoscopic signals. This rendering illustrates the maximum color
difference between the two gratings. Free-fusing leads to a stereo-depth
difference between the red and green gratings, which greatly increases the
strength of suppression. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
tion of each of the two eye-pattern combinations was 330 ms. Note that
this means that the pattern in both eyes is replaced at 3 Hz, whereas a full
cycle takes place at 1.5 Hz.

2.2. Procedure

In all experimental sessions the subjects’ task was identical; Subjects
were instructed to fixate the fixation mark and report the orientation of
the dominant grating percept by depressing keys. They were specifically
instructed not to press when either a plaid, piecemeal rivalry, or rapid
3 Hz alternations were perceived. When debriefed, none of the subjects
reported problems regarding binocular fusion during the experiment,
nor did stereoscopic depth and color engage in independent rivalry. As
we were interested in the mechanisms that cause perceptual exclusivity
or coherence, our main measure was the total fraction of a trial during
which exclusive perceptual dominance was experienced. We calculated this
measure by summing all the perceptual durations in a single trial, and
divided this number by the total duration of that trial. In all sessions, trial
duration was 30 s, and each combination of presentation regime and color
or stereo-depth difference was tested twice, once for each of the orienta-
tion-color combinations. Subjects completed three sessions, amounting
to approximately 2.5 h in total.

3. Experiment 1: Monocular rivalry

Subjects viewed stimuli such as those depicted in Fig. 1
and continuously reported periods of full perceptual exclu-
sivity, meaning that when a plaid or piecemeal rivalry was
perceived, no keys were pressed. The exclusive dominance
durations were summed and divided by the total trial dura-
tion to yield the ‘fraction of full exclusivity’. This fraction is
better suited than alternation rate to probe the prevalence
of intermediate perceptual states such as a plaid percept,
or piecemeal rivalry percepts. We independently varied
grating separation using stereo-depth differences and color
differences between the two grating patterns.

3.1. Results

Our results, shown in Fig. 2a, demonstrate that the com-
bination of stereoscopic depth differences and color differ-
ences increases the amount of full perceptual exclusivity, in
some subjects to the point where the suppression likens
binocular rivalry suppression in completeness and rate.
The strengthening of perceptual exclusivity due to
increased stereoscopic depth differences is evidence for
the conjecture that pattern rivalry suppression is deter-
mined by distance in feature space and not by an evalua-
tion of the three dimensional positions of objects (that is,
at a high level of abstraction). Thus, real-world spatial rela-
tionships such as likelihood of spatial grating coincidence
do not play a role in the generation of suppression in our
stimuli. In addition, we find that there is no predominance
of the near-plane percept that could be the result of real-
world occlusion or depth-ordering constraints such as
those that occur in suppression based on surface comple-
tion (Graf, Adams, & Lages, 2002; Maier et al., 2005).
We also conducted a control experiment in which the fixa-
tion mark was placed in the depth plane of either the near
or far stimulus plane. Fig. 2b shows the data from this con-



Fig. 2. (a) Monocular rivalry; exclusivity increased due to both color and stereo-depth differences results of experiment 1 plotted as full exclusivity fraction
versus both color and stereoscopic depth differences between stimulus gratings. Fraction full exclusivity indicate the fraction of time subjects reported
complete perceptual suppression. This measure of the amount of exclusivity combines the rate and duration of perceptual dominance periods. Both
stereoscopic depth differences and color differences increase this measure, lending credence to the proposition that it is distance in a feature space that
causes perceptual suppression. Moreover, the two signals additively increase the amount of exclusivity which points towards a role for distributed
processing of various signals as the source of perceptual suppression. Values indicate the mean over 7 subjects. (b) No effects of depth ordering and
vergence eye position; experiment 1. Top: If the rivalrous alternations that subjects reported were influenced by the depth ordering of the planes (or
inferences regarding occlusions) a difference in the preponderance of near-plane and far-plane percepts should result from this influence, as has been
reported for other stimuli (Graf et al., 2002; Maier et al., 2005) that rely on surface-completion for suppression. The most likely result would be a near-
plane predominance bias that increases with stereoscopic depth difference. To investigate this, we took the total amount of time spent in both near-plane
and far-plane percepts for all stereo-depth differences separately and calculated the ratio between the two, a measure of near-plane predominance bias.
This ratio of near and far percepts is not influenced by the stereoscopic depth difference between the gratings F(4,30) = 1.1, p = .4. Thus, depth ordering
does not influence the predominance of the near-plane and far-plane percepts. Values indicate the mean ± 1 SEM over 8 subjects. Bottom: Changing the
depth of the fixation mark to that of either the near or far plane does not affect the near/far ratio. To provide a control for the possible effect of vergence
eye position on the ratio of near and far plane percepts, we changed the stereoscopic depth of the fixation mark to that of either the near or the far plane.
Placing the fixation mark in either front or back plane does not change the ratio of near to far planes (p > .8). Together, these control results indicate that
there is no effect of either depth ordering or vergence eye position on the distribution of near-plane and far-plane percepts. Values indicate the mean ± 1
SEM over 6 subjects. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

3272 T. Knapen et al. / Vision Research 47 (2007) 3269–3275
trol experiment, demonstrating that there is no effect of
vergence eye position on the predominance of the near
and far patterns.

Both color difference (Andrews & Purves, 1997; Kitterle
& Thomas, 1980) and stereo-depth difference influence sup-
pression (Fig. 2a), evident in our data from the fact that
near-monotonic increases in full exclusivity fraction result
from increases in either segregating signal. The effects of
both features on the amount of exclusivity are additive
and independent. The effects of color and stereo-depth dif-
ference are both significant (F(4, 270) = 8.5, p < .001;
F(8, 270) = 4.2, p < .001), but the interaction between the
two is not (F(32,270) = 0.24, p = 1.0). These results can
be easily seen in Fig. 2a, where at the highest level of
color-separation the use of stereo-depth differences pro-
duces an almost identical increase in exclusivity as it does
with no color-differences present, and vice versa.

4. Experiment 2: Binocular rivalry

To investigate whether eye-of-origin information can be
seen as a segregating signal that functions in a way similar
to color difference or stereo-depth difference we specifically
disengaged eye-of-origin information as a signal by means
of the F&S paradigm. We predict that under normal view-
ing conditions, eye-of-origin information must interact
with color, in which interaction color must play a role, con-
trary to what has been found before (Wade, 1975). When
eye-of-origin information is no longer involved in the gen-
eration of perceptual suppression, however, we expect that
the role of color will equal that of color in a monocular riv-
alry stimulus with 0 stereo-depth difference between the
gratings (experiment 1).

In this second experiment, we parametrically varied
color differences between dichoptically presented (binocu-
larly rivaling) gratings. The gratings were presented either
continuously, with 19 Hz on-off flicker, or with F&S stim-
ulation in which the stimuli were swapped between the eyes
at 3 Hz and flickered at 19 Hz. Monocular rivalry stimuli
with no stereo-depth difference were used as a reference
condition.

4.1. Results

Fig. 3 shows that both normal and flickered binocular
rivalry exhibit a strong saturation, in the sense that the
fraction of full exclusivity (coherence) will generally not
exceed 0.8 due to the durations of the transitions between
percepts. The fact that several studies (Kitterle & Thomas,
1980; Thomas, 1978; Wade, 1975) have found no effect of
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Fig. 3. Effects of color difference on binocular and pattern rivalry
exclusivity. Colored lines represent conditions of normal binocular rivalry,
flickering binocular rivalry, and pattern rivalry. These fall in two
categories based on relative color-difference sensitivity. Binocular rivalry,
flickering and continuously presented, remains close to saturation, but
nevertheless shows a significant positive correlation with color difference.
For both types of pattern rivalry the total amount of exclusivity is less, but
the relative degree of modulation due to color differences is far greater
than for binocular rivalry. Data represent the mean ± 1 SEM over 7
subjects. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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color differences on binocular rivalry rate with orthogonal
gratings may be due to this saturation, which may be even
greater when using smaller stimuli, because the use of smal-
ler stimuli limits the amount of piecemeal rivalry (Bonneh
et al., 2001; O’Shea, Sims, & Govan, 1997). Since piecemeal
rivalry is a major complementary percept of full exclusivity
(especially in binocular rivalry), larger stimuli allow for a
greater increase in perceptual coherence due to color
differences.

We find that the amount of suppression in both flickered
and normal binocular rivalry is positively and significantly
correlated with color difference between the stimulus grat-
ings (Spearman’s q for 71 df, 0.42 and 0.43, respectively,
p = .0001 and p < .0001). The difference between situations
in which rivalry is based on interocular differences (contin-
uous and flickered binocular rivalry) and situations in
which suppression is based on pattern (F&S and monocu-
lar rivalry) clearly demonstrates that eye-of-origin informa-
tion is a very strong feature on which perceptual
suppression is based, consistent with its low-level origins.
As in experiment 1, a two-way ANOVA with interactions
shows that whereas both the effects of color difference
(F(8, 261) = 6.5, p < .001) and the effect of pattern/eye dif-
ference (F(1, 261) = 4.6, p < .05) are significant, their inter-
action is not (F(8, 261) = 0.65, p = .74).

The dependence of the amount of exclusive perception
on both eye-of-origin information and color differences
between gratings indicates that in binocular rivalry, too,
multiple information sources contribute to the generation
of perceptual exclusivity. Although eye-of-origin informa-
tion is a very strong and low-level segregating feature, it
plays its role according to the rules of suppression based
on distance in multiple feature spaces.

5. Discussion

We asked whether the strength of conflict in pattern riv-
alry is due to mere feature-based division between the grat-
ings, or depends on a real-world model that the brain may
construct based on the inferred spatial properties of object
representations. Our data strongly favor the feature-based
hypothesis, according to which rivalry is dependent on the
amount of ‘evidence’ (independent of the cue that causes it)
of the separation of two grating patterns.

There is no influence of depth order on our results. This
independence of spatial scene layout implies that in our
experiment, suppression occurs at relatively early neural
levels at which depth ordering does not play a substantial
role. This finding can be contrasted to prior results (Maier
et al., 2005), where the amount of perceptual suppression
reported was influenced by the depth order in the stimulus.
However, as Maier et al.’s stimuli depended critically on
contextual filling-in of suppression, their findings are likely
the result of higher-level center-surround interactions.

Furthermore, the results of the control experiment in
which we varied the position in depth of the fixation mark
demonstrates that the increase in the amount of exclusive
perceptual suppression due to separation in depth is inde-
pendent of the depth-plane of fixation. Regarding eye pos-
ture, it has been suggested (Georgeson, 1984; Georgeson &
Phillips, 1980), that there is a significant role for eye move-
ments in the dynamics of monocular rivalry due to the fact
that eye movements cause shifts in the retinal image,
thereby causing interactions between negative after-images
and stimulus patterns. This cannot provide a full explana-
tion for perceptual switches during monocular rivalry,
however, since these switches also occur with afterimages
(Bradley & Schor, 1988; Crassini & Broerse, 1982) and
without eye movements (van Dam & van Ee, 2006). In
our experiments, if fixation were alternately on the depth
planes of near and far planes, these eye movements would
equally promote dominance of both stimulus bar patterns,
as both would shift by equal amounts in the two eyes due
to the fact that grating orientations in both eyes were ±45.
Therefore, eye movements between the different depth
planes of our stimuli cannot explain our results.

The dismissal of eye-of-origin information from binocu-
lar rivalry by use of the F&S stimulation paradigm
increases the relative importance of color differences
between the two grating patterns. Both F&S and monocu-
lar rivalry have been coined ‘‘pattern rivalry’’ (Logothetis
et al., 1996; Maier et al., 2005) to illustrate the higher,
eye-independent origins of the perceptual suppression that
occurs. Under F&S and monocular pattern rivalry condi-
tions, the data show a very similar monotonic increase in
suppression due to the increase in color difference between
the grating patterns. This correspondence between the two
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types of eye-independent pattern rivalry may point to a
common neural mechanism, one at which eye-independent
orientation detectors engage in mutual inhibition.

Stimulus flicker does play a role in the effects of the F&S
manipulation (Lee & Blake, 1999) and also increases the
occurrence of interocular grouping in binocular rivalry
(Knapen, Paffen, Kanai, & van Ee, 2007). However, in
our experiment 2 it is the eye-swap operation that effec-
tively eliminates eye-of-origin information as a segregating
feature, suggesting a prominent role for the eye-swap tran-
sient in generating percepts that mimic normal binocular
rivalry in duration. This finding is hard to reconcile with
models that describe F&S rivalry (Wilson, 2003), according
to which it is the flicker that causes binocular rivalry to
transpire on a higher, eye-independent level and the eye-
swap procedure is merely necessary to bring the resulting
eye-independence to light.

The large differences in color sensitivity between rivalry
based on eye and rivalry based on pattern suggest that
whereas binocular rivalry may be the result of the processes
that underlie interocular matching (Carlson & He, 2004; Ooi
& He, 2006) and are sensitive to patterns that occur in bin-
ocular occlusion situations (Shimojo & Nakayama, 1990),
pattern rivalry is more likely the result of scene segmentation
mechanisms (Boutet & Chaudhuri, 2001; Maier et al., 2005).

The different information sources (color, stereo-defined
depth and eye-of-origin) we used in our experiments inde-
pendently affect the strength of perceptual suppression as
measured by the total amount of exclusive perception. This
implies that there is an important role for integrated dis-
tributed processing based on the representation of multiple
information sources in the generation of perceptual sup-
pression as measured by perceptual exclusivity.
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