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Abstract

We study three-dimensional pseudo-Riemannian manifolds having distinct constant principal Ricci curvatures. These spaces are
described via a system of differential equations, and a simple characterization is proved to hold for the locally homogeneous ones.
We then generalize the technique used in [O. Kowalski, F. Prüfer, On Riemannian 3-manifolds with distinct constant Ricci eigen-
values, Math. Ann. 300 (1994) 17–28] for Riemannian manifolds and construct explicitly homogeneous and non-homogeneous
pseudo-Riemannian metrics in R

3, having the prescribed principal Ricci curvatures.
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1. Introduction

A pseudo-Riemannian manifold (M,g) is homogeneous provided that, for any points p,q ∈ M , there exists an
isometry φ such that φ(p) = q , it is locally homogeneous if there is a local isometry mapping a neighborhood of p

into a neighborhood of q [19]. Pseudo-Riemannian homogeneous and locally homogeneous spaces are one of the
most interesting research fields in pseudo-Riemannian geometry. Recently, many authors investigated the problem of
extending several results concerning homogeneous Riemannian manifolds, to the more general framework of pseudo-
Riemannian geometry (in particular, to Lorentzian geometry).

A pseudo-Riemannian manifold (M,g) is curvature homogeneous up to order k if, for any points p,q ∈ M , there
exists a linear isometry φ :TpM → TqM such that φ∗(∇ iR(q)) = ∇ iR(p) for all i � k. When k = 0, (M,g) is
simply called a curvature homogeneous space. Clearly, a locally homogeneous space is curvature homogeneous of
any order k. Conversely, if k is sufficiently high, curvature homogeneity up to order k implies local homogeneity. This
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result was proved by Singer [22] for Riemannian manifolds. Through the equivalence theorem for G-structures due
to Cartan and Sternberg [23], Singer’s result can be extended to the pseudo-Riemannian case.

If dimM = 2, then curvature homogeneity (up to order 0) already implies local homogeneity. However, when
dimM � 3, a curvature homogeneous space needs not to be locally homogeneous. Several examples are known,
both in Riemannian and Lorentzian geometry, of non-homogeneous curvature homogeneous spaces. We can refer
to [2] for a survey and further references for the Riemannian case. Bueken and Vanhecke [7] showed that there
exist non-homogeneous Lorentzian three-spaces which are curvature homogeneous up to order one. Indeed, curvature
homogeneity of order two is needed to ensure that a three-dimensional Lorentzian manifold is locally homogeneous [6]
(in the Riemannian case, curvature homogeneity of order one is sufficient [21]).

Riemannian curvature homogeneous three-spaces have been extensively studied. A three-dimensional Riemannian
manifold (M,g) is curvature homogeneous if and only if its principal Ricci curvatures are constant. The problem of
classifying three-dimensional manifolds with prescribed constant Ricci curvatures goes back to Bianchi [1]. In 1991,
Yamato [24] gave criteria for local homogeneity and described the first examples of non-homogeneous Riemannian
three-manifolds with constant distinct Ricci eigenvalues. In [13], Kowalski studied the case with two distinct constant
Ricci eigenvalues, proving an existence result. Some non-trivial examples were also given, but a universal family of
examples is not known. An alternative proof of the main existence theorem of [13] was given in [3]. In the case with
all distinct principal Ricci curvatures, a general existence theorem of Cauchy–Kowalewski type was proved in [16],
while [15] provides a universal family of examples, showing how to construct explicitly Riemannian metrics on R

3

having the prescribed distinct constant Ricci eigenvalues. The argument used in [16] was further developed in [17],
where the existence theorem was also extended by taking arbitrary distinct functions as Ricci eigenvalues. Note also
that an explicit classification has been obtained under some additional geometric conditions. A survey can be found
in [17].

The Lorentzian case appears more complex. In fact, while a Riemannian manifold (M,g) always admits an ortho-
normal frame diagonalizing its Ricci operator Q, in the Lorentzian case Q can take four different forms (called Segre
types). Hence, prescribing the principal Ricci curvatures of a Lorentzian three-manifold is not equivalent to prescribe
its Ricci operator, and one needs to specialize the study to the different Segre types.

The study of three-dimensional curvature homogeneous Lorentzian spaces was undertaken first by Bueken, who
considered the diagonal case with two distinct Ricci eigenvalues [4], as well as a non-diagonal case [5]. Other non-
diagonal examples have been investigated in [10] and [12]. Clearly, the diagonal case is trivial when all principal Ricci
curvatures coincide: the space has constant sectional curvature (in particular, it is locally homogeneous).

As references above show, several authors focused on the problem of finding explicit examples of non-
homogeneous curvature homogeneous pseudo-Riemannian three-manifolds. However, the problem of constructing
explicit homogeneous pseudo-Riemannian metrics, having the required curvature properties (in particular, prescribed
Ricci eigenvalues), is far from trivial. This problem is motivated both by the important role played by locally homo-
geneous spaces and by the abstractness of some known examples (for example, Lie groups only described through
the form of their Lie algebra). In this paper, we shall provide a complete description of a three-dimensional pseudo-
Riemannian manifold (M,g), having constant distinct principal Ricci curvatures and a diagonal Ricci operator. We
shall then exhibit explicit examples of non-homogeneous and homogeneous pseudo-Riemannian metrics in R

3, having
the same (constant) principal Ricci curvatures of a given (M,g).

The paper is organized in the following way. In Section 2, we give a general description of (M,g) via a system
of differential equations for the functions determining its Levi Civita connection. We also investigate the isometries
among such spaces and characterize the locally homogeneous cases. In Section 3, we determine a system of par-
tial differential equations, whose solutions permit to construct explicitly curvature homogeneous pseudo-Riemannian
metrics on R

3 with the prescribed distinct Ricci eigenvalues. In Section 4, a class of non-homogeneous solutions of
the system is described. Finally, in Section 5 a family of pseudo-Riemannian locally homogeneous metrics on R

3,
having q, q2 and q3 as Ricci eigenvalues, is explicitly described. The triplet (q1, q2, q3) is chosen in a way that covers
all locally homogeneous Riemannian three-manifolds with distinct Ricci eigenvalues and most of the Lorentzian ones
(with a diagonal Ricci operator). The remaining Lorentzian cases, both with diagonal and non-diagonal Ricci operator,
will be treated in a forthcoming paper.
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2. Pseudo-Riemannian 3-manifolds with constant Ricci eigenvalues: general description

Let (M,g) be a connected three-dimensional pseudo-Riemannian manifold. We denote by ∇ the Levi Civita con-
nection of (M,g) and by R its curvature tensor, taken with the sign convention

R(X,Y )Z = −∇X∇Y Z + ∇Y ∇XZ + ∇[X,Y ]Z.

Since dimM = 3, its curvature tensor is completely determined by the Ricci tensor �, defined, for any point p ∈ M

and X,Y ∈ TpM , by

(2.1)�(X,Y )p =
3∑

i=1

εig
(
R(X,ei)Y, ei

)
,

where {e1, e2, e3} is a pseudo-orthonormal basis of TpM and εi = g(ei, ei) = ±1 for all i.
Because of the symmetries of the curvature tensor, the Ricci tensor � is symmetric [19]. Hence, the Ricci operator

Q, defined by g(QX,Y ) = �(X,Y ), is self-adjoint. In the Riemannian case, this fact implies that there exists an
orthonormal basis diagonalizing Q, while for a Lorentzian manifold four different cases can occur ([18, p. 261], [4]),
and there exists a suitable pseudo-orthonormal basis {e1, e2, e3}, such that Q takes one of the following forms, called
Segre types:

Segre type {11,1} :
(

ā 0 0
0 b̄ 0
0 0 c̄

)
, Segre type {1zz̄} :

(
ā 0 0
0 b̄ c̄

0 −c̄ b̄

)
,

Segre type {21} :
(

ā 0 0
0 b̄ ε

0 −ε b̄ − 2ε

)
, Segre type {3} :

(
b̄ ā −ā

ā b̄ 0
ā 0 b̄

)
.

Assume now (M,g) is curvature homogeneous. Then, is easily seen that its Ricci operator Q has the same Segre
type at every point p ∈ M and that, at least locally, there exists a pseudo-orthonormal frame field {e1, e2, e3} such that
Q is given by one of the expressions above, where ā, b̄ and c̄ are constants. We shall refer to the eigenvalues of the
Ricci operator as principal Ricci curvatures or, more briefly, Ricci eigenvalues. Throughout the paper, we shall deal
with the diagonal case with three distinct principal Ricci curvatures, that is, we assume that, with respect to {ei}, we
have

(2.2)qi = εi�ii , �ij = 0 if i �= j,

and

(2.3)qi �= qj if i �= j.

Following [8], we now put

(2.4)∇ei
ej =

∑
k

εj b
i
jkek.

Clearly, the functions bi
jk determine completely the Levi Civita connection, and conversely. Note that from ∇g = 0 it

follows at once

(2.5)bi
kj = −bi

jk,

for all i, j, k. In particular,

(2.6)bi
jj = 0

for all indices i and j . We now put

b1
12 = α, b1

13 = β b1
23 = γ, b2

12 = κ, b2
13 = μ, b2

23 = ν,

(2.7)b3
12 = σ, b3

13 = τ, b3
23 = ψ.
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Reversing the metric [18, p. 92] when needed and suitably rearranging e1, e2, e3, we can assume εi = 1 for all i in the
Riemannian case, and ε1 = −ε2 = ε3 = 1 in the Lorentzian one. Thus, we can treat in a unified way the Riemannian
and Lorentzian cases, by assuming ε1 = ε3 = 1 and ε2 = ε = ±1. By (2.4)–(2.7) we get that the Levi Civita connection
∇ of (M,g) is completely determined by

∇e1e1 = αe2 + βe3, ∇e2e1 = κe2 + μe3, ∇e3e1 = σe2 + τe3,

∇e1e2 = ε(−αe1 + γ e3), ∇e2e2 = ε(−κe1 + νe3), ∇e3e2 = ε(−σe1 + ψe3),

(2.8)∇e1e3 = −βe1 − γ e2, ∇e2e3 = −μe1 − νe2, ∇e3e3 = −τe1 − ψe2.

In particular, from (2.8) we get at once

[e1, e2] = −εαe1 − κe2 + (εγ − μ)e3,

[e1, e3] = −βe1 − (γ + σ)e2 − τe3,

(2.9)[e2, e3] = (εσ − μ)e1 − νe2 − εψe3.

Note that, conversely, functions (bi
jk) are completely determined by the Lie brackets of vectors e1, e2, e3, since the

well-known Koszul formula [19] yields

(2.10)2εj εkb
i
jk = 2g(∇ei

ej , ek) = g
([ei, ej ], ek

) − g
([ej , ek], ei

) + g
([ek, ei], ej

)
.

Before using (2.8) to express curvature conditions (2.2), we remark that functions α, . . . ,ψ are not all independent.
In fact, from (2.2) and (2.4) it easily follows

(2.11)∇i�jk = −εj εk(qj − qk)b
i
jk,

for all indices i, j, k (in particular, ∇i�jj = 0 for all i, j ). Since (M,g) is curvature homogeneous, its scalar curvature
r = tr� is constant. The well-known divergence formula dr = 2 div� [19] then implies

(2.12)∇1�12 + ∇3�23 = 0, ∇1�13 + ε∇2�23 = 0, ε∇2�12 + ∇3�13 = 0.

Using (2.11) in (2.12), since all qi are distinct we obtain

(2.13)ν = −q1 − q3

q2 − q3
β, τ = −q1 − q2

q1 − q3
κ, ψ = −q1 − q2

q2 − q3
α.

Then, putting c = − q1−q3
q2−q3

, we have c �= 0,−1 and we can rewrite (2.13) as follows:

(2.14)ν = cβ, τ = −1 + c

c
κ, ψ = (1 + c)α.

We can now compute the components of the curvature tensor with respect to {e1} starting from (2.8). Then, (2.1)
and (2.2) provide the components of the Ricci tensor and the Ricci eigenvalues, respectively. Via standard calculations,
also taking into account (2.14), we get

−q1 = e1(κ) − e2(α) + εα2 + κ2 + cβ2 − γμ − σ(εγ − μ)

(2.15)− 1 + c

c
e1(κ) − e3(β) + β2 + (1 + c)2

c2
κ2 + ε

(
γ σ − (1 + c)α2) + μ(γ + σ),

−q2 = e1(κ) − e2(α) + εα2 + κ2 + cβ2 − γμ − σ(εγ − μ)

(2.16)+ (1 + c)e2(α) − ce3(β) + c2β2 + (1 + c)2εα2 − 1 + c

c
κ2 − μσ + γ (μ − εσ ),

−q3 = −1 + c

c
e1(κ) − e3(β) + β2 + (1 + c)2

c2
κ2 + ε

(
γ σ − (1 + c)α2) + μ(γ + σ)

(2.17)+ (1 + c)e2(α) − ce3(β) + c2β2 + (1 + c)2εα2 − 1 + c

c
κ2 − μσ + γ (μ − εσ ).

We can express conditions (2.15)–(2.17) in a simpler form. In fact, putting

(2.18)λ1 = 1
(−q1 + q2 + q3), λ2 = 1

(q1 − q2 + q3), λ3 = 1
(q1 + q2 − q3),
2 2 2
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we have that the Ricci principal curvatures {qi} determine the values of {λi}, and conversely. Note also that

q1 = λ2 + λ3, q2 = λ1 + λ3, q3 = λ1 + λ2

and so,

(2.19)λi − λj = −(qi − qj ),

for all indices i, j . From (2.18) it follows that (2.15)–(2.17) are equivalent to

(2.20)−λ3 = e1(κ) − e2(α) + εα2 + κ2 + cβ2 − γμ − σ(εγ − μ),

(2.21)−λ2 = −1 + c

c
e1(κ) − e3(β) + β2 + (1 + c)2

c2
κ2 + ε

(
γ σ − (1 + c)α2) + μ(γ + σ),

(2.22)−λ1 = (1 + c)e2(α) − ce3(β) + c2β2 + (1 + c)2εα2 − 1 + c

c
κ2 − μσ + γ (μ − εσ ).

Now, again by (2.1) and (2.8) and taking into account (2.7), we easily obtain that the second equation in (2.2) is
satisfied if and only if

(2.23)e1(μ) − e2(β) − 1

c
κμ + ε(c − 1)αβ − ε

1 + 2c

c
γ κ = 0,

(2.24)(1 + c)e1(α) − e3(γ ) + (1 + c)βγ + (1 + c)(2 + c)

c
ακ + (c − 1)βσ = 0,

(2.25)e2(σ ) − e3(κ) + cεασ + (2 + c)αμ + (1 + 2c)βκ = 0.

Therefore, we can conclude that curvature homogeneous pseudo-Riemannian three-manifolds (M,g), having a di-
agonal Ricci operator (that is, of Segre type {11,1}) and (constant) principal Ricci curvatures q1, q2 and q3, are
characterized by Eqs. (2.20)–(2.25). By (2.8) (equivalently, (2.9)), functions α,β, γ, κ,μ,σ , appearing in (2.20)–
(2.25) determine the Levi Civita connection of (M,g). In this way, we proved the following

Theorem 2.1. Let (M,g) be a three-dimensional pseudo-Riemannian manifold. (M,g) has a diagonal Ricci operator
with constant principal Ricci curvatures q1, q2 and q3 if and only if there exist (at least, locally) a pseudo-orthonormal
frame field {e1, e2, e3} and six functions α,β, γ, κ,μ,σ , such that (2.9) and (2.20)–(2.25) hold.

In order to give a complete local classification result, consider now two pseudo-Riemannian three-manifolds
(M,g), (M ′, g′) which are solutions of (2.20)–(2.25). In other words, according to Theorem 2.1, (M,g) and (M ′, g′)
are curvature homogeneous three-spaces, with diagonal Ricci operator and (constant) principal Ricci curvatures q1, q2
and q3 and so, they admit (at least, locally) pseudo-orthonormal frame fields {e1, e2, e3} and {e′

1, e
′
2, e

′
3} respectively,

for which (2.20)–(2.25) hold. Then, we have the following

Theorem 2.2. A differentiable mapping f :M → M ′ is an isometry if and only if

f∗(ei) = ε′
ie

′
i ,

where ε′
i = ±1 for all i = 1,2,3.

Proof. The “if” part is obvious. As concerns the “only if” part, suppose that f is an isometry. Then, f must preserve
the eigenspaces of the Ricci operator. Since the principal Ricci curvatures are distinct, these eigenspaces are one-
dimensional. Therefore, we must have f∗(ei) = ε′

ie
′
i , where ε′

i = ±1, for all i = 1,2,3. �
Remark 2.3. If only two Ricci eigenvalues are distinct, one of the eigenspaces of the Ricci operator is two-
dimensional. Hence, there exist infinitely many different pseudo-orthonormal frames of Ricci eigenvectors, and one
can choose a special pseudo-orthonormal frame, for which some connection functions bi

jk vanish [4]. A similar tech-
nique was also used for the non-diagonal case treated in [5]. Theorem 2.2 shows a greater rigidity and complexity for
the case with three distinct Ricci eigenvalues.
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We now determine a simple criterion to recognize locally homogeneous three-spaces, among all solutions of
(2.20)–(2.25). We start by showing that pseudo-Riemannian three-manifolds, with distinct Ricci eigenvalues, are never
locally symmetric. In fact, since all qi are distinct, by (2.11) we can conclude that (M,g) is locally symmetric (equiva-
lently, Ricci-parallel) if and only if bi

jk = 0 for all i, j, k. But then, (2.20)–(2.25) imply that (M,g) is flat. In particular,
q1 = q2 = q3 = 0 and this can not occur.

As the author proved in [8], a three-dimensional locally homogeneous Lorentzian three-manifold is either locally
symmetric or locally isometric to a Lie group, equipped with a left-invariant Lorentzian metric. The corresponding
result for Riemannian manifolds was proved in [21]. Taking into account these results, we can now prove the following

Theorem 2.4. Let (M,g) be a three-dimensional pseudo-Riemannian manifold, for which (2.9) and (2.20)–(2.25)
hold. (M,g) is locally homogeneous if and only if the functions α,β, γ, κ,μ,σ are constant.

Proof. If (2.9) holds for some constants α,β, γ, κ,μ,σ , then by (2.10) we have that all bi
jk are constant (at least,

locally). Since the components of the Ricci tensor and of its derivatives of any order with respect to {ei} depend
on bi

jk , we have that (M,g) is curvature homogeneous up to any order k and so, it is locally homogeneous.
Conversely, assume now (M,g) is locally homogeneous. As we already noticed, (M,g) is not locally symmetric.

Hence, the main results of [8] and [21] imply that (M,g) is locally isometric to a three-dimensional Lie group G,
equipped with a left-invariant pseudo-Riemannian metric. The Lie algebra g of G admits a pseudo-orthonormal basis
{e′

1, e
′
2, e

′
3}, such that

[e′
1, e

′
2] = k1e

′
1 + k2e

′
2 + k3e

′
3,

[e′
1, e

′
3] = k4e

′
1 + k5e

′
2 + k6e

′
3,

(2.26)[e′
2, e

′
3] = k7e

′
1 + k8e

′
2 + k9e

′
3,

for some real constants k1, . . . , k9. The conclusion then follows comparing (2.26) with (2.9). �
3. The basic system of partial differential equations

Let (M,g) be a three-dimensional pseudo-Riemannian manifold, having a diagonal Ricci operator and constant
distinct principal Ricci curvatures q1, q2 and q3. Generalizing the technique used in [15] for the Riemannian case, we
shall express Eqs. (2.20)–(2.25) via a system of partial differential equations for some functions of three variables,
whose solutions permit to build explicitly pseudo-Riemannian metrics on R

3 with the curvature properties of (M,g).
We fix a point p ∈ M and consider a pseudo-orthonormal frame field {e1, e2, e3} as in Theorem 2.1. We then

choose a surface S through p transversal to the lines generated by e3, a local coordinates system (w,x) on S and a
neighborhood Up of p, sufficiently small that each q ∈ Up is situated on exactly one line generated by e3 and passing
through one point q̄ ∈ S.

Choose an orientation of S and define the coordinate function y in Up as the oriented distance of the point q from
S along the corresponding line, that is,

(3.1)y(q) = dist
(
q,π(q)

)
,

where π :Up → S is the corresponding projection. We also define

(3.2)w(q) = w
(
π(q)

)
, x(q) = x

(
π(q)

)
.

In this way, a local coordinate system (w,x, y) is introduced in Up . Notice that e3 = ∂
∂y

and the coframe {ω1,ω2,ω3}
of {e1, e2, e3} must take the form

ω1 = Adw + B dx,

ω2 = C dw + D dx,

(3.3)ω3 = Gdw + H dx + dy,

for some functions A,B,C,D,G,H .
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Next, we introduce the connection forms on (M,g), putting

(3.4)ωi
j =

∑
k

εj b
i
jkω

k.

Connection forms completely determine the Levi Civita connection, because from (3.4) it follows

∇ei
ej =

∑
k

ωk
j (ei)ek,

for all i, j . Moreover, from (2.6) we easily get

(3.5)ωi
j + εiεjω

j
i = 0

for all i, j . In particular, ωi
i = 0 for all i. The structure equations for ωi

j give

(3.6)dωi +
∑
j

ωi
j ∧ ωj = 0,

for all indices i. As concerns the curvature forms Ωi
j , they are completely determined by the standard equations

(3.7)−dΩi
j = dωi

j +
∑

k

ωi
k ∧ ωk

j .

Using (2.2) and taking into account (3.5) and (2.18), we obtain that (3.7) is equivalent to

dω1
2 + ω1

3 ∧ ω3
2 = ελ3ω

1 ∧ ω2,

dω1
3 + ω1

2 ∧ ω2
3 = λ2ω

1 ∧ ω3,

(3.8)dω2
3 − ω1

2 ∧ ω1
3 = λ1ω

2 ∧ ω3

(where we used ε1 = ε3 = 1 and put ε2 = ε). We now use (3.3) in (3.6). After some routine calculations, also taking
into account (2.7) and (2.14), we obtain that (3.6) is equivalent to the following system of nine partial differential
equations:

B ′
w − A′

x = εαD + βE + (μ − εσ )F,

A′
y = −βA − (μ − εσ )C,

B ′
y = −βB − (μ − εσ )D,

D′
w − C′

x = κD + (γ + σ)E + cβF,

C′
y = −(γ + σ)A − cβC,

D′
y = −(γ + σ)B − cβD,

H ′
w − G′

x = (μ − εγ )D − 1 + c

c
κE + (1 + c)εαF,

G′
y = 1 + c

c
κA − (1 + c)εαC,

(3.9)H ′
y = 1 + c

c
κB − (1 + c)εαD,

where D,E,F are auxiliary functions, defined by

(3.10)D = AD − BC, E = AH − BG, F = CH − DG.

Starting from the connection functions bi
jk of (Mg), system (3.9) permits to determine the functions A, . . . ,H and

so, to give explicit pseudo-Riemannian metrics on R
3, with the same Levi Civita connection of (M,g). Notice that,

conversely, if A, . . . ,H are known, then by (3.9) we can determine the connection functions bi .
jk
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We now use (3.3) to express curvature conditions (3.8). Via some very long but standard calculations, we obtain
that (3.8) is equivalent to the following system of differential equations:

Aα′
x − Bα′

w + Cκ ′
x − Dκ ′

w + Gσ ′
x − Hσ ′

w −D(U3 + λ3) − EV3 −FW3 = 0,

Aα′
y + Cκ ′

y + Gσ ′
y − σ ′

w − AV3 − CW3 = 0,

Bα′
y + Dκ ′

y + Hσ ′
y − σ ′

x − BV3 − DW3 = 0,

Aβ ′
x − Bβ ′

w + Cμ′
x − Dμ′

w − 1 + c

c
Gκ ′

x + 1 + c

c
Hκ ′

w −DU2 − E(V2 + λ2) −FW2 = 0,

Aβ ′
y + Cμ′

y − 1 + c

c
Gκ ′

y + 1 + c

c
κ ′
w − A(V2 + λ2) − CW2 = 0,

Bβ ′
y + Dμ′

y − 1 + c

c
Hκ ′

y + 1 + c

c
κ ′
x − B(V2 + λ2) − DW2 = 0,

Aγ ′
x − Bγ ′

w + cCβ ′
x − cDβ ′

w + (1 + c)Gα′
x − (1 + c)Hα′

w −DU1 − EV1 −F(W1 + λ1) = 0,

Aγ ′
y + cCβ ′

y + (1 + c)Gα′
y − (1 + c)α′

w − AV1 − C(W1 + λ1) = 0,

(3.11)Bγ ′
y + cDβ ′

y + (1 + c)Hα′
y − (1 + c)α′

x − BV1 − D(W1 + λ1) = 0,

where we put

U1 = −cεαγ + (2 + c)αμ + (c − 1)βκ,

V1 = − (1 + c)(2 + c)

c
ακ + (1 − c)βγ + (1 + c)βσ,

W1 = (1 + c)2εα2 + c2β2 − 1 + c

c
κ2 + γμ − εγ σ − μσ,

U2 = (1 − c)εαβ + 1 + 2c

c
εγ κ − 1

c
κμ,

V2 = −(1 + c)εα2 + β2 + (1 + c)2

c2
κ2 + γμ + εγ σ + μσ,

W2 = − (1 + c)(1 + 2c)

c
εακ + (1 + c)βμ + (c − 1)εβσ,

U3 = εα2 + cβ2 + κ2 − γμ − εγ σ + μσ,

V3 = (2 + c)αβ + 1 + 2c

c
γ κ − 1

c
κσ,

(3.12)W3 = (2 + c)αμ + cεασ + (1 + 2c)βκ.

In this way, we proved the following

Theorem 3.1. Let A,B,C,D,G,H be smooth functions on the three variables w,x, y, satisfying partial differential
equations (3.9) and (3.12). Then, (3.3) describes a curvature homogeneous pseudo-Riemannian metric g on R

3, with
diagonal Ricci operator and (constant) Ricci principal curvatures q1, q2, q3.

Remark 3.2. A similar argument has been already used in [15] for the Riemannian case. We can refer to [15] for a more
detailed description of how the corresponding equations for the connection and the curvature are obtained. Occasional
changes of sign with respect to corresponding formulas in [15] are due to the different curvature convention and the
different choice of the connection forms ωi

j .

4. A class of non-homogeneous solutions

We now look for a special class of solutions of the systems of differential equations (3.9) and (3.12), obtained
by making some assumptions which remarkably simplify these equations. Here we simply adapt to our systems the
procedure already used in [15]. For this reason, we prefer not to include the detailed explanation of the assumptions
below and to refer to [15] for more information.
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First of all, we suppose that the connection functions bi
jk are independent of the variable y (notice that, by Theo-

rem 2.4, this condition is satisfied even when (M,g) is locally homogeneous). Moreover, we assume that the following
formulas hold:

(4.1)β = 0, κ = 0, σ = −γ,

(4.2)cγμ = λ2 + (1 + c)λ3,

(4.3)(1 + c)α2 = ελ2 − γ 2.

Assuming γ �= 0, (4.2) permits to write μ in function of γ . Moreover, by its definition, c satisfies 1 + c < 0. If
ελ2 − γ 2 < 0 and we also require α > 0, then Eq. (4.3) permits to determine uniquely α in function of γ . We are now
ready to state the following

Theorem 4.1. Let (M,g) be a three-dimensional pseudo-Riemannian manifold with diagonal Ricci operator and
constant distinct Ricci eigenvalues q1, q2 and q3, and α,β, γ, κ,μ,σ smooth functions on R

2[w,x], satisfying (4.1),
(4.2) and (4.3). If

(4.4)γ > 0, γ ′
w �= 0, γ 2 > max

{
ελ2,

(2 + c)(λ2 + (1 + c)λ3)

c2

}
,

then there exist six smooth functions A,B,C,D,G,H on R
3[w,x, y] which are solutions of (3.9) and (3.12) and so,

determine pseudo-Riemannian metrics on R
3 with Ricci eigenvalues q1, q2, q3.

Proof. Because of (4.1)–(4.4) and taking into account (2.14), all connection functions are uniquely determined as
functions of γ (in the case of α, since we assumed α > 0).

Suppose now to choose a particular function γ , satisfying (4.4). Using (4.1)–(4.4), one can check that all curvature
conditions expressed by (3.11) are satisfied by arbitrary functions A,B,G,H and by C,D uniquely determined by

(4.5)C = − γ ′
w

f (γ )
, D = − γ ′

x

f (γ )
,

where we put f (γ ) = W3 (different from zero, because of the last condition in (4.4)).
To complete the proof applying Theorem 3.1, we must check that also connection conditions (3.9) are satisfied,

under suitable assumptions on A,B,G,H . By (4.1)–(4.3), (3.9) reduces to

C′
y = 0, D′

y = 0,

A′
y = (εσ − μ)C, B ′

y = (εσ − μ)D,

G′
y = −(1 + a)εαC, H ′

y = −(1 + a)εαD,

B ′
w − A′

x = εαD + (μ − εσ )F,

D′
w − C′

x = 0,

(4.6)H ′
w − G′

x = (μ − εγ )D + (1 + a)εαF .

Equations in the first and fifth rows of (4.6) are satisfied because of (4.5). Next, we can integrate equations in the
second and third rows of (4.6) and then require that their solutions A,B,G,H also satisfy the remaining equations in
(4.6). In this way, we conclude that (4.6) is satisfied if and only if

A = C(εσ − μ)y + A0(w,x), B = D(εσ − μ)y + B0(w,x),

G = −(1 + c)Cεαy + G0(w,x), H = −(1 + c)Dεαy + H0(w,x),

with A0,B0,G0,H0 smooth functions on R
2[w,x], satisfying

(A0)
′
x − (B0)

′
w = (CB0 − DA0)εα + (CH0 − DG0)(εσ − μ),

(4.7)(G0)
′
x − (H0)

′
w = (CB0 − DA0)(εγ − μ) − (CH0 − DG0)(1 + c)εα.
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Choosing B0, H0 as arbitrary C∞-functions, (4.7) is a system of two linear first order ordinary differential equations
for A0,G0, with w as a parameter. Then, the standard existence theorem yields that the solution (A0,G0) exists in the
whole R

2[x,w] and this ends the proof. �
Remark 4.2. For any choice of the arbitrary two-variables functions B0 and H0, we obtain an explicit solution
A,B,C,D,G,H for (3.9) and (3.11). Note that A0 and G0 depend each from an arbitrary function of the vari-
able w. Hence, from the proof of Theorem 4.1 it follows that for any choice of q1, q2, q3, there exists a family of
curvature homogeneous pseudo-Riemannian metrics on R

3, with Ricci eigenvalues qi , formally depending on two
functions of two variables and two more functions of one variable.

It should be noted that because of Theorem 2.4, all the solutions given in Theorem 4.1 are non-homogeneous,
because (4.4) implies that γ is not constant. It is also worthwhile to emphasize that two of such solutions, obtained
starting by two different functions γ = b1

23, are never (locally) isometric. In fact, Theorem 2.2 implies that two lo-
cally isometric curvature homogeneous pseudo-Riemannian three-manifolds (M,g) and (M ′, g′), with respect to the
suitable frames {ei} and {e′

i}, necessarily have the same connection functions (at most, up to sign).
We now end this section by exhibiting, for any choice of the triplet (q1, q2, q3), an explicit pseudo-Riemannian

metric on R
3, having qi as Ricci eigenvalues. In fact, a straightforward calculation proves the following

Corollary 4.3. Let (q1, q2, q3) be any real triplet. Consider an arbitrary one-variable function γ = γ (w) satisfy-
ing (4.4) and α,β, κ,μ,σ determined by (4.1), (4.2), (4.3) as functions of γ . Then, the following functions

A = C(εσ − μ)y + Cεαx, B = 1,

C = − γ ′
w

f (γ )
, D = 0,

(4.8)G = −C(1 + c)εαy + C(εγ − μ)x, H = 0

are solutions of (3.9) and (3.11). So, (3.3) and (4.8) determine explicitly a (non-homogeneous) curvature homogeneous
pseudo-Riemannian metric g on R

3, having Ricci eigenvalues qi .

5. Homogeneous solutions

We shall now exhibit locally homogeneous pseudo-Riemannian metrics on R
3, with prescribed distinct Ricci eigen-

values. As we noticed in Section 2, a locally homogeneous pseudo-Riemannian three-manifold with distinct Ricci
eigenvalues (and diagonal Ricci operator) is locally isometric to a three-dimensional Lie group, equipped with a
left-invariant pseudo-Riemannian metric. Three-dimensional Lie groups, admitting a left-invariant Riemannian met-
ric, have been completely classified in [18], where their curvature has also been described. The classification in the
Lorentzian case can be obtained by combining the results of [11] and [20]. A unified presentation of three-dimensional
Lie groups with left-invariant Lorentzian metrics is given in [8], while [9] provides the description of their curvature.

In constructing homogeneous solutions of (3.9) and (3.11), we shall start from two distinct sets of conditions on
the connection coefficients, corresponding to a locally homogeneous pseudo-Riemannian manifold locally isometric
to a unimodular and a non-unimodular three-dimensional Lie group, respectively. Since the Ricci operator of a Rie-
mannian manifold is always diagonalizable, these choices cover all possibilities in the Riemannian case. Referring to
the classification given in [8] for the Lorentzian case, Lie groups having a unimodular Lie algebra of type g3, as well
as a non-unimodular Lie algebra either of type g5 or g6, are also included.

Unimodular case. We start from the following assumption:

(5.1)α = β = κ = 0, γ,μ,σ constants.

Note that by (5.1) and (2.14) we also have ν = τ = ψ = 0. Taking into account (2.9), (5.1) is then equivalent to
requiring that
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[e1, e2] = k3e3,

[e1, e3] = −k2e2,

(5.2)[e2, e3] = k1e1,

where we put k1 = εσ − μ, k2 = γ + σ and k3 = εγ − μ. Every Riemannian three-manifold locally isometric to a
unimodular Lie group admits (at least, locally) an orthonormal frame satisfying (5.2) [18]. The same property holds
for Lorentzian three-manifolds locally isometric to a unimodular Lie group having a Lie algebra of type g3 [8,20].
If (5.1) holds, then (3.12) reduces to

W1 = γμ − εγ σ − μσ, V2 = γμ + εγ σ + μσ, U3 = −γμ − εγ σ + μσ,

U1 = V1 = 0, U2 = W2 = 0, V3 = W3 = 0,

and so, (3.11) becomes

D(U3 + λ3),

E(V2 + λ2) = 0, A(V2 + λ2) = 0, B(V2 + λ2) = 0,

(5.3)F(W1 + λ1) = 0, C(W1 + λ1) = 0, D(W1 + λ1) = 0.

Next, again by (5.1), the Ricci eigenvalues are given by

(5.4)q1 = −2μσ, q2 = 2εγ σ, q3 = −2γμ.

It is interesting to remark that when (5.1) holds, γ,μ,σ determine uniquely the Ricci eigenvalues via (5.4), and
conversely. So, prescribing the Ricci eigenvalues is now equivalent to prescribe the Levi Civita connection of (M,g).
Notice also that connection functions γ,μ,σ (equivalently, constants ki ) are not completely arbitrary, since all qi must
be distinct. In particular, if ki = 0 for some i, then necessarily kj kh �= 0 for j �= i �= h, otherwise by (5.1) and (5.4)
the Ricci eigenvalues can not be all distinct.

Because of (5.4) and taking into account (2.18), it is easy to check that

W1 + λ1 = V2 + λ2 = U3 + λ3 = 0.

Therefore, all Eqs. (5.3) reduce to identities, that is, under the assumption (5.1), curvature conditions (3.11) are always
satisfied.

We now turn our attention to the connection equations (3.9). Again by (5.1), we obtain that (3.9) reduces to

A′
y = k1C, B ′

y = k1D,

C′
y = −k2A, D′

y = −k2B,

G′
y = 0, H ′

y = 0,

B ′
w − A′

x = −k1F,

D′
w − C′

x = k2E,

(5.5)H ′
w − G′

x = −k3D.

It is rather easy to find solutions of system (5.5). By the last two equations of (5.5), we get that G and H only depend
on w and x. Moreover, differentiating by y the equations in the second row of (5.5) and using the equations in the
fourth row, we get at once

(5.6)A′′
yy = ηA, B ′′

yy = ηB,

where we put η = −k1k2. In the same way, interchanging A with C and B with D, we find

(5.7)C′′
yy = ηC, D′′

yy = ηD.

One can now solve explicitly (5.6) and (5.7), for the different possibilities given by the sign of η, and then check
when these solutions also satisfy the remaining equations of (5.5). Note that, because of (3.3), D = AD − BC �= 0 is
a necessary and sufficient condition for linear independence of ωi . Some explicit solutions of (5.5) are resumed in the
following
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Theorem 5.1. Let γ , μ and σ be three non-zero constants such that the numbers q1, q2 and q3 defined by (5.4)
are distinct. Put k1 = εσ − μ, k2 = γ + σ , k3 = εγ − μ and η = −k1k2. Then, (3.3) determines a family of (locally
isometric) locally homogeneous pseudo-Riemannian metrics on R

3[w,x, y] with Ricci eigenvalues qi , where functions
A,B,C,D,G,H are the following:

• When η > 0 and k3 �= 0:

A = f cosh
(√

ηy
)
, B = θ sinh

(√
ηy

)
,

C =
√

η

k1
f sinh

(√
ηy

)
, D =

√
η

k1
θ cosh

(√
ηy

)
,

(5.8)G = − 1

θ
√

η
f ′

x, H = 0,

for a real constant θ �= 0 and

(5.9)f =
{

a1(w) cosh(
√

rx) + a2(w) sinh(
√

rx) if r > 0,

a1(w) cos(
√|r|x) + a2(w) sin(

√|r|x) if r < 0,

where r = k2k3θ
2 and a1, a2 are two arbitrary one-variable functions.

• When η > 0 and k3 = 0:

A = A0 cosh
(√

ηy
)
, B = B0 sinh

(√
ηy

)
,

C =
√

η

k1
A0 sinh

(√
ηy

)
, D =

√
η

k1
B0 cosh

(√
ηy

)
,

(5.10)G = 0, H = 0,

where A0,B0, are arbitrary functions of (w,x), satisfying A0B0 �= 0.
• When η < 0 and k3 �= 0:

A = f cos
(√|η|y)

, B = θ sin
(√|η|y)

,

C = −
√|η|
k1

f sin
(√|η|y)

, D =
√|η|
k1

θ cos
(√

ηy
)
,

(5.11)G = − 1

θ
√

η
f ′

x, H = 0,

for a real constant θ �= 0 and f given by (5.9), where r = −k2k3θ
2 and a1, a2 are two arbitrary one-variable

functions.
• When η > 0 and k3 = 0:

A = A0 cos
(√|η|y)

, B = B0 sin
(√|η|y)

,

C = −
√|η|
k1

A0 sin
(√

ηy
)
, D =

√|η|
k1

B0 cos
(√

ηy
)
,

(5.12)G = 0, H = 0,

where A0,B0, are arbitrary functions of (w,x), satisfying A0B0 �= 0.
• When η = 0: if k1k3 �= 0 = k2, then

A = f (w,x), B = k1θy,

C = 0, D = θ,

(5.13)G = − 1

k1θ
f ′

x H = 0,

for a real constant θ �= 0 and f described by (5.9), where r = −k1k3θ
2 and a1, a2 are two arbitrary one-variable

functions. The case k1 = 0 �= k2k3 gives similar solutions.
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In all the different cases, the corresponding pseudo-Riemannian metric is defined in the open subset of R
3 where

D �= 0.

Non-unimodular case. We now start by assuming that connection functions satisfy

(5.14)α = β = εσ − μ = 0, γ, κ,μ constants.

Indeed, we only need a special case of (5.14). In terms of Lie brackets, this special case corresponds to assume that
there exist four constants a, b, c, d , such that

[e1, e2] = ae2 + be3,

[e1, e3] = ce2 + de3,

(5.15)[e2, e3] = 0, with a + d �= 0, εac + bd = 0.

The Lie algebra of any three-dimensional non-unimodular Riemannian Lie group admits an orthonormal basis satis-
fying (5.15) [18]. Moreover, it is easily seen that also Lorentzian Lie groups having a non-unimodular Lie algebra of
type either g5 or g6 satisfy (5.15), with respect to a suitable pseudo-orthonormal basis {e1, e2, e3}: starting from the
description of g5 and g6 given in [8], it suffices to rearrange suitably the vectors of the pseudo-orthonormal bases of
these Lie algebras. Routine calculations show that if (5.15) holds, then the Ricci operator is diagonal, and the Ricci
eigenvalues are given by

(5.16)q1 = −a2 − d2 − ε

2
(b + εc)2, q2 = −a(a + d) − ε

2
(b2 − c2), q3 = −d(a + d) + ε

2
(b2 − c2)

(we can refer to [18] and [9] for more details). Proceeding as in the unimodular case, one can check that (3.12) now
reduces to

W1 + λ1 = 0, V2 + λ2 = 0, U3 + λ3 = 0,

U1 = V1 = 0, U2 = W2 = 0, V3 = W3 = 0,

and so, all curvature equations (3.11) are satisfied.
As concerns the connection equations (3.9), because of (5.15) they become

A′
y = 0, B ′

y = 0,

C′
y = cA, D′

y = cB,

G′
y = dA, H ′

y = dB.

B ′
w − A′

x = 0,

D′
w − C′

x = −aD − cE,

(5.17)H ′
w − G′

x = −bD − dE,

In order to provide some explicit solutions of (5.17), a straightforward calculation proves the following

Theorem 5.2. Let a, b, c, d be four real constants satisfying a + d �= 0 and εac + bd = 0, such that the numbers
q1, q2 and q3 defined by (5.16) are distinct. Then, (3.3) determines a family of (locally isometric) locally homoge-
neous pseudo-Riemannian metrics on R

3[w,x, y] with Ricci eigenvalues qi , where functions A,B,C,D,G,H are
the following:

A = f (w), B = 0,

C = cf (w)y + aθf (w)x + c0(w), D = θ,

(5.18)G = df (w)y + bθf (w)x + g0(w), H = 0,

for a real constant θ �= 0 and three arbitrary one-variable functions f, c0, g0. The corresponding pseudo-Riemannian
metric is defined in the open subset of R

3 where f �= 0.
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In [14], Kowalski and Nikčević found necessary and sufficient conditions for three real constants q1, q2, q3 to be the
principal Ricci curvatures of some three-dimensional locally homogeneous Riemannian space. Restricting ourselves
to the case of three distinct real numbers q1, q2, q3 and adapting the technique used in [14], we can easily determine
the signatures of the Ricci forms which can occur for a locally homogeneous pseudo-Riemannian three-manifold
(with diagonal Ricci operator). Hereby we briefly explain how to determine such signatures, referring to [14] as a
basic model for the argument used.

In Section 2 we proved that a locally homogeneous pseudo-Riemannian three-space, with diagonal Ricci operator
and distinct Ricci eigenvalues, can not be locally symmetric and so, is locally isometric to a (either unimodular or non-
unimodular) Lie group, equipped with a left-invariant pseudo-Riemannian metric. Consider now an arbitrary triplet
(q1, q2, q3) of distinct real numbers. Starting from (5.4), we can conclude that qi �= 0 for all i is a necessary and
sufficient condition for the existence of a pseudo-Riemannian Lie group G with Lie algebra (5.2), having q1, q2, q3 as
Ricci eigenvalues.

Suppose now that (just) one of qi vanishes. In this case, a unimodular pseudo-Riemannian Lie group having
q1, q2, q3 as Ricci eigenvalues can not exist. On the other hand, (5.16) implies that the Ricci eigenvalues satisfy
q2 + q3 < 0 and so, at least one of q2 and q3 is negative. In this case, it is possible to prove that there exists a three-
dimensional non-unimodular Lie group G, equipped with a left-invariant Lorentzian metric g, having diagonal Ricci
operator and q1, q2, q3 as Ricci eigenvalues. Hence, and using Theorem 5.2 from [14] in the Riemannian case, we see
that the only signature which could not occur for the Ricci form is (+,+,0). So, we obtained the following

Theorem 5.3. A locally homogeneous pseudo-Riemannian 3-manifold (M,g) with the distinct Ricci eigenvalues
q1, q2, q3 (and diagonal Ricci operator) exists if the Ricci form does not have the signature (+,+,0).

Theorems 5.1–5.3 now yield at once the following

Corollary 5.4. For every prescribed triplet of distinct real numbers q1, q2, q3, satisfying the restriction given in Theo-
rem 5.3, some of the formulas (5.8)–(5.13) or (5.18) provide corresponding explicit pseudo-Riemannian metrics with
the Ricci eigenvalues q1, q2, q3.

Remark 5.5. From the classification of three-dimensional Riemannian [18] and Lorentzian [11,20] Lie groups it
follows that, both in the unimodular and non-unimodular cases, they are determined by a finite number of indepen-
dent parameters. In Section 2 we proved that a locally homogeneous three-space, with diagonal Ricci operator and
distinct Ricci eigenvalues, is locally isometric to one of such Lie groups. Hence, these locally homogeneous pseudo-
Riemannian three-spaces depend, up to local isometries, on a finite number of real parameters.

In particular, as affirmed in Theorems 5.1 and 5.2, starting from a fixed set of coefficients (determining the ho-
mogeneous model via its Lie algebra), we get locally homogeneous pseudo-Riemannian metrics, with the prescribed
Ricci eigenvalues, which formally depend on arbitrary functions, but are indeed locally isometric to one another.

Theorems 5.1 and 5.2 show that in most cases there exists a locally homogeneous pseudo-Riemannian metric with
Ricci eigenvalues (q1, q2, q3), defined on the whole of R

3[w,x,w]. It remains open the problem whether for all
prescribed (q1, q2, q3), there exists a locally homogeneous pseudo-Riemannian metric which is complete and globally
defined on R

3[w,x, y].
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