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For the Lagrange interpolation polynomial L (f, x} of degree <n—1.
defined by

Ln(f; xkn) :f(xkn)9 k = 17 21 e 12, (ii}

of a given function f (based on n distinct poinis —1<x,, <
X, _1,< - - <x,,<1), P.Erdos and E. Feldheim [6] proved the following

TueoreM A. If feC[—1, 1] and x,,, k=1,2,..,n, are the zercs of
T.{x), the nth Chebyshev polynomial, then for any fixed p>0,

1
lim | L LX) G (1 =) 7 dx =0, (12}

For a more detailed study of this kind of work we refer the reader to
P. Erdos and P. Turan [7], R. Askey [1]. P.G. Nevai [11], P. Vertesi
[20], and A. K. Varma and P. Vertesi [19]. The corresponding study of
mean convergence of the Hermite-Fejér interpolation process was recently
initiated by Nevai and Vertresi [12]. In Ref. [12] weighted 7, convergence
of Hermite—Fejér interpolation based on the zeros of a generalized Jacobi
polynomial was investigated. The main result of Ref [127 gives necessary
and sufficient conditions for such convergence for all continuous functions.
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226 VARMA AND PRASAD

They mentioned that the main reason for the lack of the general theory
appears to be the complicated structure of explicit representation for the
Hermite-Fejér interpolating polynomial.

The object of this paper is to consider the problem of degree of
approximation (in the L, norm for any fixed p>0) of a given continuous
function by various interpolatory (Hermite) processes based on the
Tchebycheff nodes. Now we turn to describe these results.

Let

2k —1)n

k=1,2, .. 1.3
2” ’ s Ly ey 1, ( )

)C/\' = Xk,, = COS

be the zeros of T,(x)=cosnl, cosf=ux, the nth degree Tchebycheff
polynomial of the first kind. In this case the well-known Hermite—Fejér
interpolation polynomial is given by [8], [10]

Hyfx)= S fxi) hal(x), (14)
k=1

where

T,(x)

hk(x)=(1—xxk)< )>_>0, $ hy(x)= 1. (15)
k=1

n(x—x,

Next, we define a polynomial Q,(f, x) of degree <2n+1 by

14+ x T, (x)\*
> T 1)>

’l(
fl=x T,(x)\?
FUED-mG -0 (FEEES) . )

0./, )= Hy(f, x) + (f(1) — Holf. 1))(

It is known [3] that

Qn(f; xk) zf(xk)’ Q;(.f; xk) =09 k= l, 27 ey 1,
Q.f, £1)=/f(£1).

Concerning H,(f, x) and Q,(f, x) we shall prove the following

(1.7)

THEOREM 1. Let feC[—1,1] and let H ([, x) be as defined by (1.4).
Then for any fixed p >0 we have

p

(I 1#ts 0= seonr -y ax) “<enm. (18)
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and

4
1

14
Seawpl/n, (1.9

(J‘ll [Qn(f; ’C)—f(x)lp(l h_xz)ilvz dx)

where ¢y, c, are positive absolute constants and w(8) is the modulus of
continuity of f.

Remark. 1t is well known that for feLipl the error function
1/ (xY— H(f, x)|l .« is of order O(logn/n) and this is best possible (see
[2], [141, and [16]). On the other hand we can conclude from (1.8) that
the corresponding estimate in L, norm is O(1/x).

If feC'[—1,1] then it is known that a Hermite interpolation
polynomial H*(/f, x) of degree <2n— 1 which satisfies the conditions

[N
-
ol

Y d , ,
HXfoxd=flxd, = CHXS X)) = "x k=12 ..a (L
is given by

H¥(fx)= Y fx) hdx)+ Y filxg) aulx), (1.11)
k=1

k=1

where /1,(x) is as in (1.5), the x,’s are as in (1.3}, and o,{x) is given by

7.(x)
() = (x—x) B(x),  L{x) )

=, 1.12)
Ty e R

For the polynomial H*(f, x) we shall prove the following:

THEOREM 2. Let f(x) be defined and have a continuous derivative f'{x}
on [ —1,1). Then for the Hermite interpolation polynomial H¥(f, x}
corresponding to the Tchebycheff abscissas of the first kind

([

\Y=-1

i2
| flx) = HX(f, 0)P(1—x?)~12 dx) Seyn Ey, (f), (L13

where E,, (f') is the best approximation to f'(x} by polynomials of degree
at most 2n—2 and c; is a positive absolute constant.

If we change the nodes of interpolation to the zeros of Tchebycheff
polynomials of the second kind,

_sin(n+1)6

Unlx) sin B

, x=cos §, (1.14)
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then it is known that for many interpolation processes (this includes
Lagrange as well as Hermite-Fejér interpolation) convergence behaviour is
very poor with respect to the nodes of (1.14) especially near 1 or —1. The
situation is not improved for the Lagrange interpolation on these nodes
even in problems of mean convergence. E. Feldheim [9] proved that for
the same abscissas it is not true that (r>1)

~1

lim J Lf(x)— L,(f, x)|* dx=0. (1.15)

n— G Y _1

In fact the superior limit of the integrals in question may be + oo if f(x) is
a properly chosen continuous function. But the situation changes if we con-
sider Q(f, x), the so-called quasi-Hermite-Fejér interpolation polynomial
of degree <2n + 1 based on the extended Tchebycheff nodes of the second
kind. It is given by

* (1+x l—x Ul(x)
0:( )= (A0 + T -1 ) 2,

n > B U,,(x) 2
+k§1f(tk)(1—,\ (1 —xty) (——(}H_ 1)(x—tk)> ,  (1.16)

where the r.’s are the zeros of U,(x).

In this case, P.Szasz [15] proved that lim,_ QX f, x)=f(x)
uniformly on [ —1, 1] provided fe C[—1,1]. Later Saxena and Mathur
[217 proved that if fe C[ —1, 1] we have

é <\/1__Y_+ 1) (1.17)

10(f, x)— f(x)] i),

Next let us denote by R,(f,x) the Hermite-Fejér interpolation
polynomial of degree <2n+ 3 satisfying the conditions

Rn(.f; tk) =f(tk)7 R::(.f; tk) = 05 k = la 2’ o R

(1.18)
R(f, x1)=/f(£1), R/, £1)=0,
where the 7,’s are the zeros U,(x) given by (1.14). Concerning R,(f, x), the
following pointwise estimate was obtained by Bojanic, Prasad, and Saxena
[3]. It is given by (—1<x<1)

n — 2 i
IR, 3) - f0l <2 ¥ w(vl x +i)+"—;, (1.19)

k=1 k k?

where c,, ¢s are positive absolute constants.
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Concerning @F(f, x) and R,(f, x) we shall prove the following:

THEOREM 3. Let feC[—1, 1] and let QX(f, x) be the quasi-Hermite—
Fejér interpolation polynomial of degree <2n+ 1 as stated in (1.16). Then for
any fixed p>0, we have

’

([

\-«‘,1

N

Q0 f0P (1) 2 ) Scqu i), (120)

Also, we have

r Lp
(|7 IR0 =17 (=12 ax) | <ep(liny, (121)

\v—1 /

where R, {f.x) is defined by (1.18).

2. PRELIMINARIES

Here we state some known results which we shali need later on. If /,(x)
is given by (1.12) then for —1 < x< 1 it is known that

IH(x)<2, Z Bxyg2. (2.1)

Also, from (1.4) it follows that for —1<x <1

Y hl(x)=1, h(x)=0, k=1,2,.,n (2.2}
k=1
Next. if
7 B RV FE NPV AN &4
)= —at® DA U)o g
{(x— 1) Un(te) (n+ 1(x—1,)

then due to Erdds [5], Varma and Vertesi [19], and Varma [187] we have
for —1< x< 1 respectively

(1 _xz 12
[Ax(x)] < cg, (1_—[2;17 [A(x)] s\/E (2.4}
k
n 1 _XZ 2 n 1 —){z ‘
Z (1_ k)), 2<2, Y e 22(x) <2, (2.5
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where the 1,’s are given by

kn
= —_— k=1,2,..,n 2.6
te=cos -, 52, s 1 (2.6)

Further, from a known theorem of S. A. Teljakovskii [17] it follows that
there exists a polynomial P,(x) of degree <n such that for all x,
—1<x<],

2

1) = P < ey () @)

and

(1=x*)"2 P (x)| S cynw(1/n). (2.8)

Also for —1 < x <1, we know that

[T (x)<L (2.9)

3. SoME LEMMAS

In this section we state and prove several lemmas which will be needed
later on.

LemMma 3.1, If [ (x) is as in (1.12) then for k=1,2, .., n,

1
|| wiea—x)tax=2 k=j
—1
=0, k#j (3.1)

Proof. For the proof we refer the reader to Erdés and Turan [7].

LemMMmA 3.2, If 0,(x) is given by (1.12) then

JI ou(x) o (x)(1—x*) "2 dx=0, k#j

i , .
—ss(l=x}),  k=j  (32)
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Proof. From (1.12), (3.1), and using the orthogonal property of
Tchebycheff polynomials we have

i‘l O'k(,\‘) O-j(x)(l —Xz)il"vz dx
dq

r
aun
o

=J"1<x—xk>1z(x>( —x) Px)(1—x)

L) T(x )1 —x7) " dx

L[ LT
T7(x0) THix,) 2

1 1 o

AT (x) T (%) () L) (1 = x2) 12 g

2T (x4) T;,(xj)j_lh(’f)!j(r)( x?) 712 dx
=0, k#j

Similarly. if k= j then due to (3.1) and

; n ~
[Tn(xk)l =(1_—le()”, k= 1, 2, ey F1, (3_5}
it follows that
ot Z(X) 1 d T T (1 2 (3.4)
o x = - == (1 —x7). 3.4
J—x “ /1—x? 2n(T(x,))* 2n° - !

This proves Lemma 3.2.
Lemma 3.3, If o,(x) is given by (1.12) then

1 n 2
( [z P;(xk)o-k(x)} (=3 P dx<enln(lm]  (35)

=1

where P,(x) is the polynomial for which (2.7) and (2.8) are valid.

Proof. We have

r [i P:'(x")o'k(x):lz(l—xz)_l"2 dx

k=1

~ 3 Y Pix,) Pi xk)f o(x) 7 L)1 — x2) "2 dx,
J=1 k=1

640.56,2-§
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So from (3.2) and (2.8) we have

fl [ i P(xe) O'k(x):l— (1= x2)= "2 gy
k=1

n bid T n
= Px))P— (1 —x2) < 2 p2 , 2
L (P55 (=) <gshon® 3 (n(1/m)

= cy3(wy(1/n))%,
which yields (3.5). This proves Lemma 3.3.

In the work of Erdds and Feldheim [6] the following result played an
important role. Let [ (x)=//(x), v=1,2,..,n be the fundamental
polynomial of Lagrange interpolation based on the zeros of T,(x). Then

J’l l"l(x) lvz(x) e lvzk(x)(l - x2)—1/2 dx= 0,

where vy, v, .., vy are distinct integers between 1 and n. For the L,
convergence of a quasi-Hermite-Fejér interpolation process based on the
nodes (1—x*) U,(x) the corresponding result is given by the following
lemma:

LemMma 3.4. Let v, v,, ..., vy be distinct integers between 1 and n. Then
we have

[ ) 1)+ )1 = X)) 72 e =0, (36)
-1
where
1—x? J1=x*  Uyx)
(x)= A(x) = . 3.7
1) 1—12 ) J1-2 (=1)Ut,) G7

Proof. From the earlier result [19, page 72] it follows that

Gk —1)n+1)+1
(1—-x)U (x)* L= y U, cos i0. (3.8)

i=n

Since ¢,, .., t,,, are distinct it follows that Ux)/(x—1t,)---(x—1t,) is

indeed a polynomial of degree <n— 2k. Next we also note that

Un(x)(1 = %) (Un(x))* !
(=) (1)

le(x)"'X»vZk(x)=°‘("1’ Vo, s v2k) (39)
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Therefore on using the orthogonality of a Tchebycheff polynomial of the
first kind it follows that

| Ha(x) o (01— X7) T H2 dx
e |

(2k— 1)+ 13+1

1
9‘("’“"2""’21()[ G- 2(X) Y 4, T (1= X312 d
i

bad
i
©

i=n

Let us introduce the linear operator

L fx]=3 f(te) zelx), (3.10)

k=1

where y,.{x) is defined by (3.7) and the ¢,’s are the zeros of U ,(x) given by
{2.6). On using (3.6) and some simple compurtation we obtain

rl

| ) )1 = x*) =2 dx =0, j#k
1

On using {3.11) we obtain

[ Lrax - = S Py <n max (0]
1

i n+1k ~lgr<l

n im
(3.12)

Also, from (3.12) and the Cauchy-Schwarz inequality for integrals we also
have

el
{
J

IL*[fx]| (1—x?) "2 dx<n max |[f(x)]. {3.13)
1

—lgx<!

4, PrROOF OF THE THEOREMS

For the proof of Theorem 1 and Theorem 3 we follow the method of
Frdés and Feldheim [6]. It is enough to prove the theorems for even
values of p only. In the case of the proof of Theorem 3 we limit for the case
p=4. For arbitrary fixed even p the proof is similar.
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Proof of Theorem1. Let P,(x) be the polynomial of degree <n for
which (2.7) and (2.8) are valid. Due to (1.4) we have

H,(f. x) = f(x)=H/f—P,, x)+ H,(P,, x) = P,(x) + P,(x)— f(x). (4.1)

On using (2.2) and (2.7) it follows that

H,(f—P,, x)| i — P(x4)) helx)

n

<wi(1/n) Z W(x)<w (1/n). (4.2)

Thus to complete the proof of (1.8) we must prove that

12,
<fl !Hn(P;n x) _ P,,(X)Izp(l _x2)71,"2 dx) ’ < C14Wf(1/ll). (43)

From the uniqueness of Hermite interpolation we have

Pn(x)~Hn(an X)

"

z": W(X) 0p(x)= Z “xk)l/zc(x)

x>

:I»—

z": P )(— D)F (1 = x2)" 1 (x) To(x)

n

= Tn(x) Z gO(xk) lk(x)E T"(X) Ln[gO’ X],
k=1

where

42
o) =L Tt 8

Now, on using Theorem A of Erdds and Feldheim [6] and |go(x)| <
cyswe(1/n) we have

( [ 1P = H (P )71~ 5 dx) ,,,

1 ). ) L/2p
<CL6 <J ; an [g05 x:”Zp(l _x_)_llz dx)

<c;; max | go(x)]

~l<xxl

<cgwill/n).
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This proves (4.3) and at the same time inequality (1.8). Proof of the
inequality of {1.9) is a direct consequence of (1.8), (1.6), and the known
estimate [3] (see formula (1.4)) |H,(f, £1)—fl+ 1) <cow(l/n)

This proves Theorem 1. Next we turn to prove Theorem 2.

Proof of Theorem 2. One can easily see that for — 1 <x <1
H:zk(f; X) _f(x) = H:r(f; X) - H:(SZH—M X) + Slnf I(X; __,’f{\x)» :44)

where S,, ,(x) is the polynomial of best approximation of f(x) and
H*(f, x}is given by (1.11). From (4.4) it follows that

i‘ [H:,k(f;X)—f(x)]z(l_)g)flde
<2J‘i [H (f Sz,,,l,,)] (1_X) ljd\

+7j [Sp 1 (x) = f)P(L—x2) " 2dx=A, + 45, (4.5)

From the definition of S,, ,(x) we have for —~1<x <1,
ISZHVI(x)_f(xH<E211—1(f)3 {46\:

where E,,_,{f) is the best approximation of f{x). Consequently due to
{4.6) we get

1
A, <UE, (NP ] (1=x)""2dx=2mE3, (f) (4.7)

o1

Next, we turn to estimate 4,. We have
. 2
Al<4J |: Z [f{xe) = San 1 (x) hk(«\')] (1—x?)""2dx

[Z (Xi) = S Yk)}aklﬁ} (1-x%)""dx
—Arde (4.8)
Now, from (4.6) and (2.2) it follows that

1 4 2 7
ss<am, (N | 3 h | a-e s
“llg=1

=4nE3, (f). (4.9
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Further, on using Lemma 3.2 we have

A=4[ 3 (F0x0)~ Shuo () GF)(1— %)~ dx

=1

2 n
=22 (F(x) = St 1 (x0))P(1 — x2). (4.10)

"

Next, on using a theorem of J. Czipszer and G. Freud [4] and
Corollary 1.44 of T. J. Rivlin [13, p. 23], we get

(L=xD)2 1 £ (xi) = S 1(x,)] S40E, o(f7). (4.11)
Consequently from (4.10), (4.11) it follows that
Ay eyon T E3, H(f"): (4.12)

Thus, from (4.8), (4.9), and (4.12) we obtain

A, <4nEL, _(f)+can’E}, o(f)
<022”*2E5n_z(f’)- (4.13)

Due to Rivlin [13, p. 23], we have

, 6
Ep ()5 =7 Ean-alS"). (4.14)
n

—1

On using (4.13), (4.7), and (4.14) we have (1.13). This completes the proof
of Theorem 2 as well.

Proof of Theorem 3. First we need to show that for fe C[—1, 1],

[ (@)= f =2 P dx <entmplm). (415)

Since

QXS x)=f(x)=QXf—P,, x)+ QF(P,, x)— P,(x)+ P,(x)— f(x),
(4.16)

where P,(x) is the polynomial which satisfies (2.7) and (2.8), in view of
(2.7) and since QX(f, x) is such that | f| < ¢, implies [|QX(f, x)|| < ¢,y We
have

1Q¥(f =P, I < |f = Pull S co5w,(1/n). (4.17)
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Next, we consider

p={ (P00 = QF(P, X)L — ) (4.18)

Further, one can easily see that

Pn(x) - QIT(PH’ x) = (1 _xz)i"‘l Un(x) Z g(fl\) xk(x)’ (4]9)

k=1
where
T, (x) Po(x)(1 =xH)'? )
x)= — 4.20)
g(x) m— {4.20)
and
R x*) 2 24(x) s
.X.k('x)— (1_112()12 . (42,
Also it is well known that for —1<x <1
(1= XU, ()< 1. (4.22)
Consequently from (4.19) and (4.22) it follows that
~1 n 4
u<| ( Y glt) u(x)) (1—x)"dy=p,. (4.23)
1 \k=y
We also note (see (2.8) and (2.4)) that for —1<x<1
I<V2 gl <esowdl/n) (4.24)
Now, we may write
PSSy =+ o+ s+ e+ s, (4.25}

where on using (2.5) and (2.4)

r n 7
pu=] L g (1= x7) T dy

-1l i=1

1
<oy (wp(l/n))? [ z ()1 —x*) "2 dx K oyy(wll/n))®. (4.26)

Yol
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Next, we note that

po=| LY €00 £0) 0 £ =) de

T ki
1
<[ T ¥ £ 8%0) 8 )1 —x) "V dx
“lg=1 j=1
<cutmn [ (£ za0)( £ g ) -er2as
L \k=1 —

<dess(w(1/n))? r 1 (1—x?) " dx=dcm(wdl/n))*.  (4.27)

Next, we observe that (Lemma 3.4)

uxs—f (LYY X gl gl) gln) glt)

Tloksjrizm
X L) 1A (%) Hn(X)(1 — x7) 712 dx
=0 (4.28)

Next, we observe that

#14‘[ IZZg t) g ( )Xj(~‘€)(1—x3)—1v"2 dx
-1 [(% 2o )(i ()20
_ Z g4(tk)X2(X):|(1—x3)—l/2 dx. 29)

Hence, on account of (2.4), (2.5), (4.24), (4.26), (3.10), and (3.13)

d.
Z g(te) 1) (—’“T

sl S estw ) |

+C35(W/(1/’1))
SeanALm)’n max | g(x)|+ esstn 1/m)’

< C34(Wf(1/”))37w3owf(1/”) + C35(Wf(1/n))4

< cselw (1/n))". (4.30)
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Nle]

Finally. we consider

pis=| TET g0 1) 8(6) 1) £00) 16} —x) 2 e

k#1#i

2} Z g3(1) 13 (x)

1=y
/[ n 2 .\ "
(3 s 0) (=) dv— = 431)

Therefore, on using (4.27), (4.30), and Lemma 3.4 we have

lust <c 37(“"[(1/’7)):r (Z g(fk)Xk(Y)} (1-x*)"" dx

k=1
+ c3g(we(1/n))*
-1
el (1) | S gt 21— x) 1 dx
R |
+C38(Wf(1/’7))4

o1
<c39(wf(1/n))4J 1 z 1)1 —x2) 2 dx + el (1))
~1 2

Leglw1/n))t (432}
On combining (4.32), (4.30), (4.27), (4.28), {4.26), and (4.25) we obtain
LS cq(w1/mNt (4.33;

Now, on using (4.16), (4.17), (4.18}), and (4.33) we obtain (1.20). Proof of
(1.21} is a simple consequence of [3]

IR(f, £D)—f(£ D) <cpowedl/n),

the representation given in the work of Bojanic, Prasad, and Saxena [37],
and inequality (1.20).
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