
JOL‘BNAL OF APPROXIMATION TEiEORY 56. 225-240 (1989) 

An Analogue of a Problem of 
P. Erdijs and E. Feldheim on 

L, Convergence of lnterpolatory Processes 

A. K. VARMA 

Departmerzt of Mathematics, Cniwrsity qf Florida, Gainesr~ille, Fioridu 3X1 I. S’.S.A 

AND 

J. PRASAD 

Department of Mathematics and Conzprrter Science, 
Caliiorrria State C’niversit~. Los Angeles, Calijknia 900317. C’.S.A. 

Communicated bl, Paul Erdiis 

Received March 12. 1987 

DEDICATED TO PROFESSOR R. BOJAIL’IC 

For the Lagrange interpolation polynomial L,;(j’, .Y) of degree <r~ - 1 I 
defined by 

-uf, -xkll) =f(-xkn), k=l 3 )2 A.‘-T...? 3 (i.1) 

of a given function f (based on n distinct points - 1 < x,, < 
.Y n ~ i,,, < I’ < xi,, < l), P. Erdiis and E. Feldheim [4] proved the following 

THEOREM A. [ffec[-1, 11 and -'ik,r, k = 1, 2,, .~., n, are the Zt?YGS Q,f 
T,,(x), ?he n th ChebJ*shev polynomial, then for anus fixed p > 0, 

lim I 
’ IL,,I.f,x]~.f(x)l”(l-Y2)~I’1d,~=0. (1.2) 

n-x -, 

For a more detailed study of this kind of work we refer the reader to 
P. ErdGs and P. Turin [7], R. Askey [ 11, P. 6. Nevai Cl l]. P. Vcrtesi 
[20], and A. K. Varma and P. Vertesi [19]. The corresponding study of 
mean convergence of the Hermite-Fejer interpoiation process was recently 
initiated by Nevai and Vertresi [ 121. In Ref. [ 121 weighted Lp convergence 
of Hermite-Fejer interpolation based on the zeros of a generalized Jacobi 
polynomial was investigated. The main result of Ref. [la] gives necessary 
and sufficient conditions for such convergence for all continuous functions. 
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226 VARMA AND PRASAD 

They mentioned that the main reason for the lack of the general theory 
appears to be the complicated structure of explicit representation for the 
Hermite-Fejer interpolating polynomial. 

The object of this paper is to consider the problem of degree of 
approximation (in the L, norm for any fixed p > 0) of a given continuous 
function by various interpolatory (Hermite) processes based on the 
Tchebycheff nodes. Now we turn to describe these results. 

Let 

Xk = Xk,, = cos 
(2k- 1)rc 

2n ’ 
k=l 7 1 -9 . . . . n, (1.3) 

be the zeros of T,(x) = cos ire, cos O= x, the nth degree Tchebycheff 
polynomial of the first kind. In this case the well-known Hermite-FejCr 
interpolation polynomial is given by [IS], [lo] 

where 

Next, we define a polynomial &(A xj of degree 62~2 + 1 by 

e,c~~~,=Hn(~X)+(f(l)-H,(f, l))(q+)2 

+(f(-l)-H,(f, -1)) 
( 
y*)2. 

n 

It is known [3] that 

Q,z(f, xk) = ftxkh Q;(A xk) = O, k = 1, 2, . . . . n, 

Q,(.L kl)=f(+l). 

(1.4) 

(1.5) 

(1.6) 

(1.7) 

Concerning H,(f, X) and Q,Jf, x) we shall prove the following 

THEOREM 1. Ler f~ C[ - 1, l] and let H,,(f, x) be as defined by (1.4). 
Then for any fixed p > 0 we have 

(s ’ 
l!P 

IH,(f, x)-f(<u)l”(l -x~)--~~ d-x 
> 

< c, Wf( l/n), (1.8) -1 
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and 

where cl, c2 are positive absolute constants atld y-(6) is the moduiw C$ 
con tinuitJ< cf .fl 

Remark. It is well known that for SE Lip 1 the error function 
Ilfi-y) - ff,(f, -~)I1 LX is of order @log n/n) and this is best possible (see 
[Z], [14]; and [16]). On the other hand we can conclude from (3.8j that 
the corresponding estimate in L, norm is 0(1/n). 

If f~ C’[ - 1, l] then it is known that a Hermite interpolation 
polynomial H,T(.f. x) of degree <Zn - 1 which satisfies the conditions 

is given by 

where /z,(x) is as in (1.5), the xk’s are as in (1.3), and ax-(s) is given by 

For the polynomial H,T(f, x) we shall prove the following: 

THEOREM 2. Let f(x) be defined and hatle a continuous derivative f’(x; 
on [ - 1, 11. Then for the Hermite interpolation poijwomial H,T(.j; x) 
corresponding to the Tchebycheif abscissas of the first kind 

i 
\^li I.f(.~)-H,T(~.~)l’(l-.~‘)-‘~‘d.~ 

1 
i’2~~,n~‘El,,~2(.f’), (1.13) 

where El,, ~ 2(f ‘) is the best approximation to .f’(.x) A:,! polernomiais of degree 
at Most 2r? - 2 and c, is a positive absolute constant. 

If we change the nodes of interpolation to the zeros of Fchebycheff 
polynomials of the second kind, 

U,(s) = 
sin(n + l)Q 

sin 0 ’ 
x = co5 8, (1.14) 
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then it is known that for many interpolation processes (this includes 
Lagrange as well as Hermite-Fejer interpolation) convergence behaviour is 
very poor with respect to the nodes of (1.14) especially near 1 or - 1. The 
situation is not improved for the Lagrange interpolation on these nodes 
even in problems of mean convergence. E. Feldheim [9] proved that for 
the same abscissas it is not true that (r > 1) 

lim ! -l If(x)-L,(f,x)l’rcZx=o. 
n--tzc -1 

(1.15) 

In fact the superior limit of the integrals in question may be + cc if f(x) is 
a properly chosen continuous function. But the situation changes if we con- 
sider Qz(f, x j, the so-called quasi-HermiteeFejer interpolation polynomial 
of degree 62n + 1 based on the extended Tchebycheff nodes of the second 
kind. It is given by 

,,,,~)=(~/(l)+~i(-l))~ 

+ i f(t,)(l -x2)(1 -xt,) 
k-1 

where the I,‘S are the zeros of U,(X). 
In this case, P. Szasz [15] proved that lim,,,, Qz(f, x)=f(x) 

uniformly on [ - 1, l] provided LIZ C[ - 1, 1-J. Later Saxena and Mathur 
[21] proved that if fE C[ - 1, l] we have 

Next let us denote by R,(f, x) the Hermite-FejCr interpolation 
polynomial of degree < 2n + 3 satisfying the conditions 

&iJ; ?k) =fttkh R:,(f, tk) = 0, k = 1, 2, . . . . n 

where the tk’s are the zeros U,(x) given by (1.14). Concerning R,(J x), the 
following pointwise estimate was obtained by Bojanic, Prasad, and Saxena 
[3]. It is given by (-1 <x< 1) 

where cd, c5 are positive absolute constants. 
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Concerning Q,T(f; x) and R,(f -) , x we shail prove the following: 

THEOREM 3. Let f E Cc- 1, l] and let Qx(f, x) be the quasi-Hem&- 
FejPr interpolation polynonzial of degree < 2n + 1 as srated in (1.16). Th,f& 

(1.20) 

(121j 

where R,,(f. s’j is defined by (1.18). 

2. PRELIMINARIES 

Here we state some known results which we shall nee iater on. If Ik(:.) 
is given by (1.12) then for - 1 <x< 1 it is known that 

Also, from (1.4) it follows that for - 1 d x < I 

h,(x)>O, k= I, 2, . . . . n. (2.2) 

Next. if 

i:,(x) = 
U,(X) (-l)k+l(l-t:) U,(X) 

jx-tt,) Lyt,)= (n+ l)(X-tkj 5 
k = I, 2, . ..) n, (2.3 4 

then due to Erdiis [5], Varma and Vertesi [19], and Varma [28] we have 
for - 1 < ,Y d L respectively 

(2.5 ) 
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where the tk’s are given by 

kz 
tk=COS-, 

n+l 
k = 1, 2, . . . . n. (2.6) 

Further, from a known theorem of S. A. Teljakovskii [ 171 it follows that 
there exists a polynomial P,,(x) of degree dn such that for all x, 
-lQX<l, 

(2.7) 

and 

(1 -x2)112 IP:,(x)l < C,,rzWf( l/n). (2.8 1 

Also for - 1 d x < 1, we know that 

I T,,(x)1 d 1. (2.9) 

3. SOME LEMMAS 

In this section we state and prove several lemmas which will be needed 
later on. 

LEMMA 3.1. ZfZ,(x) is as in (1.12) then for k= 1, 2, . . . . n, 

s I Ik(X) li(X)( 1 - Xl) - 1:2 rl,u = ;, k=j 
-1 

= 0, k# j. (3.1) 

ProoJ: For the proof we refer the reader to Erdos and Turan [7]. 

LEMMA 3.2. Zf ck(x) is given by (1.12) then 

s 
1 

ok(x) aj(x)( 1 -x2) - lu2 dx = 0, k#j 
-1 

=+$ (1 -xi,, k= j. (3.2) 
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Proof From ( 1.12), (3.1), and using the orthogonal property of 
Tchebycheff polynomials we have 

1 
c 

I 

= 2TL(x,) zy.u,) 
lk(X) 1,(x)( 1 - x2) ~ i,‘2 dx 

-1 

= 0, k # .i. 

Similarly. if k = j then due to (3.1) and 

k = 1, 2, . . . . n, (3.3) 

it follows that 

This proves Lemma 3.2. 

LEMMA 3.3. Zfck(x) is given by (1.12) then 

P;(xk)nk(x) ‘(l-~‘)~‘;‘dx~c,,I~:,(lin)!:, 
1 

(3.5) 

H-here P,(x) is the polq’nomial for which (2.7) and (2.8) are valid. 

Prooj We have 

I n 

J-b 
P;(xk) crk(x) 1 2 (1 - x2)-li2 dx 

k=l 

.j=i k=l -1 

64O:j6:2-8 
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So from (3.2) and (2.8) we have 

k=l 

which yields (3.5). This proves Lemma 3.3. 

In the work of ErdGs and Feldheim [6] the following result played an 
important role. Let I,,(x) = l,(x), Y = 1, 2, . . . . n, be the fundamental 
polynomial of Lagrange interpolation based on the zeros of T,(x). Then 

s l 4,(x) L2(-x) . ..z.,,(x)(l-x2)-“2d,~=o, 
-I 

where vi, v2, . . . . v2k are distinct integers between 1 and n. For the L, 
convergence of a quasi-Hermite-Fejtr interpolation process based on the 
nodes (1 -x2) U,,(x) the corresponding result is given by the following 
lemma: 

LEMMA 3.4. Let vl, v2, . . . . v2k be distinct integers between 1 and n. Then 
we have 

s l x,,,(,~)~V~(x)...~Y2k(x)(1-x2)-‘i2dx=0, 
-1 (3.6) 

where 

x (+)=\/l=l”(x)J~ U,(x) 
y’ yFq Jiq (t- t,) K(t,)’ (3.7) 

ProoJ From the earlier result [19, page 721 it follows that 

(Zk-l)(n+l)+l 

(1-x2)k(Un(X))2k-1= c pi cos i8. (3.8) 
i=n 

Since t,,, , . . . . I,,,, are distinct it follows that U,(x)/(x - t,,) . . . (x - t,,,) is 
indeed a polynomial of degree bn - 2k. Next we also note that 

XV,(~) . . . x,,,,tx) = a(v,, v2, . . . . %k) 
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Therefore on using the orthogonality of a Tchebycheff polynomial of the 
first kind it follows that 

Let us introduce the linear operator 

(3.10) 

where xk(.-c) is defined by (3.7) and the t,‘s are the zeros of d’,(s) given by 
(2.6). On using (3.6) and some simple computation we obtain 

‘-1 

! &) ;s~(,Y)( 1 - x2) - I.2 d-x = 0, j#k 
-I 

71 
z--s 

a+ 1’ 
j= k. (3.11) 

On using (3.11) we obtain 

Also, from (3.12) and the Cauchy-Schwarz inequality for integrals we also 
have 

4. PROOF OF THE THEOREMS 

For the proof of Theorem 1 and Theorem 3 we follow the method of 
Erdijs and Feldheim [6]. It is enough to prove the theorems for even 
values of p only. In the case of the proof of Theorem 3 we Iimit for the case 
p = 4. For arbitrary fixed even p the proof is similar. 
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Proof of Theorem 1. Let P,(x) be the polynomial of degree <n for 
which (2.7) and (2.8) are valid. Due to (1.4) we have 

H,(f,.v)-f(x)=H,(f-P,,x)+H,(P,,x)-P,(x)+P,(x)-f!x). (4.1) 

On using (2.2) and (2.7) it follows that 

IH,,(f -P,, x)l = 
k=l 

(4.2) 

Thus to complete the proof of (1.8) we must prove that 

’ lH,(P,,,x)-P,(~)(‘P(l-x~)~‘~‘d~~ 
> 

lop 

d C14Wf( l/n). (4.3) 
-1 

From the uniqueness of Hermite interpolation we have 

P,(x) - ff,(P,, xl 

= i P;(xk) ok(x) = f P;&)(x - xk) f;(x) 
k=l k=l 

=; kcl P;(xk)( - l)“- ‘(1 -x;)‘!‘lk(x) T,(x) 

= T,(x) i gdxk) lktX) = T,(x) ‘% [So. XI, 
k=l 

where 

g&) = 
(1 --x2) U,-‘(X) p’(u) 

n- . n 

Now, on using Theorem A of Erdijs and Feldheim [6] and 1 g,(x)1 d 
cl5 wf( l/n) we have 

’ IP,(x-H,(P,,x)lZP(l-xXZ)-liZdx 
WP 

-1 > 

” 
u&J 

<Cl, 
0 

JL,[g,, x]12P(l -x2j-1,‘2 d-x 
-1 > 

d Cl7 yx<’ I &(-~)I . . 

d c ‘8 JL’f( l/n 1. 
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This proves (4.3) and at the same time inequality (1.8). Proof of the 
inequality of (1.9) is a direct consequence of (1.8) (1.6), and the known 
estimate [3] (see formula (1.4j) lH,,(f, &l)-.f( k-1 )I <c,,wJl.!nj. 

This proves Theorem 1. Next we turn to prove Theorem 2. 

Proof C$ Theorem 2. One can easily see that for - i d x d 1 

N,T(,f x) -fis, = H,T(f, x) - H,*iS& i, x) + S& ,txli -.f(x), (4.4) 

where S 2,1 ~ r(s) is the polynomial of best approximation of .f(.~ j and 
NX(,C, X) is given by (1.11). From (4.4j it follows that 

t2 s ’ [s,,,~,(X)-f(X)]2(l-X2)-12d,Y~Ad~A2. (4.5) 
-1 

From the definition of S,, ~ r (x) we have for - 1~ x < 1, 

where E?,,_ i(f) is the best approximation of f(s). Consequently due to 
(4.6) we get 

Next, we turn to estimate A r. We have 

=A,+dj. 

Now, from (4.6) and (2.2) it follows that 

A,<4Ef,p ,m,;, ’ ’ d,u 

(4.9; = 47rE:,p ,(fj. 
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Further, on using Lemma 3.2 we have 

-1 n 
A,=4 

! 1 
(f’(Xk) - s;,,- I(xk))2 0:(x)( 1 -x2))r/2 dx 

--1 k-1 

=$ i (f’(Xk)-S;n-,(xk))2(1-X~). 
k=l 

(4.10) 

Next, on using a theorem of J. Czipszer and G. Freud [4] and 
Corollary 1.44 of T. J. Rivlin [13, p. 231, we get 

(1 -x;)“’ If’@,) - s;,- I( < 40-&,,-,(f’). (4.11) 

Consequently from (4.10), (4.11) it follows that 

d,<~,n-~E:,~~(f’). (4.~2) 

Thus, from (4.8), (4.9), and (4.12) we obtain 

A,d4;rtE:,-,(fj+c,,n~‘E:,~~,(f’) 

6 c,,n-‘E:,- 2(f’). 

Due to Rivlin [ 13, p. 231, we have 

(4.13) 

E 2,z- Af j 3&E,“-,(I.‘). (4.14) 

On using (4.13) (4.7), and (4.14) we have (1.13). This completes the proof 
of Theorem 2 as well. 

Proof of Theorem 3. First we need to show that for f e C[ - 1, 11, 

J ‘1, (Q,*(f,x)-f(x))“(l -X2)~1:2dx~C23(~tj(l/n))4. (4.15) 

Since 

Q:(f, x)-f(x) = Q3f - P,, x) + Q,*(P,, x-P,(x) + P,(x) - f(x), 
(4.16) 

where P,(x) is the polynomial which satisfies (2.7) and (2.8), in view of 
(2.7) and since Q,*(ft x) is such that IfI < cZ4 implies I/Qz(f, .x)11 < c24 we 
have 

IlQ:(f- f’,, x)ll d Ilf- P, II G c25~~j(l/n). (4.17) 
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Next, we consider 

p=j’l (P,,(~~)-Q,*(P,,,.~))“(l -x2)-1’d.Y. 

Further, one can easily see that 

P,(x) - Q,T(P,,, s) = (1 -x’)‘:‘u,(x) i g(tk) &(X), 
h-=1 

where 

g(x)= - 
z-,+,(x) P#)(l -AY2)‘.2 

n+1 - 

and 

Xkb) = 
(1 - x2)1.2lLk(.~) 

(1 - tjT)“2 . 

Also it is well known that for - 1 d x < 1 

(1 - x2p2( U,,(x)) d 1. 

Consequently from (4.19) and (4.22) it follows that 

We also note (see (2.8) and (2.4)) that for - % <x < 1 

IXk(X)l d J?, I gix)l d c3oqi’/w. 

Now, we may write 

231 

(4.18) 

(4.19) 

(4.20) 

(4.2!. ; 

(4.22) 

(4.23) 

(4.24) 

(4.25) 

(4.26) 
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Next, we note that 

p12=j1 CCg2(tk)g2(tj)X%(X)Xi2(X)(1--2)--I:2~~ 
’ kii 

g2( tk) &“(l,) x;(X) x$X)( 1 - X2) - 1/‘2 dx 

<c,,(~;u/n))~ j’, ($, n:W)(,;, x+1) (1 --v2)-1’2dx 

<4c,,(wf(l/n))’ j’ (1 -,Y~)-‘~’ dx=4c33i+v~l/n))4. (4.27) 
-1 

Next, we observe that (Lemma 3.4) 

pl3 = 1“ 11 cc g(tk) &j) dt,) dt,b 
‘-1 k#j#iim 

X xk(x) xi(X) x,(X) x~(x)(~ -X2)p1’2 dx 

=o. 

Next, we observe that 

g3(tk) g(t,) X;(X) xj(,yj(l -x~)-~“~ dx 

= ,-I [ ( f g3(tk) #))( f g(tkj xkb)) 
--I k=l k=l 

- i g’(l,)z:(x)] (l-?~‘)-‘;~dvx. 
k=l 

(4.28) 

(4.29) 

Hence, on account of (2.4), (2.5), (4.24), (4.26), (3.10), and (3.13) 
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Finally. we consider 

Therefore, on using (4.27), (4.30), and Lemma 3.4 we have 

NOW, on using (4.16), (4.17), (4.18j> and (4.33) we obtain (1.20). Proof of 
( 1.21) is a simple consequence of [ 31 

the representation given in the work of Bojanic, X)rasad, and Saxma C.31, 
and inequality (1.20). 
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