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Let G be a connected afhne aIgebraic group over the fieId of complex 
numbers. Viewing G also as a complex analytic group, we consider the 
group d(G) of all complex analytic automorphisms of G. As is well known, 
d(G) has a natural structure of a complex Lie group, being identifiable 
with a closed complex Lie subgroup of the group of all automorphisms 
of the Lie algebra -I;“(G) of G. The rational automo~hisms of G evidently 
constitute a subgroup d,(G) of d(G). It is our main purpose here to 
determine the situation of W(G) within d(G). 

In fact, the results of [l] enable us to establish the precise result stated 
in Theorem 1 below without much additional work. This opens up the 
possibility of obtaining information about the structure of d(G) via an 
examination of W(G). In particular, by using Theorem 1 in conjunction 
with the results of [2] concerning W(G), we obtain a structural characteriza- 
tion of those groups G for which d(G) is algebraic (when viewed as a 
subgroup of the automorphism group of 5?(G)), and we show that the 
identity components of J&‘(G) and W(G) are always algebraic. 

The statement and the proof of Theorem 1 make reference to certain 
subgroups of G, as follows. Let G, denote the unipotent radical of G, i.e., 
the unique maximum unipotent normal algebraic subgroup of G. Let 34 
denote the maximum nilpotent normal analytic subgroup of G, and let N 
be the radical of the commutator subgroup [G, G] of G (actually, N coincides 
with [G, G],). Each of these is clearly a connected algebraic subgroup 
of G, and we have NC G, C iW. It is clear from the definitions that N 
and M are stable under the action of d(G), and that G, is stable under 
the action of W(G). Moreover, since M is a normal algebraic subgroup 
of G containing G, , we have M, = G, . Since M is nilpotent, it follows 
from standard structure theory of affine algebraic groups that M is the 
direct product G, x MS, where M, is a (complex) toroid and consists 
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precisely of the semisimple elements of M. Therefore, NI, is the unique 
maximum reductive subgroup of M, whence it is stable under the action 
of d(G). Finally, consider the factor commutator group G/[G, GJ This 
is a connected abelian affine algebraic group, and therefore (as for M just 
above) has a unique maximum reductive subgroup. Let Q denote the full 
inverse image of this reductive group in G. It is clear from the definition 
that Q is stable under the action of d(G). 

Now we define a subgroup V(G) of d(G) as follows. The elements 
of V”(G) are those automorphisms 01 of G which leave the elements of Q 
fixed and satisfy E(X)X’ E MS for every element x of M. It is readily seen 
that V(G) is a closed complex Lie subgroup of d(G). From the fact that 
Q, M and MS are stable under the action of &d(G), it follows that V(G) 
is normal in d(G). 

Noting that G, is a ~ilpot~t nucleus of G in the sense of [I], we have 
from [l, Theorem 8.21 that an element of -Se(G) belongs to w(G) if and 
only if it sends G, onto itself. In particular, this shows that r’y(G) is a closed 
complex Lie subgroup of d(G). 

THEOREM 1. Let G be a connected complex ajine algebraic group. As a 
complex Lie group, the group d(G) of all analytic automorphisms of G is the 
semidirect product of the normal subgroup Y(G) dejned above and the group 
W(G) of all rational automorphisms of G. Moreover, the canonical image of 
Y(G) in the full linear group on the Lie algebra of G is an algebraic vector 
subgroup of that full linear group. 

Proof. Let us fix a maximal reductive subgroup El of G, so that G is 
the semidirect product G, . H. We claim that the group Q used in defining 
V(G) coincides with NH. In order to see this, note that [G, G] is the semi- 
direct product N . [H, H], whence G/[G, G] is the direct product of the 
vector group G,/N and the toroid H/[H, H]. Thus Q is the full inverse 
image of H/[H, H] in G, which is evidently NH. 

Next, we show that -MS lies in the center of G and coincides with M n H. 
Since M n H is normal in H, it is reductive, so that M n H C MS. Now 
consider the conjugation action of G on M, . Since MS is a toroid, the group 
&(MJ of analytic automorphisms of M, is discrete. The natural map 
G -+ &(MJ is continuous, and G is connected. Hence the conjugation 
action of G on MS must be trivial, which means that MS lies in the center 
of G. Since Ma is reductive, a conjugate of MS lies in H, so that MS C H. 
With the inclusion established above, this gives MS = MIT H. 

Let 7 be any element of V(G), and let 77 be any element of the Lie algebra 
3(M). If we identify 7 with the corr~ponding automorphism of 9(G), 
the definition of V(G) gives $7) - 7 E Z(M,). We define the Iinear map 
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T’: dtP(M) -+ y(Ms) by setting T’(T) = $7) - 7. A simple direct verification 
shows that the map sending each element 7 of Y”(G) onto T’ is an injective 
group homomorphism of Y(G) into the vector group of all linear maps 
.9(M) -+ 8(M8) that annihilate 9(N) + 2Z(n/l,). Moreover, we claim that 
this homomorphism is surjective. The proof of this assertion is contained 
in [l, Section 81, but we shall reproduce the necessary argument here, for 
greater intelligibility. 

Since Z(H) is a reductive Lie algebra whose center contains U(iUJ, there is 
an ideal J of 9(N) such that 2’(R) is the direct Lie algebra sum of J and 
dtp(MJ. Now we have 2’(G) = B(G,) + Y(H) = Z(G,) + Z(&fJ + J = 
.Z?(lM) + J, and Z(M) n J = (0). Let 6 be any linear map 2?(M) -+ 2(&f& 
that annihilates 8(N) + 9(&Z,). Extend 6 to a linear map Z(G) -+ Z(&fJ 
by making S(f) = (0). Now define the linear map 6,: Z(G) -+ 2’(G) by 

UPI = (L + Q-4* It is easy to verify directly that 6, is a Lie algebra 
automorphism of Z{G). The universal covering group Go of G may be 
written as a semidirect product G, + Ho, where HO is the universal covering 
group of H. Our Lie algebra automorphism 6, defines an analytic automor- 
phism TO of GO in the natural fashion. Since 6, coincides with the identity 
map on 9(22), this automorphism TO leaves the elements of Ho fixed. Hence, 
via the covering Go --f G, the automorphism TO induces an analytic automor- 
phism 7 of G. It is seen directly from this construction that 7 belongs to 
V(G) and that T’ = 6. 

We have just seen that when d(G) is identified with its natural image 
in the full linear group on Z(G) then the subgroup Y(G) becomes the 
algebraic vector subgroup consisting of all linear maps u: 9(G) -+ Z(G) 
such that, if i denotes the identity map on 2’(G), the map cr - i sends 
Z(M) into Z(M,) and annihilates Z(N) + T(H). This proves the second 
part of the statement of Theorem 1. 

Next, let us show that V(G) n w(G) = (1). Let 01 be an element of 
F(G) n w(G), and let x be an element of G, . Since 01 is a rational automor- 
phism of G, we have OI(GJ = G, . Hence c@)x-~ E G, . On the other hand, 
since 01 belongs to Y”(G), we have “(x)x-l E nil, = &f n H. Thus a(x)+ 
belongs to H r\ G, = (l), showing that OL leaves the elements of G, fixed. 
Since 01 leaves fixed also the elements of H CQ, it follows that 01 is the 
identity automorphism, as we wished to show. 

Now let 01 be any element of d(G). Then ol(G,) and G, are nilpotent 
nuclei of G, in the sense of [l]. H ence we can apply [I, Theorem X.4] 
(keeping in view also the construction made in the proof of that theorem), 
which shows that there is an element 7 in V(G) such that Q-(G,) = ol(G,). 
Now ~-la is an analytic automorphism of G that sends G, onto itself. As 
we have already noted just before stating Theorem 1, this implies that ?-la 
belongs to w(G). Hence we conclude that d(G) = V(G) w(G). 
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In order to obtain the proper semidirect product decomposition of d(G), 
let us construct the semidirect product of the complex analytic group Y(G) 
and the complex Lie group w(G), using the conjugation action of V(G) 
on V(G). The multiplication map of this semidirect product into d(G) is 
clearly a morphism of complex Lie groups. By the above, this morphism 
is bijective. From the fact that w(G) . is isomorphic with a closed complex 
Lie subgroup of the full linear group on Z(G), we find that our semidirect 
product is a complex Lie group with only a countable set of connected 
components. Hence Pontrjagin’s well-known theorem on homomorphisms 
of topological groups shows that our morphism is also an open map. 
Therefore, .&‘(G) is the semidirect product V(G) . w(G) in the strict sense 
of complex Lie groups, so that Theorem 1 is proved. 

COROLLARY 2. In the notation of Theorem 1, we have SC@‘(G) = W(G) 
if and only if G, coincides with N or with M. 

Proof. We have M = G, x M, . Hence, if G, = M then M, is trivial, 
and the definition of V’(G) gives that V(G) is trivial. If G, = N then the 
definition of V(G), together with the fact that Q = NH, shows that V(G) 
is trivial. Conversely, if V’(G) is trivial, then our description of the image 
of V(G) in the full linear group on 2’(G) shows that either 9(MS) = (0), 
in which case M, = (1) and M = G, , or else Z(M) = Z’(N) + 5k’(MJ, 
in which case M = N x M, , whence G, = N. 

If P is any subgroup of d(G) we shall say that P is algebraic if the 
canonical image of P in the full linear group on 2?(G) is an algebraic 
subgroup of that full linear group. 

THEOREM 3. Let G be a connected complex afine algebraic group. The 
connected component of the neutral element in the group W(G) of rational 
automorphisms of G is algebraic. 

Proof. Let H be a maximal reductive subgroup of G, and let T be the 
connected component of the neutral element in the center of H. Let X 
denote the stabilizer of T in w(G). Denote the canonical image of G in 
Y&‘(G) by G’. It follows at once from the conjugacy of the maximal reductive 
subgroups of G that Y’“(G) = G’X. Indicating connected components of 
the neutral element by a subscript 1, we wish to show first that w(G), = 
G’X, . Let G’ . X denote the semidirect product constructed from the 
complex analytic group G’ (a complex analytic subgroup of w(G)) and the 
complex Lie group X (a closed complex Lie subgroup of w(G)), using the 
natural action of X on G’. Then the multiplication map G’ . X + w(G) 
is a surjective morphism of complex Lie groups. The same argument we 
used at the end of the proof of Theorem 1 shows that this morphism is 
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also an open map. Hence, if K denotes the kernel of this morphism, Z&‘(G) 
is isomorphic (as a topological group) with (G’ + X)/K Now K consists of 
the elements (u, u-l) with u in G’ A X. Let G,’ and H’ denote the natural 
images of G, and H in G’. Then we have G’ = G,‘H’, and clearly H’ C X. 
Hence G’ n X = (G,’ n X)li’. The group G,’ n X is the canonical 
image of the normalizer of T in G, . This normalizer actually coincides 
with the centralizer of T in G, , for if x is an element of the normalizer 
we have xtx-9-l E T n G, = (l} for every element t of T. Via the exponential 

map z(GJ - G , which is bijective, because G, is nilpotent and simply 
connected, we see that the centralizer of T in G, is connected. Hence 
G,’ n X is connected. Since EJ’ is connected, it follows that G’ n X is 
connected. Hence the kernel K of our morphism G’ . X -+ w(G) is 
connected. Since 96’“(G) is isomorphic with (G’ . X)/K, it follows that 
w(G), coincides with the image of (G’ f X), = G’ . X, , i.e., that w(G), = 
G’X, . 

Since T is a toroid, we know that d(T) is discrete, whence X1 must 
leave the elements of T fixed. Thus we have YY(G~ C G’Z, where Z denotes 
the element-wise fixer of T in W(G). 

Now let us consider the algebra A of all polynomial functions on G. 
Via the compositions f +f 0 a, where f E A and =~Y#“(G), we have a 
right w(G)-module structure on A in which -W-(G) acts by algebra automor- 
phisms on A. In proving Lemma 3.1 of [2], we have shown that A is locally 
finite with respect to the action of the subgroup G’Z of w(G). A fortiori, 
A is locally finite as a w(G),-module. 

With every pair (~,f), where x is an element of G and f is an element 
of A, we associate the complex-valued function x/f on w(G), , where 
(xif)(~l) = f(a(x)). Let B denote the smallest algebra of functions on w(G), 
that contains all the functions x/f and is stable under the translation 
actions, as well as under the involution corresponding to the inversion 
map. From the fact that A is Iocally finite as a %9”(G),-module, it follows 
that B is a Hopf subalgebra of the Hopf algebra of all analytic represen- 
tative functions on r;Y(G)1 . Moreover, from the fact that A is finitely 
generated as an algebra, it follows that the same is true for B. Hence 
the algebra homomorphisms of B into the field of complex numbers 
constitute an affine algebraic group 9(B) whose algebra of polynomial 
functions may be identified with B. Our original group w(G), may be 
identified in the natural fashion with a complex analytic subgroup of 3(B). 

Exactly as in the proof of [2, Theorem 2.11, one sees that g(B) is naturally 
isomorphic with a subgroup of V(G), and one sees at the same time that 
the natural map 9(B) + w(G), as defined in [2], is a morphism of complex 
Lie groups. The image of 9(B) in Y?‘(G) contains w(G), , so that it is 
actualIy an open complex Lie subgruop of 9@(G). Therefore, we may 
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identify 9(B), as a complex Lie group, with its image in W(G), so that 
W(G), C 3(B) C V(G). N ow let us identify these groups with their 
canonical images in the full linear group on 9(G). An evident slight adjust- 
ment of [2, Proposition 2.21 shows that 9(B) thus becomes an algebraic 
subgroup of the full linear group on Z(G). (The canonical map is a morphism 
of affine algebraic groups from 9(B) to the full linear group on Z(G).) 
The above inclusions show that W(G)i is the identity component of 9(B) 
in the topological sense. But this is also the identity component of 9(B) in 
the sense of algebraic groups. Hence V(G), is algebraic, and Theorem 3 
is established. 

COROLLARY 4. Let G be a connected complex a&e algebraic group. Then 
S?(G), is algebraic, and the following three conditions are mutually equivalent. 

(1) d(G) is algebraic. 

(2) W(G) is algebraic. 

(3) Either the connected component of the neutral element in the center 
of G is unipotent, or the dimension of the center of G/Gu is at most equal to 1. 

Proof, From Theorem 1, we have d(G), = V(G) . W(G), , and V(G) 
is a connected algebraic group. By Theorem 3, the same is true for W(G), . 
Being the group generated by two connected algebraic subgroups of the 
full linear group on 9(G), the group d(G), is also algebraic, by a standard 
result of algebraic group theory. An evident slight extension of this argument 
shows that (2) implies (1). Now suppose that (1) is satisfied. Then 
&(G)/cQz(G)i is finite. Hence, using Theorem 1, we have that W(G)/W(G)i 
is finite. Since @‘(C)i is algebraic, it follows that W(G) is algebraic. Thus 
(1) and (2) are equivalent. Finally, the equivalence of (2) and (3) is known 
from [2, Theorems 3.2 and 3.31. 

An interesting special case is the case where the identity component of 
the center of G is unipotent. In this case, we have from Corollary 4 that 
J&‘(G) is algebraic. Moreover, since the group M, figuring in the definition 
of V(G) is a central toroid, it must be trivial in the present case. Hence 
V(G) is trivial. Thus, if the identity component of the center of G is unipotent, 
then d(G) is algebraic and coincides with W(G). 
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