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Let G be a connected affine algebraic group over the field of complex
numbers, Viewing G also as a complex analytic group, we consider the
group /(G) of all complex analytic automorphisms of G. As is well known,
£/(G) has a natural structure of a complex Lie group, being identifiable
with a closed complex Lie subgroup of the group of all automorphisms
of the Lie algebra #(G) of G. The rational automorphisms of G evidently
constitute a subgroup #(G) of &#(G). It is our main purpose here to
determine the situation of #'(G) within .2#(G).

In fact, the results of [1] enable us to establish the precise result stated
in Theorem 1 below without much additional work. This opens up the
possibility of obtaining information about the structure of £/(G) via an
examination of #(G). In particular, by using Theorem 1 in conjunction
with the results of [2] concerning #7(G), we obtain a structural characteriza-
tion of those groups G for which &/(G) is algebraic (when viewed as a
subgroup of the automorphism group of #(G)), and we show that the
identity components of @7(G) and #(G) are always algebraic.

The statement and the proof of Theorem 1 make reference to certain
subgroups of G, as follows. Let G, denote the unipotent radical of G, i.e.,
the unique maximum unipotent normal algebraic subgroup of G. Let M
denote the maximum nilpotent normal analytic subgroup of G, and let N
be the radical of the commutator subgroup {G, G] of G (actually, N coincides
with [G, G],). Each of these is clearly a connected algebraic subgroup
of G, and we have NC G, C M. It is clear from the definitions that NV
and M are stable under the action of &7(G), and that G, is stable under
the action of #(G). Moreover, since M is a normal algebraic subgroup
of G containing G, , we have M, = G, . Since M is nilpotent, it follows
from standard structure theory of affine algebraic groups that M is the
direct product G, X M,, where M, is a (complex) toroid and consists
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precisely of the semisimple elements of M. Therefore, M, is the unique
maximum reductive subgroup of M, whence it is stable under the action
of &Z(G). Finally, consider the factor commutator group G/[G, G]. This

is a connected abelian affine algebraic group, and therefore (as for M just
above) has a unique maximum reductive suboroun, Let () denote the full

abo as a unigue maximum reductive subgroup. Let O denote the ful
inverse image of this reductive group in G. It is clear from the definition
that () is stable under the action of .27(G).

Now we define a subgroup ¥ (G) of Z(G) as follows. The elements
of 77(G) are those automorphisms « of G which leave the elements of O
fixed and satisfy ofx)x—t e M, for every element x of M. It is readily seen
that #°(G) is a closed complex Lie subgroup of &7(G). From the fact that
O, M and M, are stable under the action of &/{G), it follows that ¥"(G)
is normal in &/(G).

Noting that G, is a nilpotent nucleus of G in the sense of [1], we have
from [1, Theorem 8.2] that an element of %/(G) belongs to #°(G) if and
only if it sends G, onto itself. In particular, this shows that #7(G) is a closed
complex Lie subgroup of 27(G).

THEOREM 1. Let G be a connected complex affine algebraic group. As a
complex Lie group, the group <7(G) of all analytic automorphisms of G is the
semidirect product of the normal subgroup ¥ (G) defined above and the group
W(G) of all rational automorphisms of G. Moreover, the canonical image of
VY(G) in the full linear group on the Lie algebra of G is an algebraic vector
subgroup of that full linear group.

Proof. Let us fix a maximal reductive subgroup H of G, so that G is
the semidirect product G, - I, We claim that the group Q used in defining
77(G) coincides with NH. In order to see this, note that [G, G] is the semi-
direct product N - [H, H], whence G/[G, G] is the direct product of the
vector group G,/N and the toroid H/[H, H]. Thus Q is the full inverse
image of Hf[H, H] in G, which is evidently NH.

Next, we show that M, lies in the center of G and coincides with 34 n H.
Since M M H is normal in H, it is reductive, so that M N HC M, . Now
consider the conjugation action of G on M, . Since M, is a toroid, the group
/(M) of analytic automorphisms of M, is discrete. The natural map
G — (M) is continuous, and G is connected. Hence the conjugation
action of G on M, must be trivial, which means that M| lies in the center
of G. Since M, is reductive, a conjugate of M, lies in H, so that M C H.
With the inclusion established above, this gives M, = M r H.

Let 7 be any element of ¥7(G), and let 9 be any element of the Lie algebra
F(M). If we identify r with the corresponding automorphism of £(G),
the definition of ¥7(G) gives 7(y) — n € L(M,). We define the linear map
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71 LMY — L(M,) by setting r'(n) = 7(n) — . A simple direct verification
shows that the map sending each element  of ¥'(G) onto 7’ is an injective
group homomorphism of ¥7(G) into the vector group of all linear maps
L (M) — Z(M,) that annihilate F(N) + F(M,). Moreover, we claim that
this homomorphism is surjective. The proof of this assertion is contained
in [1, Section 8], but we shall reproduce the necessary argument here, for
greater intelligibility.

Since Z(H)is a reductive Lie algebra whose center contains £(M), there is
an ideal ] of P(H) such that F(H) is the direct Lie algebra sum of [ and
F(M,). Now we have Z(G) = #(G,) + L(H) = L(G,) + (M) + | =
F(M) + ], and L(M)N ] = (0). Let 8 be any linear map L(M) — £(M,)
that annihilates (V) + £(M,). Extend 8 to a linear map L(G) — ZL(M )
by making 8(]) = (0). Now define the linear map &;: £(G) — L(G) by
8i(p) = pu -+ 8(p). It is easy to verify directly that 8; is a Lie algebra
automorphism of .Z(G). The universal covering group G° of G may be
written as a semidirect product G,, - H° where H® is the universal covering
group of H. Our Lie algebra automorphism 8, defines an analytic automor-
phism 7° of GY in the natural fashion. Since 8, coincides with the identity
map on Z(H), this automorphism 7° leaves the elements of H® fixed. Hence,
via the covering G® — G, the automorphism +° induces an analytic automor-
phism 7 of G. It is seen directly from this construction that  belongs to
#7(G) and that v = &.

We have just seen that when &/(G) is identified with its natural image
in the full linear group on #(G) then the subgroup #°(G) becomes the
algebraic vector subgroup consisting of all linear maps o: #(G) — Z(G)
such that, if i denotes the identity map on £(G), the map ¢ — ¢ sends
P(M) into #(M,) and annihilates £(N) -+ ZL(H). This proves the second
part of the statement of Theorem 1.

Next, let us show that ¥ (G) N #7(G) = (1). Let « be an element of
¥(G) N #(G), and let x be an element of G,, . Since a is a rational automor-
phism of G, we have «G,) = G, . Hence a(x)x~* € G, . On the other hand,
since o belongs to 7(G), we have a(x)xe M, = M N H. Thus afx)x?
belongs to H N G, = (1), showing that « leaves the elements of G, fixed.
Since « leaves fixed also the elements of HCQ, it follows that « is the
identity automorphism, as we wished to show.

Now let « be any element of &/(G). Then «(G,) and G, are nilpotent
nuclei of G, in the sense of [1]. Hence we can apply [1, Theorem 8.4]
(keeping in view also the construction made in the proof of that theorem),
which shows that there is an element 7 in ¥(G) such that #(G,) = «(G,)-
Now 7l is an analytic automorphism of G that sends G, onto itself. As
we have already noted just before stating Theorem 1, this implies that 7%«
belongs to #7(G). Hence we conclude that 2/(G) = ¥7(G) #7(G).
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In order to obtain the proper semidirect product decomposition of 2/(G),
let us construct the semidirect product of the complex analytic group #°(G)
and the complex Lie group #7(G), using the conjugation action of #7(G)
on ¥'(G). The multiplication map of this semidirect product into &/(G) is
clearly a morphism of complex Lie groups. By the above, this morphism
is bijective. From the fact that #7(G) is isomorphic with a closed complex
Lie subgroup of the full linear group on #(G), we find that our semidirect
product is a complex Lie group with only a countable set of connected
components. Hence Pontrjagin’s well-known theorem on homomorphisms
of topological groups shows that our morphism is also an open map.
Therefore, &7(G) is the semidirect product ¥(G) - #°(G) in the strict sense
of complex Lie groups, so that Theorem 1 is proved.

CorOLLARY 2. In the notation of Theorem 1, we have /(G) = #'(G)
if and only if G, coincides with N or with M.

Proof. We have M = G, x M, . Hence, if G, = M then M, is trivial,
and the definition of ¥"(G) gives that ¥(G) is trivial. If G, = N then the
definition of ¥"(G), together with the fact that Q = NH, shows that ¥ (G)
is trivial. Conversely, if ¥7(G) is trivial, then our description of the image
of ¥°(G) in the full linear group on #(G) shows that either £(M,) = (0),
in which case M, = (1) and M = G,,, or else L(M) = L(N)+ L(M,),
in which case M = N x M,, whence G, = N.

If P is any subgroup of &/(G) we shall say that P is algebraic if the
canonical image of P in the full linear group on #(G) is an algebraic
subgroup of that full linear group.

THEOREM 3. Let G be a connected complex affine algebraic group. The
connected component of the neutral element in the group W (G) of rational
automorphisms of G is algebraic.

Proof. Let H be a maximal reductive subgroup of G, and let T be the
connected component of the neutral element in the center of H. Let X
denote the stabilizer of 7" in #7(G). Denote the canonical image of G in
#7(G) by G'. It follows at once from the conjugacy of the maximal reductive
subgroups of G that #°(G) = G'X. Indicating connected components of
the neutral element by a subscript 1, we wish to show first that #7(G), =
G'X,. Let G'-X denote the semidirect product constructed from the
complex analytic group G’ (a complex analytic subgroup of #7(G)) and the
complex Lie group X (a closed complex Lie subgroup of #7(G)), using the
natural action of X on G’. Then the multiplication map G’ - X — #7(G)
is a surjective morphism of complex Lie groups. The same argument we
used at the end of the proof of Theorem 1 shows that this morphism is
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also an open map. Hence, if K denotes the kernel of this morphism, #°(G)
is isomorphic (as a topological group) with (G - X)/K. Now K consists of
the elements (, 271} with # in G' N X. Let G,/ and H’ denote the natural
images of G, and H in G'. Then we have G’ = G,/H’, and clearly H' C X,
Hence G'N X = (G, N X)H'. The group G,/ N X is the canonical
image of the normalizer of T in G, . This normalizer actually coincides
with the centralizer of T in G, for if x is an element of the normalizer
we have xtxt~1 e T N G, = (1) for every element ¢ of T Via the exponential
map ¥(G,) — G, , which is bijective, because G, is nilpotent and simply
connected, we see that the centralizer of T in G, is connected. Hence
G, N X is connected. Since H'’ is connected, it follows that G' N X is
connected. Hence the kernel K of our morphism G’ - X~ #7(G) is
connected. Since #W(G) is isomorphic with (G7 - X)/K, it follows that
W'(G), coincides with the image of (G' - X); = G’ - X, i.e, that #(G), =
G'X,.

Since T is a toroid, we know that /(T) is discrete, whence X; must
leave the elements of T fixed. Thus we have #(G), C G'Z, where Z denotes
the element-wise fixer of T in #7(G).

Now let us consider the algebra 4 of all polynomial functions on G.
Via the compositions f— fo«, where fe 4 and ac #(G), we have a
right %'(G)-module structure on 4 in which #7(G) acts by algebra automor-
phisms on 4. In proving Lemma 3.1 of [2], we have shown that 4 is locally
finite with respect to the action of the subgroup G'Z of #7(G). A fortiori,
4 is locally finite as a #7(G);-module.

With every pair (x, f), where x is an element of G and f is an element
of A4, we associate the complex-valued function »[f on #7(G),, where
(#/f o) = f(a(x)). Let B denote the smallest algebra of functions on #7(G),
that contains all the functions x/f and is stable under the translation
actions, as well as under the involution corresponding to the inversion
map. From the fact that 4 is locally finite as a W(G);-module, it follows
that B is a Hopf subalgebra of the Hopf algebra of all analytic represen-
tative functions on #(G), . Moreover, from the fact that 4 is finitely
generated as an algebra, it follows that the same is true for B. Hence
the algebra homomorphisms of B into the field of complex numbers
constitute an affine algebraic group %(B) whose algebra of polynomial
functions may be identified with B. Our original group #7(G), may be
identified in the natural fashion with a complex analytic subgroup of %(B).

Exactly as in the proof of [2, Theorem 2.1], one sees that %(B) is naturally
isomorphic with a subgroup of #°(G), and one sees at the same timc that
the natural map ¥(B) — #7(G), as defined in [2], is a morphism of complex
Lie groups. The image of ¥(B) in #(G) contains #7(G);, so that it is
actually an open complex Lie subgruop of #(G). Therefore, we may
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identify %(B), as a complex Lie group, with its image in #7(G), so that
W (G), CYB)CH#(G). Now let us identify these groups with their
canonical images in the full linear group on £(G). An evident slight adjust-
ment of [2, Proposition 2.2] shows that %(B) thus becomes an algebraic
subgroup of the full linear group on #(G). (The canonical map is a morphism
of affine algebraic groups from %(B) to the full linear group on #(G).)
The above inclusions show that #7(G), is the identity component of %(B)
in the topological sense. But this is also the identity component of %(B) in
the sense of algebraic groups. Hence #7(G), is algebraic, and Theorem 3
is established.

CoROLLARY 4. Let G be a connected complex affine algebraic group. Then
A (G), is algebraic, and the following three conditions are mutually equivalent.

(1) A(G) is algebraic.
(2) #(G)is algebraic.

(3) Either the connected component of the neutral element in the center
of G is unipotent, or the dimension of the center of G|/G,, is at most equal to 1.

Proof. From Theorem 1, we have &/(G), = ¥(G) - #(G), , and ¥(G)
is a connected algebraic group. By Theorem 3, the same is true for #(G), .
Being the group generated by two connected algebraic subgroups of the
full linear group on £(G), the group £7(G), is also algebraic, by a standard
result of algebraic group theory. An evident slight extension of this argument
shows that (2) implies (1). Now suppose that (1) is satisfied. Then
A (G)|L(G), is finite. Hence, using Theorem 1, we have that #(G)/#7(G),
is finite. Since #'(G), is algebraic, it follows that #7(G) is algebraic. Thus
(1) and (2) are equivalent. Finally, the equivalence of (2) and (3) is known
from [2, Theorems 3.2 and 3.3].

An interesting special case is the case where the identity component of
the center of G is unipotent. In this case, we have from Corollary 4 that
&Z(G) is algebraic. Moreover, since the group M, figuring in the definition
of ¥(G) is a central toroid, it must be trivial in the present case. Hence
¥"(G) is trivial. Thus, if the identity component of the center of G is unipotent,
then /(G) is algebraic and coincides with W (G).
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