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We introduce generator blocking sets of finite classical polar
spaces. These sets are a generalisation of maximal partial spreads.
We prove a characterization of these minimal sets of the polar
spaces Q(2n,q), Q−(2n + 1,q) and H(2n,q2), in terms of cones
with vertex a subspace contained in the polar space and with base
a generator blocking set in a polar space of rank 2.
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1. Introduction and definitions

A (finite) generalized quadrangle (GQ) is an incidence structure S = (P,G, I) in which P and G are
disjoint non-empty sets of objects called points and lines (respectively), and for which I⊆ (P × G) ∪
(G ×P) is a symmetric point-line incidence relation satisfying the following axioms:

(i) Each point is incident with 1 + t lines (t � 1) and two distinct points are incident with at most
one line.

(ii) Each line is incident with 1 + s points (s � 1) and two distinct lines are incident with at most
one point.

(iii) If X is a point and l is a line not incident with X , then there is a unique pair (Y ,m) ∈P × G for
which X I m I Y I l.
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The integers s and t are the parameters of the GQ and S is said to have order (s, t). If S = (P,G, I)
is a GQ of order (s, t), we say that S ′ = (P ′,G′, I′) is a subquadrangle of order (s′, t′) if and only
if P ′ ⊆ P , G′ ⊆ G , and S ′ = (P ′,G′, I′) is a generalized quadrangle with I′ the restriction of I to
P ′ × G′ .

The finite classical polar spaces are the geometries consisting of the totally isotropic, respectively, to-
tally singular, subspaces of non-degenerate sesquilinear, respectively, non-degenerate quadratic forms
on a projective space PG(n,q). So these geometries are the non-singular symplectic polar spaces
W(2n + 1,q), the non-singular parabolic quadrics Q(2n,q), n � 2, the non-singular elliptic and hy-
perbolic quadrics Q−(2n + 1,q), n � 2, and Q+(2n + 1,q), n � 1, respectively, and the non-singular
hermitian varieties H(d,q2), d � 3. For q even, the parabolic polar space Q(2n,q) is isomorphic to
the symplectic polar space W(2n − 1,q). For our purposes, it is sufficient to recall that every non-
singular parabolic quadric in PG(2n,q) can, up to a coordinate transformation, be described as the
set of projective points satisfying the equation X2

0 + X1 X2 + · · · + X2n−1 X2n = 0. Every non-singular
elliptic quadric of PG(2n + 1,q) can, up to a coordinate transformation, be described as the set of
projective points satisfying the equation g(X0, X1) + X2 X3 + · · · + X2n X2n+1 = 0, g(X0, X1) an irre-
ducible homogeneous quadratic polynomial over GF(q). Finally, the hermitian variety H(n,q2) can, up
to a coordinate transformation, be described as the set of projective points satisfying the equation
Xq+1

0 + Xq+1
1 + · · · + Xq+1

n = 0.
The generators of a classical polar space are the totally isotropic or totally singular subspaces of

maximal dimension. If the generators are of dimension r − 1, then the polar space is said to be of
rank r.

Finite classical polar spaces of rank 2 are examples of generalized quadrangles, and are called
finite classical generalized quadrangles. These are the non-singular parabolic quadrics Q(4,q), the non-
singular elliptic quadrics Q−(5,q), the non-singular hyperbolic quadrics Q+(3,q), the non-singular
hermitian varieties H(3,q2) and H(4,q2), and the symplectic generalized quadrangles W(3,q). The
GQs Q(4,q) and W(3,q) are dual to each other, and have both order (q,q). The GQs Q(4,q) and
W(3,q) are self-dual if and only if q is even. Finally, the GQs H(3,q2) and Q−(5,q) are dual to each
other, and have respective order (q2,q) and (q,q2). The GQ H(4,q2) has order (q2,q3), and the GQ
Q+(3,q) has order (q,1). By taking hyperplane sections in the ambient projective space, it is clear that
Q+(3,q) is a subquadrangle of Q(4,q), that Q(4,q) is a subquadrangle of Q−(5,q), and that H(3,q2)

is a subquadrangle of H(4,q2). These well-known facts can be found in e.g. [9].
Next consider the projective space PG(n,q). A set B of points of PG(n,q) is a blocking set if each

hyperplane of PG(n,q) contains at least one point of B. It is well known that a line of PG(n,q) is
the smallest blocking set of PG(n,q). For n = 2, we call a blocking set containing a line trivial. For
a given q, let εq denote the integer number such that q + εq is the size of the smallest non-trivial
blocking set of PG(2,q). It is also well known that any blocking set B of PG(n,q), n > 2, such that
|B| < q + εq , contains a line [2]. The following proposition will serve as a motivation to introduce
generator blocking sets of finite classical polar spaces.

Proposition 1.1. Suppose that L is a set of lines of Q(4,q) with the property that every line of Q(4,q) meets
at least one line of L. If |L| is smaller than the size of a non-trivial blocking set of PG(2,q), then L contains
the pencil of q + 1 lines through a point of Q(4,q) or L contains a regulus contained in Q(4,q).

Proof. Using the duality between Q(4,q) and W(3,q), the set L translates to a set B of points of
W(3,q), such that each point of W(3,q) is collinear in W(3,q) to at least one point of B. If ϕ is
the symplectic polarity defining W(3,q), this means that for each point P ∈ W(3,q), the plane Pϕ

meets B. If π is any plane of PG(3,q), then πϕ is a point of W(3,q), and so every plane of PG(3,q)

is the pole of a point of W(3,q) with relation to the defining polarity ϕ . Hence, B is a blocking set
with respect to planes of PG(3,q) and hence, by the assumption on the size of |L|, and by [2], it
contains a line l. If l is a line of W(3,q), it corresponds with the pencil of q + 1 lines through a
point of Q(4,q). If l is not a line of W(3,q), it corresponds with a regulus contained in Q(4,q). The
proposition follows. �
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Consider a finite classical polar space S of rank r � 2. A set L of generators of S is called a
generator blocking set if it has the property that every generator of S meets at least one element of
L non-trivially. We generalize this definition to non-classical GQs, and we say that L is a generator
blocking set of a GQ S if L has the property that every line of S meets at least one element of L.
Clearly, for finite classical generalized quadrangles, both definitions coincide. Suppose that L is a
generator blocking set of a finite classical polar space, respectively a GQ. We call an element π of L
essential if and only if there exists a generator, respectively line, of S , meeting no element of L \ {π}.
We call L minimal if and only if all of its elements are essential.

A spread of a finite classical polar space is a set C of generators such that every point is contained
in exactly one element of C . Hence, the generators in the set C are pairwise disjoint. A cover is a set
C of generators such that every point is contained in at least one element of C . Hence, a spread is
a cover consisting of pairwise disjoint generators. From the definitions, it follows that spreads and
covers are particular examples of generator blocking sets.

In this paper, we will study small generator blocking sets of the polar spaces Q(2n,q), Q−(2n+1,q)

and H(2n,q2), n � 2, all of rank n. The following theorems, inspired by Proposition 1.1, will be proved
in Section 2.

Theorem 1.2. Let L be a generator blocking set of a finite generalized quadrangle of order (s, t), with |L| =
t + 1. Then L is the pencil of t + 1 lines through a point, or t � s and L is a spread of a subquadrangle of order
(s, t/s).

Theorem 1.3.

(a) Let L be a generator blocking set of Q−(5,q), with |L| = q2 + δ + 1. If δ � 1
2 (3q −√

5q2 + 2q + 1 ), then
L contains the pencil of q2 + 1 generators through a point or L contains a cover of Q(4,q) embedded as
a hyperplane section in Q−(5,q).

(b) Let L be a generator blocking set of H(4,q2), with |L| = q3 + δ + 1. If δ < q − 3, then L contains the
pencil of q3 + 1 generators through a point.

Section 3 is devoted to a generalization of Proposition 1.1 and Theorem 1.3 to finite classical polar
spaces of any rank.

2. Generalized quadrangles

In this section, we study minimal generator blocking sets L of GQs of order (s, t). After general
observations and the proof of Theorem 1.2, we devote two subsections to the particular cases S =
Q−(5,q) and S = H(4,q2). We remind that for a GQ S = (P,G, I) of order (s, t), |P| = (st + 1)(s + 1)

and |G| = (st + 1)(t + 1), see e.g. [9]. Suppose that P is a point of S , then we denote by P⊥ the
set of all points of S collinear with P . By definition, P ∈ P⊥ . For a classical GQ S with point set P ,
the set P⊥ = π ∩ P , with π the tangent hyperplane to S in the ambient projective space at the
point P [5,9]. Therefore, when P is a point of a classical GQ S , we also use the notation P⊥ for the
tangent hyperplane π . From the context, it will always be clear whether P⊥ refers to the point set or
to the tangent hyperplane.

We denote by M the set of points of P covered by the lines of L, and we call any point of P
a covered point if it belongs to M. Suppose that P �= M, and consider a point P ∈ P \ M. Since a
GQ does not contain triangles, different lines on P meet different lines of L. As every point lies on
t + 1 lines, this implies that |L| = t + 1 + δ with δ � 0. For each point P ∈M, we define w(P ) as the
number of lines of L on P . Also, we define

W :=
∑

P∈M

(
w(P ) − 1

)
,

then clearly |M| = |L|(s + 1) − W .
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We denote by bi the number of lines of G \ L that meet exactly i lines of L, 0 � i. Derived from
this notation, for P /∈ M and 1 � i, we denote by bi(P ) the number of lines on P that meet exactly
i lines of L. Remark that there is no a priori upper bound on the number of lines of L that meet
a line of G \ L. In the next lemmas however, we will search for completely covered lines not in L,
and therefore we denote by b̃i the number of lines of G \ L that contain exactly i covered points,
0 � i � s + 1, and we denote by b̃i(P ) the number of lines on P /∈ M containing exactly i covered
points, 0 � i � s + 1.

Lemma 2.1. Suppose that δ < s − 1.

(a) Let X be a point of P \M. Then
∑

i bi(X)(i − 1) = δ and

∑

P∈X⊥∩M

(
w(P ) − 1

)
� δ.

(b) A line not contained in M can meet at most δ + 1 lines of L. In particular, b̃i = bi = 0 for i = 0 and for
δ + 1 < i < s + 1.

(c)
δ+1∑

i=2

b̃i(i − 1) �
δ+1∑

i=2

bi(i − 1).

(d) If P0 is a point of M that lies on a line l meeting M only in P0 , then

∑

P∈M\P⊥
0

(
w(P ) − 1

)
� δs.

(e) (s − δ)

δ+1∑

i=1

bi(i − 1) � (st − t − δ)(s + 1)δ + W δ.

(f) If not all lines on a point P belong to L, then at most δ + 1 lines on P belong to L, and less than t/s + 1
lines on P not in L are completely contained in M.

Proof. From the assumption that |L| = t + 1 + δ, δ < s − 1, it follows that not all points of P can be
covered. So we have that P �=M.

(a) Consider a point X ∈ P \M. Each of the t + 1 lines on X meets a line of L, and every line of
L meets exactly one of these t + 1 lines. Hence

∣∣X⊥ ∩M
∣∣ � t + 1 =

∑

i

bi(X).

Furthermore,

∑

P∈X⊥∩M
w(P ) =

∑

i

bi(X)i = |L| = t + 1 + δ.

Both assertions follow immediately.
(b) Since every line of S meets a line of L, it follows that b̃0 = b0 = 0. Consider any line l /∈ L

containing a point P /∈ M. The t lines different from l on P are blocked by at least t lines of L not
meeting l. So at most |L| − t = δ + 1 lines of L can meet l.

(c) Consider a line l containing i covered points with 0 < i � δ + 1. Then l must meet at least i
lines of L, and, by (b), at most δ + 1 lines of L. On the left hand side, this line is counted exactly
i − 1 times, on the right hand side this line is counted at least i − 1 times. This gives the inequal-
ity.
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(d) Each point P , with P /∈ P⊥
0 , is collinear to exactly one point X �= P0 of l. For X ∈ l, X �= P0, the

inequality of (a) gives
∑

P∈X⊥∩M(w(P ) − 1) � δ. Summing over the s points on l different from P0
gives the expression.

(e) It follows from (b) that every line with a point not in M has at least s − δ points not in M.
Taking the sum over all points P not in M and using the equality of (a), one finds

δ+1∑

i=1

bi(s − δ)(i − 1) �
∑

P /∈M

δ+1∑

i=1

bi(P )(i − 1) = (|P| − |M|)δ.

As |M| = |L|(s + 1) − W , the assertion follows.
(f) Suppose that the point P lies on exactly x � 1 lines that are not elements of L. It is not possible

that all these x lines are contained in M, since this would require xs lines of L that are not on P ,
and then |L| � t +1− x+ xs � t + s, a contradiction with δ < s −1. Thus we find a point P0 ∈ P⊥ \M.
Then the t lines on P0, different from 〈P , P0〉, must be blocked by a line of L not on P , hence at
most δ + 1 lines of L can contain P .

If y lines on P do not belong to L, but are completely contained in M, then at least 1 + ys lines
contained in L meet the union of these y lines, so 1+ ys � |L| = t +1+ δ, so y < t/s +1 as δ < s. �
Lemma 2.2. Suppose that δ = 0. If two lines of L meet, then L is a pencil of t + 1 lines through a point P .

Proof. The lemma follows immediately from Lemma 2.1 (f). �
Lemma 2.3. Suppose that δ = 0. If L is not a pencil, then t � s and L is a spread of a subquadrangle of order
(s, t/s).

Proof. We may suppose that L is not a pencil, so that the lines of L are pairwise skew by Lemma 2.2.
Consider the set G′ of all lines completely contained in M. The set G′ contains at least all the ele-
ments of L, so G′ is not empty. If l ∈ G′ and P ∈ M not on l, then there is a unique line g ∈ G on
P meeting l. As this line contains already two points of M, it is contained in M by Lemma 2.1 (b),
that is g ∈ G′ . This shows that (M,G′) is a GQ of some order (s, t′) and hence it has (t′s + 1)(s + 1)

points. As |M| = (t + 1)(s + 1), then t′s = t , that is t′ = t/s and hence t � s. �
This lemma proves Theorem 1.2.

2.1. The case S = Q−(5,q)

In this subsection, S = Q−(5,q), so (s, t) = (q,q2), and |L| = q2 +1+δ. We suppose that L contains
no pencil and we will show for small δ that L contains a cover of a parabolic quadric Q(4,q) ⊆ S .

The set M of covered points blocks all the lines of Q−(5,q). An easy counting argument shows
that |M| � q3 + 1 (in fact, it follows from [8] that |M| � q3 + q, but we will not use this stronger
lower bound). Thus W = |L|(q + 1) − |M| � (q + 1)(q + δ).

Lemma 2.4. If δ � q−1
2 , then W � δ(q + 2).

Proof. Denote by B the set of all lines not in L, meeting exactly i lines of L for some i, with 2 �
i � δ + 1. We count the number of pairs (l,m), l ∈ L, m ∈ B, l meets m. The number of these pairs is∑δ+1

i=2 bi i.

It follows from Lemma 2.1 (e), W � (q + 1)(q + δ), and δ � q−1
2 , that

δ+1∑

i=2

bi i � 2
δ+1∑

i=1

bi(i − 1) � 2 · (q3 − q2 − δ)(q + 1)δ + W δ

q − δ

� 2
(q + 1)δ(q3 − q2 + q) � 2(q − 1)

(
q3 − q2 + q

) =: c.

q − δ
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Hence, some line l of L meets at most �c/|L|� lines of B, where �r�, r a real number, denotes the
largest integer n such that n � r. Denote by B1 the set of lines not in L that meet exactly one line
of L. If a point P does not lie on a line of B1, then it lies on at least q2 − q − δ lines of B (by
Lemma 2.1 (f) and since L contains no pencil). As δ � q−1

2 , then c/|L| < 2(q2 − q − δ), so at most one
point of l can have this property. Thus l has x � q points that lie on a line of B1, so l is the only line
of L meeting such a line. Apply Lemma 2.1 (d) on these x points. As every point not on l is collinear
with at most one of these x points, it follows that

∑

P∈M\l

(
w(P ) − 1

)
� xδq

x − 1
� δq2

q − 1
< δ(q + 1) + 1.

All but at most one point of l lie on a line of B1, so l is the only line of L on these points. One point
of l can be contained in more than one line of L, but then it is contained in at most δ + 1 lines of L
by Lemma 2.1 (f). Hence

∑
P∈l(w(P ) − 1) � δ, and therefore W � δ(q + 2). �

Lemma 2.5. If δ � q−1
2 , then

b̃q+1 � q3 + q − δ − (q3 + q2 − qδ − q + 1)δ

q − δ
.

Proof. We count the number of incident pairs (P , l), P ∈M and l a line of Q−(5,q), to see

|M|(q2 + 1
) = |L|(q + 1) +

q+1∑

i=1

b̃i i.

As Q−(5,q) has (q2 + 1)(q3 + 1) = |L| + ∑q+1
i=1 b̃i lines, then

|L|q +
q+1∑

i=1

b̃i(i − 1) = |L|(q + 1) +
q+1∑

i=1

b̃i i − (
q2 + 1

)(
q3 + 1

)

= |M|(q2 + 1
) − (

q2 + 1
)(

q3 + 1
)

= (
q2 + 1

)
(q + 1)(q + δ) − W

(
q2 + 1

)
.

�
(
q2 + 1

)
(q + 1)q − δ

(
q2 + 1

)
,

where we used W � δ(q + 2) from Lemma 2.4. From Lemma 2.1 (c) and (e) and W � δ(q + 2), we
have

(q − δ)

δ+1∑

i=2

b̃i(i − 1) � (q − δ)

δ+1∑

i=2

bi(i − 1) �
(
q3 − q2)(q + 1)δ + δ2.

Together this gives

(|L| + b̃q+1
)
q �

(
q2 + 1

)
(q + 1)q − δ

(
q2 + 1

) − (q3 − q2)(q + 1)δ + δ2

q − δ
.

Using |L| = q2 + 1 + δ, the assertion follows. �
Lemma 2.6. If δ � 1

2 (3q − √
5q2 + 2q + 1 ), then |L|(|L| − 1)δ < b̃q+1(q + 1)q.

Proof. First note that the upper bound on δ implies that δ � 1
2 (q −1). Using the lower bound on b̃q+1

from the previous lemma, we find
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2(q − δ)
(
b̃q+1(q + 1)q − |L|(|L| − 1

)
δ
)

� 2q4 · g(δ) + (q − 1 − 2δ)
(−2δ2q2 + δ2q + 3q4 + 3q3 + 2q2 + q

)

+ 2δ4 + 2δ3 + qδ2 + 3q2δ2 + q + q2 + 3q3 + 5

2
q4,

with

g(δ) := q2 − 1

2
q − 1

4
− 3qδ + δ2.

The smaller zero of g is δ1 = 1
2 (3q −√

5q2 + 2q + 1 ). Hence, if δ � δ1, then δ � 1
2 (q − 1) and g(δ) � 0,

and therefore |L|(|L| − 1)δ < b̃q+1(q + 1)q. �
Lemma 2.7. If δ � 1

2 (3q − √
5q2 + 2q + 1 ), then there exists a hyperbolic quadric Q+(3,q) contained in M.

Proof. Count triples (l1, l2, g), where l1, l2 are skew lines of L and g /∈ L is a line meeting l1 and l2
and being completely contained in M. Then

|L|(|L| − 1
)
z � b̃q+1(q + 1)q,

where z is the average number of transversals contained in M and not contained in L, of two skew
lines of L. By Lemma 2.6, we find that z > δ. Hence, we find two skew lines l1, l2 ∈L such that δ + 1
of their transversals are contained in M. The lines l1 and l2 generate a hyperbolic quadric Q+(3,q)

contained in Q−(5,q), denoted by Q+ . If some point P of Q+ is not contained in M, then the line
on it meeting l1, l2 has at least two points in M and the second line of Q+ on it has at least δ + 1
points in M. This is not possible (cf. Lemma 2.1 (a)). Hence, Q+ is contained in M. �
Lemma 2.8. If δ � 1

2 (3q − √
5q2 + 2q + 1 ), then M contains a parabolic quadric Q(4,q).

Proof. We may suppose that δ > 0, since the case δ = 0 is handled by Lemma 2.3. Lemma 2.7 shows
that M contains a hyperbolic quadric Q+(3,q), which will be denoted by Q+ . We also know that
|M| = |L|(q + 1) − W � q3 + q2 + q + 1 − δ by Lemma 2.4. There are q + 1 hyperplanes through Q+ ,
necessarily intersecting Q−(5,q) in parabolic quadrics Q(4,q).

Hence, there exists a parabolic quadric Q (4,q), denoted by Q, containing Q+ such that

c := ∣∣(Q \Q+) ∩M
∣∣ � |M| − (q + 1)2

q + 1
> q2 − q − 1.

Hence, c � q2 − q. From now on we mean in this proof by a hole of Q a point of Q that is not in M.
Each of the q3 − q − c holes of Q can be perpendicular to at most δ points of (Q \ Q+) ∩ M (cf.
Lemma 2.1 (a)). Thus we find a point P ∈ (Q \Q+) ∩M that is perpendicular to at most

(q3 − q − c)δ

c
� qδ

holes of Q. The point P lies on q + 1 lines of Q and if such a line is not contained in M, then it
contains at least q − δ holes of Q (cf. Lemma 2.1 (b)). Thus the number of lines of Q on P that are
not contained in M is at most qδ/(q − δ). The hypothesis on δ guarantees that this number is less
than q + 1 − δ. Thus, P lies on at least r � δ + 1 lines of the set Q that are contained in M. These r
lines meet Q+ in r points of the conic C := P⊥ ∩Q+ . Denote this set of r points by C ′ .

Assume that Q \ P⊥ contains a hole R . For X ∈ C ′ , the hole R has a unique neighbor Y on the
line P X ; if this is not the point X , then the line RY has at least two points in M, namely Y and the
point RY ∩Q+ . So if |R⊥ ∩ C ′| = ∅, then there are at least r � δ + 1 lines on the hole R with at least
two points in M. This contradicts Lemma 2.1 (a). Therefore |R⊥ ∩ C ′| � r − δ � 1. As every point of C ′
lies on q +1 lines of Q, two of which are in Q+ and one other is contained in M, then every point of
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C ′ has at most (q − 2)q neighbors in Q that are holes. Counting pairs (X, Y ) of perpendicular points
X ∈ C ′ and holes R ∈Q\ P⊥ , it follows that Q\ P⊥ contains at most r(q −2)q/(r −δ) � (δ+1)q(q −2)

holes. Since P⊥ ∩Q contains at most qδ holes, we see that Q has at most qδ + (δ + 1)q(q − 2) holes.
As δ � (q −1)/2, this number is less than 1

2 q(q2 −1). Hence, c > |Q|− |Q+|− 1
2 q(q2 −1) = 1

2 q(q2 −1).
It follows that P is perpendicular to at most

(q3 − q − c)δ

c
< δ

holes of Q. This implies that all q + 1 lines of Q on P are contained in M. Then every hole of Q
must be connected to at least q + 1 − δ and thus all points of the conic C . Apart from P , there is
only one such point in Q, so Q has at most one hole. Then Lemma 2.1 (a) shows that Q has no
hole. �
Lemma 2.9. If M contains a parabolic quadric Q(4,q), denoted by Q, and |L| � q2 + q, then L contains a
cover of Q.

Proof. Consider a point P ∈ Q. As |P⊥ ∩Q| = q2 + q + 1, some line of L must contain two points of
P⊥ ∩Q. Then this line is contained in Q and contains P . �

In this subsection we assumed that L contains no pencil. The assumption that δ � 1
2 (3q −√

5q2 + 2q + 1 ) then implies that L contains a cover of a Q(4,q) ⊆ Q−(5,q). Hence, we may con-
clude the following theorem.

Theorem 2.10. If L is a generator blocking set of Q−(5,q), |L| = q2 + 1 + δ, δ � 1
2 (3q − √

5q2 + 2q + 1 ),
then L contains the pencil of q2 + 1 lines through a point of Q−(5,q) or L contains a cover of an embedded
parabolic quadric Q(4,q) ⊂ Q−(5,q).

2.2. The case S = H(4,q2)

In this subsection, S = H(4,q2), so (s, t) = (q2,q3). We suppose that L contains no pencil and that
|L| = q3 +1+δ, and we show that this implies that δ � q−3. The set M of covered points must block
all the lines of H(4,q2). It follows from [3] that |M| � q5 + q2, and hence W = |L|(q2 + 1) − |M| �
(q2 + 1)(q + δ).

Lemma 2.11. If δ < q − 1, then W � δ(q2 + 3).

Proof. Denote by B the set of all lines not in L, meeting exactly i lines of L for some i, with 2 �
i � δ + 1. We count the number of pairs (l,m), l ∈ L, m ∈ B, l meets m. The number of these pairs is∑δ+1

i=2 bi i.
It follows from Lemma 2.1 (e), W � (q2 + 1)(q + δ), and δ < q − 1, that

δ+1∑

i=2

bi i � 2
δ+1∑

i=1

bi(i − 1) � 2(q5 − q3 − δ)(q2 + 1)δ + 2W δ

q2 − δ

� 2(q2 + 1)δ(q5 − q3 + q)

q2 − δ
� 2

(
q6 + 1

) =: c.

Hence, some line l of L meets at most �c/|L|� lines of B. Denote by B1 the set of lines not in L that
meet exactly one line of L. If a point P does not lie on a line of B1, then it lies on at least q3 − q − δ

lines of B (by Lemma 2.1 (f) and since L contains no pencil). As δ < q − 1, then c/|L| < 3(q3 − q − δ),
so at most two points of l can have this property. Thus l has x � q2 − 1 points that lie on a line of B1,
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so l is the only line of L meeting such a line. Apply Lemma 2.1 (d) on these x points. As every point
not on l is collinear with at most one of these x points, it follows that

∑

P /∈l

(
w(P ) − 1

)
� xδq2

x − 1
� δ

(
q2 + 1

) + 2δ

q2 − 2
< δ

(
q2 + 1

) + 1.

Hence,
∑

P /∈l(w(P ) − 1) � δ(q2 + 1).
All but at most two points of l lie on a line of B1, so l is the only line of L on these at least q2 − 1

points. At most two points of l can be contained in more than one line of L, but each such point is
contained in at most δ + 1 lines of L by Lemma 2.1 (f). Hence

∑
P∈l(w(P ) − 1) � 2δ, and therefore

W � δ(q2 + 3). �
Lemma 2.12. If δ � q − 2, then

b̃q2+1 � q4 + q − δ − (q5 + 2q3 − 2qδ − q + 2)δ

q2 − δ
.

Proof. We count the number of incident pairs (P , l), P ∈M and l a line of H(4,q2), to see

|M|(q3 + 1
) = |L|(q2 + 1

) +
q2+1∑

i=1

b̃i i.

Since H(4,q2) has (q3 + 1)(q5 + 1) = |L| + ∑q2+1
i=1 b̃i lines,

|L|q2 +
q2+1∑

i=1

b̃i(i − 1) = |L|(q2 + 1
) +

q2+1∑

i=1

b̃i i − (
q3 + 1

)(
q5 + 1

)

= |M|(q3 + 1
) − (

q5 + 1
)(

q3 + 1
)

= (
q3 + 1

)(
q3 + q2 + δ

(
q2 + 1

)) − W
(
q3 + 1

)

�
(
q3 + 1

)
(q + 1)q2 − 2δ

(
q3 + 1

)
.

From Lemma 2.1 (c) and (e) and Lemma 2.11, we have

(
q2 − δ

) δ+1∑

i=2

b̃i(i − 1) �
(
q2 − δ

) δ+1∑

i=2

bi(i − 1) �
(
q5 − q3)(q2 + 1

)
δ + 2δ2.

Together this gives

(|L| + b̃q2+1

)
q2 �

(
q3 + 1

)
(q + 1)q2 − 2δ

(
q3 + 1

) − (q5 − q3)(q2 + 1)δ + 2δ2

q2 − δ
.

Using |L| = q3 + 1 + δ, the assertion follows. �
Lemma 2.13. If δ � q − 4, then |L|(|L| − 1)3q < b̃q2+1(q

2 + 1)q2 .

Proof. First note that by the assumption on δ, we may use the lower bound on b̃q2+1 from the
previous lemma, and so we find

(
q2 − δ

)(
b̃q2+1

(
q2 + 1

)
q2 − |L|(|L| − 1

)
3q

)

� (q − 4 − δ)
(
q6 − δ

)(
q3 + q2 + 5q + 5δ + 21

) + r(q, δ),

with
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r(q, δ) = (
81 + 33δ + 5δ2)q6 + (

1 − 2δ + 2δ2)q5 + (
δ + 7δ2)q4 − (

2δ2 + 6δ
)
q3 − δq2

+ (
δ + 3δ2 + 3δ3)q − 84δ − 41δ2 − 5δ3.

Since r(q, δ) > 0 if δ � q − 4, the lemma follows. �
Lemma 2.14. If L contains no pencil, then δ � q − 3.

Proof. Assume that δ < q − 3. Consider a hermitian variety H(3,q2), denoted by H, contained
in H(4,q2). A cover of H contains at least q3 + q lines by [8], so H contains at least one hole P .
Of all lines through P in H(4,q2), q3 − q are not contained in H. They must all meet a line of L,
so at most q + 1 + δ lines of L can be contained in H. Hence, at most |L| + (q + 1 + δ)q2 =
2q3 + q2 + 1 + δ(q2 + 1) < (q2 + 1)(2q + δ + 1) points of H are covered.

Counting the number of triples (l1, l2, g), where l1, l2 are skew lines of L and g /∈ L is a line
meeting l1 and l2 and being completely contained in M, it follows that

|L|(|L| − 1
)
z � b̃q2+1

(
q2 + 1

)
q2,

where z is the average number of transversals contained in M but not belonging to L, of two skew
lines of L. By Lemma 2.13, we find that z > 3q. So there exist skew lines l1 and l2 in L such that
at least 3q + 1 transversals to both lines are contained in M. These transversals are pairwise skew,
so the hermitian variety H(3,q2) induced in the 3-space generated by l1 and l2 contains at least
z(q2 + 1) � (3q + 1)(q2 + 1) > (q2 + 1)(2q + δ + 1) points of M. This is a contradiction. �

We have shown that δ � q − 3 if L contains no pencil. Note that we have no result for q ∈ {2,3}.
Hence, we have proved the following result.

Theorem 2.15. If L is a generator blocking set of H(4,q2), q > 3, |L| = q3 + 1 + δ, δ < q − 3, then L contains
the pencil of q3 + 1 lines through a point.

3. Polar spaces of higher rank

Consider a subspace V and a point set B in a projective space, such that the subspace W := 〈B〉
has no point in common with V . The cone with vertex V and base B, denoted by VB, is the union of
the point sets of the subspace V and all the subspaces in the set {〈V , P 〉 ‖ P ∈ B}. Note that VB = B
when V is the empty subspace and that VB = V when B is the empty set.

In this section, we denote a polar space of rank r by Sr . The parameters (s, t) refer in this section
always to (q,q), (q,q2), (q2,q3) respectively, for the polar spaces Q(2n,q), Q−(2n + 1,q), H(2n,q2).
The term polar space refers from now on always to a finite classical polar space. Consider a point P
in a polar space S . If S is determined by a polarity φ of the ambient projective space, which is true
for all polar spaces except for Q(2n,q) when q is even, then P⊥ denotes the hyperplane Pφ . The set
P⊥ ∩ S is exactly the set of points of S collinear with P , including P . For any point set A of the
ambient projective space, we define A⊥ := 〈A〉φ .

When S = Q(2n,q) and q is even, for P a point of S , let P⊥ denote the tangent hyperplane to S
at P . For any point set A containing at least one point of S , we define the notation A⊥ as

A⊥ :=
⋂

X∈A∩S
X⊥.

Using this notation, we can formulate the following property. Consider any polar space Sn of
rank n, and any subspace π of dimension l � n − 1, completely contained in Sn . Then π⊥ ∩ Sn =
πSn−l−1 is the cone with vertex π and base Sn−l−1 which is a polar space of the same type of rank
n − l − 1 [5,6].

A minimal generator blocking set of Sn , n � 3, can be constructed in a cone as follows. Consider an
(n − 3)-dimensional subspace πn−3 completely contained in Sn , hence π⊥

n−3 ∩ Sn = πn−3S2. Suppose
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Table 1
Small examples in rank n.

Polar space (s, t) Cone Base set Dimension

Q(2n,q) (q,q) πn−2Q(2,q) Q(2,q) n + 1
πn−3Q+(3,q) a spread of Q+(3,q) n + 1

Q−(2n + 1,q) (q,q2) πn−2Q−(3,q) Q−(3,q) n + 2
πn−3Q(4,q) a cover of Q(4,q) n + 2

H(2n,q2) (q2,q3) πn−2H(2,q2) H(2,q2) n + 1

that L is a minimal generator blocking set of S2, then L consists of lines. Each element of L spans
together with πn−3 a generator of Sn , and these |L| generators of Sn constitute a minimal generator
blocking set of Sn of size |L|.

Using the smallest generator blocking sets of the mentioned polar spaces of rank 2, we obtain ex-
amples of the same size in general rank, listed in Table 1. The notation πi refers to an i-dimensional
subspace. When the cone is πi B , the example consists of the generators through the vertex πi , con-
tained in the cone πi B , meeting the base of the cone in the elements of the base set, and the size
of the example equals the size of the base set. We will call πi the vertex of the generator blocking
set.

The natural question is whether these examples are the smallest ones. The answer is yes, and the
following theorem, proved by induction on n, gives our new result.

Theorem 3.1.

(a) Let L be a generator blocking set of Q(2n,q), with |L| = q + 1 + δ. Let ε be the natural number such that
q + 1 + ε is the size of the smallest non-trivial blocking set in PG(2,q). If q > 3 and δ < min{ q−2

2 , ε},
then L contains one of the two examples listed in Table 1 for Q(2n,q).

(b) Let L be a generator blocking set of Q−(2n + 1,q), with |L| = q2 + 1 + δ. If δ � 1
2 (3q −√

5q2 + 2q + 1 ),
then L contains one of the two examples listed in Table 1 for Q−(2n + 1,q).

(c) Let L be a generator blocking set of H(2n,q2), q > 3, with |L| = q3 + 1 + δ. If δ < q − 3, then L contains
the example listed in Table 1 for H(2n,q2).

3.1. Preliminaries

The following lemma will be useful.

Lemma 3.2.

(a) If a quadric πn−4Q+(3,q) or πn−3Q(2,q) in PG(n,q) is covered by generators, then for any hyperplane T
of PG(n,q), at least q − 1 of the generators in the cover are not contained in T .

(b) If a quadric πn−4Q(4,q) or πn−3Q−(3,q) in PG(n + 1,q) is covered by generators, then for any hyper-
plane T , at least q2 − q of the generators in the cover are not contained in T .

(c) If a hermitian variety πn−3H(2,q2) in PG(n,q2) is covered by generators, then for any hyperplane T of
PG(n,q2), at least q3 − q of the generators in the cover are not contained in T .

Proof. (a) This is clear if T does not contain the vertex of the quadric (i.e. the subspace πn−4, πn−3
respectively). If T contains the vertex, then going to the quotient space of the vertex, it is sufficient
to handle the cases Q(2,q) and Q+(3,q). The case Q(2,q) is degenerate but obvious, since any line
contains at most two points of Q(2,q). So suppose that C is a cover of Q+(3,q) ⊂ PG(3,q), then T
is a plane. If T ∩ Q+(3,q) contains lines, then it contains exactly two lines of Q+(3,q). Since at least
q + 1 lines are required to cover Q+(3,q), at least q − 1 lines in C do not lie in T .

(b) Again, we only have to consider the case that T contains the vertex, and so it is sufficient to
consider the two cases Q−(3,q) and Q(4,q) in the quotient geometry of the vertex T . For Q−(3,q),
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the assertion is obvious. Suppose finally that C is a cover of Q(4,q) ⊂ PG(4,q). Then T has dimension
three. If T ∩ Q(4,q) contains lines at all, then T ∩ Q(4,q) is a hyperbolic quadric Q+(3,q) or a cone
over a conic Q(2,q). As these can be covered by q + 1 lines and since a cover of Q(4,q) needs at least
q2 + 1 lines, the assertion is obvious also in this case.

(c) Now we only have to handle the case H(2,q2). Since all lines of PG(2,q2) contain at most q + 1
points of H(2,q2), the assertion is obvious. �

From now on, we always assume that Sn ∈ {Q(2n,q),Q−(2n + 1,q),H(2n,q2)}. In this section,
L denotes a generator blocking set of size |L| = t + 1 + δ of a polar space Sn .

Section 2 was devoted to the case n = 2 of Theorem 3.1 (b) and (c), the case n = 2 of Theo-
rem 3.1 (a) is Proposition 1.1. The case n = 2 serves as the induction basis. From now on assume that
n � 3. The induction hypothesis is that if L is a generator blocking set of Sn−1 of size t + 1 + δ, with
δ < δ0, then L contains one of the examples listed in Table 1. The number δ0 can be derived from the
case n = 2 in Theorem 3.1.

The polar space Sn has PG(2n + e, s) as the ambient projective space. Here e = 1 if and only
if Sn = Q−(2n + 1,q), and e = 0 otherwise. Call a point P of Sn a hole if it is not covered by a
generator of L. If P is a hole, then P⊥ meets every generator of L in an (n − 2)-dimensional sub-
space. In the polar space Sn−1, which is induced in the quotient space of P by projecting from P ,
these (n − 2)-dimensional subspaces induce a generator blocking set L′ , |L′| � |L|. Applying the
induction hypothesis, L′ contains one of the examples of Sn−1 described in Table 1, living in di-
mension n + e; we will denote this example by LP . Hence, the (n + 1 + e)-space on P containing
the (n − 2)-dimensional subspaces that are projected from P on the elements of LP , is a cone with
vertex P and base the (n + e)-dimensional subspace containing a minimal generator blocking set of
Sn−1 described in Table 1. We denote this (n + 1 + e)-space on P by S P .

Lemma 3.3. Consider a polar space Sn ∈ {Q(2n,q),Q−(2n + 1,q),H(2n,q2)}, and a generator blocking set
of size t + 1 + δ. If P is a hole and T is an (n + e)-dimensional space π on P and in S P , then at least t − t/s
generators of L meet S P in an (n − 2)-dimensional subspace not contained in T .

Proof. This assertion follows by going to the quotient space of P , and using Lemma 3.2 and the
induction hypothesis of this section. �

We recall the following facts from [6]. Consider a quadric Q in a projective space PG(n,q). An i-
dimensional subspace πi of PG(n,q) will intersect Q again in a possibly degenerate quadric Q′ . If Q′
is degenerate, then πi ∩Q=Q′ = RQ′′ , where R is a subspace completely contained in Q, and where
Q′′ is a non-singular quadric. We call R the radical of Q′ . Clearly, all generators of Q′ contain R . We
recall that Q′′ does not have necessarily the same type as Q.

Consider a hermitian variety H in a projective space PG(n,q2). An i-dimensional subspace πi of
PG(n,q2) will intersect H again in a possibly degenerate hermitian variety H′ . If H′ is degenerate,
then πi ∩H =H′ = RH′′ , where R is a subspace completely contained in H, and H′′ is a non-singular
hermitian variety. We call R the radical of H′ . Clearly, all generators of H′ contain R .

Lemma 3.4. Let L be a minimal generator blocking set of size t + 1 + δ of Sn. If an (n + 1 + e)-dimensional
subspace Π of PG(2n + e, s) contains more than t/s + 1 + δ generators of L, then L is one of the examples
listed in Table 1.

Proof. First we show that Π is covered by the generators of L. Assume not and let P be a hole of Π .
If Π ∩ Sn is degenerate, then its radical is contained in all generators of Π ∩ Sn , so P is not in the
radical. Hence, P⊥ ∩Π has dimension n + e and thus S P ∩Π has dimension at most n + e. Lemma 3.3
shows that at least t − t/s generators of L meet S P in an (n − 2)-dimensional subspace that is not
contained in Π . Hence, Π contains at most t/s + 1 + δ generators of L. This contradiction shows that
Π is covered by the generators of L.

The subspace Π is an (n + 1 + e)-dimensional subspace containing generators of Sn . This leaves a
restricted number of possibilities for Π ∩ Sn:
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(1) Π ∩ Sn ∈ {πn−3Q+(3,q),πn−2Q(2,q)} when Sn = Q(2n,q),
(2) Π ∩ Sn ∈ {πn−4Q+(5,q),πn−3Q(4,q),πn−2Q−(3,q)} when Sn = Q−(2n + 1,q), and
(3) Π ∩ Sn ∈ {πn−3H(3,q2),πn−2H(2,q2)} when Sn = H(2n,q2).

Case 1. Π ∩ Sn = πn−2S1 (S1 = Q(2,q),Q−(3,q), or H(2,q2)).

A generator of L contained in Π contains the vertex πn−2. If one of the t + 1 generators on πn−2
is not contained in L, then at least s generators of L are required to cover its points outside of πn−2.
Hence, if x of the t + 1 generators on πn−2 are not contained in L, then |L| � t + 1 − x + xs. Since
|L| = t + 1 + δ, with δ < s − 1, this implies x = 0. So L contains the pencil of generators of πn−2S1,
and by the minimality of L, it is equal to this pencil.

Case 2. Π ∩ Sn ∈ {πn−3Q+(3,q),πn−3Q(4,q)}.

Recall that Π ∩ Sn = πn−3Q+(3,q) when Sn = Q(2n,q) and then (s, t) = (q,q), and that Π ∩ Sn =
πn−3Q(4,q) when Sn = Q−(2n + 1,q) and then (s, t) = (q,q2).

All generators of L contained in Π must contain the vertex πn−3. We will show that the generators
of L contained in Π already cover Π ∩Sn; then L contains (by minimality) no further generator and
thus L is one of the two examples.

Assume that some point P of Π ∩ Sn does not lie on any generator of L contained in Π . As
all generators of L contained in Π contain the vertex πn−3, then P is not in this vertex. Hence,
P⊥ ∩ Π ∩ Sn is a pencil of t/s + 1 generators g0, . . . , gt/s on the subspace πn−2 = 〈P ,πn−3〉. None of
the generators gi is contained in L. Therefore, at least s + 1 generators of L are required to cover gi .
One such generator of L may contain the vertex πn−2 and counts for each generator gi , but this still
leaves at least (t/s + 1)s + 1 generators in L necessary to cover all the generators gi . But |L| < t + s,
a contradiction.

Case 3. Π ∩ Sn ∈ {πn−4Q+(5,q),πn−3H(3,q2)}, and we will show that this case is impossible.

Recall that Π ∩ Sn = πn−4Q+(5,q) when Sn = Q−(2n + 1,q) and then (s, t) = (q,q2), and that
Π ∩ Sn = πn−3H(3,q2) when Sn = H(2n,q2) and then (s, t) = (q2,q3). In both cases, t/s = q. Denote
by V the vertex of Π ∩ Sn .

All generators of L contained in Π must contain the vertex V . We will show that the generators
of L contained in Π already cover Π ∩ Sn .

Assume that some point P of Π ∩ Sn does not lie on any generator of L contained in Π . As all
generators of L contained in Π contain the vertex V , then P is not in V . When Sn = Q−(2n + 1,q),
then P⊥ ∩ Π ∩Sn contains 2(q + 1) generators on the subspace π = 〈P , V 〉. None of these generators
is contained in L. These 2(q + 1) generators split into two classes, corresponding with the two classes
of generators of the hyperbolic quadric Q+(3,q), the base of the cone πQ+(3,q) = P⊥ ∩ Π ∩ Sn .
Consider one such class of generators, denoted by g0, . . . , gq . When Sn = H(2n,q2), then P⊥ ∩Π ∩Sn
contains q +1 generators on the subspace π = 〈P , V 〉, and none of these generators is contained in L.
Also denote these generators by g0, . . . , gq . So in both cases we consider t/s + 1 = q + 1 generators
g0, . . . , gq on the subspace π = 〈P , V 〉, not contained in L. Consider now any generator gi , then at
least s+1 generators of L are required to cover gi . One such generator of L may contain the vertex π
and counts for each generator gi , but this still leaves at least (t/s + 1)s + 1 generators in L necessary
to cover all the generators gi . But |L| < t + s, a contradiction.

Hence in the quotient geometry of the vertex V , the generators of L contained in Π induce
either a cover of Q+(5,q), which has size at least q2 + q (see [4]) or a cover of H(3,q2), which has
size at least q3 + q2 (see [8]). In both cases, this is in contradiction with the assumed upper bound
on |L|. �
3.2. The polar spaces Q−(2n + 1,q) and H(2n,q2)

This subsection is devoted to the proof of Theorem 3.1 (b) and (c).
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Lemma 3.5. Suppose that C is a line cover of Q(4,q) with q2 + 1 + δ lines. Then each conic and each line of
Q(4,q) meet at most (δ + 1)(q + 1) lines of C .

Proof. If w(P ) + 1 is defined as the number of lines of C on a point P , then the sum of the weights
w(P ) over all points of Q(4,q) is δ(q + 1). Hence, a conic can meet at most (δ + 1)(q + 1) lines of C ,
and the same holds for lines. �
Lemma 3.6. Suppose that Sn ∈ {Q−(2n + 1,q),H(2n,q2)}, n � 3. Suppose that L is a minimal generator
blocking set of size t + 1 + δ of Sn, δ < δ0 . If there exists a hole P that projects L on a generator blocking set
containing a minimal generator blocking set of Sn−1 that has a non-trivial vertex, then L is one of the examples
in Table 1.

Proof. Part 1. We show that there exists a line l containing a hole and meeting t + 1 generators
g0, . . . , gt of L. Consider a hole as described in the assertion, so that the mentioned minimal example
has a non-trivial vertex. According to Table 1, the minimal example has at least t + 1 generators that
all contain the vertex. So for l we can take any line on P projecting to a point of the vertex.

Part 2. We show that there exists a plane π of Sn on l that meets at most one generator of L in a
line, and such that π \ l contains a hole Q .

To see this, first note that l⊥ ∩ Sn = lSn−2, hence the number of planes on the line l that
are contained in Sn equals |Pn−2| (Pn−2 is the point set of Sn−2). If a generator g of L meets
some plane on l in a line, then g meets l. In this case, as P is a hole and thus not contained
in g , the subspace l⊥ ∩ g has dimension n − 2, so the number of planes on l meeting g in a line
equals θn−3.

Consequently, we find such a plane π on l meeting at most m := |L| · θn−3/|Pn−2| generators gi
in a line. As n � 3, a calculation shows that m < 2, so π meets at most one of the generators of L in
a line. Then the generators of L cover at most |L| + s points of π (recall that s is the order of the
underlying field), so we find a hole Q in π that is not on l.

Part 3. We show that there exists a point contained in at least t − δ generators of L.
Choose π and Q according to Part 2, and consider the minimal generator blocking set LQ

0 con-
tained in LQ . Its structure is described in Table 1, which implies that it consists of at least t + 1
generators. These come from generators in L and at least 2(t + 1) − |L| = t + 1 − δ of these are
among the generators g0, . . . , gt . By Part 2, at most one of these meets π in a line. Thus we may as-
sume for i � t − δ that gi meets S Q in an (n − 2)-subspace projected from Q on one of the elements
of LQ

0 .
The point Pi := l ∩ gi belongs to the (n − 2)-subspace Q ⊥ ∩ gi and hence to S Q , 1 � i � t − δ. If l

is not contained in S Q , then it follows that l ∩ S Q is a point equal to all points P1, . . . , Pt−δ and we
are done. So suppose for the rest of Part 3 that l is contained in S Q , and that not all t − δ generators
g1, . . . , gt−δ pass through the same point of l. Denote the projection of l from Q by lQ . This line is
covered by the elements of LQ

0 .

Table 1 gives the possible structures of LQ
0 , which live in a πn−4 Q (4,q), πn−3 Q −(3,q) or

πn−3 H(2,q2) and cover this cone. As l is contained in S Q , then lQ is contained in the cone. We
claim that the vertex of LQ

0 is non-empty and that lQ meets this vertex non-trivially. This is clear
for the latter two structures, since their bases do not contain lines. In the first case, it follows from
Lemma 3.5 and the fact that lQ meets t + 1 − δ of the generators of LQ

0 . In fact, if the base of

LQ
0 is a parabolic quadric Q(4,q), then Sn = Q −(2n + 1,q) (see Table 1) and thus t = q2 and hence

t + 1 − δ > (δ + 1)(q + 1), so the lemma can be applied.
The fact that lQ meets the vertex of the described cones means that Q lies on a line l′ meeting

l and such that l′ projects from Q to the vertex. Then g0, . . . , gt−δ meet l′ , since their projections
belong to LQ

0 and thus contain the vertex. Hence, these generators meet the lines l and l′ of the
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plane π . Since at most one of these generators meets π in a line, then t − δ of these generators must
contain the point l ∩ l′ .

Part 4. We show that L is one of the examples in Table 1. Let X be a point contained in t − δ

generators of L, and consider a hole R not in the perp of X . Then S R meets at least (t − δ + t + 1) −
(t + 1 + δ) = t − 2δ of the generators on X in an (n − 2)-subspace. These generators are therefore
contained in T := 〈S R , X〉. Finally, consider a hole R ′ not in T and not in the perp of X . Then at
least t − 3δ > t/s + 1 + δ of the generators that contain X and are contained in T meet S R ′ in an
(n − 2)-subspace. These generators lie therefore in 〈S R ′ ∩ T , X〉, which has dimension n + 1 + e. Now
Lemma 3.4 completes the proof. �
Corollary 3.7. Theorem 3.1 (c) is true for H(2n,q2), n � 3.

Proof. Theorem 2.15 guarantees that the assumption of Lemma 3.6 is true for Sn = H(2n,q2) and
n = 3. Theorem 3.1 (c) then follows from the induction hypothesis. �

We may now assume that Sn = Q−(2n + 1,q), n = 3, and that the projection of L from every hole
contains a generator blocking set with a trivial vertex, i.e. a cover of Q (4,q). As n = 3, then L is a set
of planes.

Lemma 3.8. If a hyperplane T contains more than q + 1 + 3δ elements of L, then L is one of the two examples
in Q−(7,q) from Table 1.

Proof. Denote by L′ the set of the generators of L that are contained in T . If P is a hole not contained
in T , then S P meets all except at most δ planes of L in a line, and hence more than q + 1 + 2δ of
these planes are contained in T . Recall that S P is a cone with vertex P over S P ∩ T , and S P ∩ T has
dimension four.

Note that P⊥ ∩ Q−(7,q) = PQ5 with Q5 an elliptic quadric Q−(5,q), and we may suppose that
Q5 ⊆ T . Denote by Q4 the parabolic quadric Q(4,q) contained in Q5 such that S P = PQ4, then
T ∩ S P ∩Q−(7,q) =Q4. Consider any point Q ∈ (Q−(7,q)∩ P⊥)\ (S P ∪Q5). Clearly W := Q ⊥ ∩ T ∩ S P

meets Q−(7,q) in an elliptic quadric Q−(3,q). There are (q4 − q2)(q − 1) points like Q , and at most
(q2 − q)(q + 1) of them are covered by elements of L, since we assumed that more than q + 1 + 3δ

elements of L are contained in T . So at least q5 − q4 − 2q3 + q2 + q > 0 points Q of (Q−(7,q) ∩
P⊥) \ (S P ∪Q5) are holes and have the property that W := Q ⊥ ∩ T ∩ S P meets Q−(7,q) in an elliptic
quadric Q−(3,q). As before, S Q ∩ T has dimension four and meets at least |L′| − δ planes of L′ in a
line. Then at least |L′| − 2δ planes of L′ meet S P ∩ T and S Q ∩ T in a line. As S P ∩ S Q ∩ T ⊆ W does
not contain singular lines, it follows that these |L′| − 2δ planes of L′ are contained in the subspace
H := 〈S P ∩ T , S Q ∩ T 〉.

We have W ∩ Q−(7,q) = Q−(3,q), so in the quotient geometry of P , the |L′| − 2δ planes induce
|L′| − 2δ lines all meeting this Q−(3,q). Now L is projected from P on a cover of a parabolic quadric
Q(4,q) with at most q2 + 1 + δ lines. Then |L′| − 2δ lines of the cover must meet more than q + 1
points of this elliptic quadric Q−(3,q). It follows that S Q ∩ T contains more than q + 1 points of
the elliptic quadric Q−(3,q) in W and hence W ⊆ S Q . Then S P ∩ T and S Q ∩ T meet in W , so the
subspace H they generate has dimension five. As |L′|−2δ > q +1+ δ planes of L lie in H , Lemma 3.4
completes the proof. �
Lemma 3.9. Suppose that L is a minimal generator blocking set of size t + 1 + δ of Q−(7,q), δ < δ0 . If there
exists a hole P that projects L on a generator blocking set containing a cover of Q(4,q), then L is one of the
examples in Table 1.

Proof. Consider a hole P . Then S P ∩ Q−(7,q) = P Q(4,q). Denote the base of this cone by Q4. The
assumption of the lemma is that LP is a minimal cover C of Q4. Consider a point X ∈ Q4 contained
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in exactly one line of C . Then X⊥ ∩ Q4 = XQ(2,q), and each line on X is covered completely, so
X⊥ ∩Q4 meets at least q2 + 1 lines of C .

The lines of C are projections from P of the intersections of elements of L with the subspace S P ,
call C′ this set of intersections that is projected on C . Thus the line h = P X of S P on P meets
exactly one line of C′ and h⊥ ∩ S P ∩ Q−(7,q) = hQ(2,q) meets at least q2 + 1 lines of C′ . At most δ

elements of L are possibly not intersecting S P in an element of C′ , so we find a hole Q on h with
Q �= P . There are at least q2 + 1 elements in C′ , so at least q2 + 1 − δ elements come from planes
π ∈ L with π ∩ Q ⊥ ⊂ S Q . For each such element, its intersection with hQ(2,q) lies in S Q . Thus
either S P ∩ S Q = h⊥ ∩ S P or S P ∩ S Q is a 3-dimensional subspace of h⊥ ∩ S P that contains a cone
Y Q(2,q).

In the second case, the vertex Y must be the point Q (as Q ∈ S Q ); but then projecting from Q
we see a cover of Q(4,q) containing a conic meeting at least q2 + 1 − δ of the lines of the cover. In
this situation, Lemma 3.5 gives q2 + 1 − δ � (δ + 1)(q + 1), that is δ > q − 3, a contradiction.

Hence, S P ∩ S Q has dimension four, so T = 〈S P , S Q 〉 is a hyperplane. At least q2 planes of L meet
S P in a line that is not contained in S P ∩ S Q . At least q2 −δ of these also meet S Q in a line and hence
are contained in T . It follows from δ < q/2 that q2 − δ > q + 1 + 3δ, and then Lemma 3.8 completes
the proof. �
Corollary 3.10. Theorem 3.1 (b) is true for Q−(2n + 1,q), n � 3.

Proof. Theorem 2.10 guarantees that for Sn = Q−(7,q) and n = 3, the assumption of either Lemma 3.6
or Lemma 3.9 is true. Hence, Theorem 3.1 (b) follows for n = 3. But then the assumption of Lemma 3.6
is true for Sn = Q−(2n + 1,q) and n = 4, and then Theorem 3.1 (b) follows from the induction hy-
pothesis. �
3.3. The polar space Q(2n,q)

This subsection is devoted to the proof of Theorem 3.1 (a). Lemma 3.6 can also be translated to
this case, but only for a bad upper bound on δ. Therefore we treat the polar space Q(2n,q) separately.
Recall that for Q(2n,q), δ0 = min{ q−2

2 , ε}, with ε such that q + 1 + ε is the size of the smallest non-
trivial blocking set of PG(2,q).

We suppose that L is a generator blocking set of Q(2n,q), n � 3, of size q + 1 + δ, δ < δ0. Recall
that LR is the minimal generator blocking set of Q(2n − 2,q) contained in the projection of L from
a hole R . So when n = 3, it is possible that LR is a generator blocking set of Q(4,q) with a trivial
vertex.

For Lemmas 3.11, 3.12, and 3.13, the assumption is that n = 3, and that for any hole R , LR has a
trivial vertex, i.e. LR is a regulus.

So let R be a hole such that LR is a regulus. Let gi , i = 1, . . . , q + 1 + δ, be the elements of L and
denote by li the intersection of R⊥ ∩ gi . At least q + 1 of the lines li are projected on the lines of the
regulus LR . We denote the q + 1 lines of the regulus LR by l̃i , i = 1, . . . ,q + 1. The opposite lines of
the regulus LR are denoted by m̃i , i = 1, . . . ,q + 1.

Lemma 3.11. Suppose that m̃ j is a line of the opposite regulus and that B j is the set of points that are the
intersection of the lines li with 〈R,m̃ j〉. Then B j contains a line.

Proof. As |L| is smaller than the smallest non-trivial blocking set in a plane, it suffices to show that
every line k of π := 〈R,m̃ j〉 meets B j . So let k be a line of π . We may assume that k contains a
hole R ′ . By the assumption made before this lemma, LR ′

is also a generator blocking set with a trivial
vertex, i.e. a regulus R′ . Hence, at least 2(q + 1) − |L| > 2 planes gi of L are projected from R to
different lines of R and from R ′ to different lines of R′ . Thus, these planes gi meet π in points,
and moreover different such gi give points Pi = gi ∩ π that span different lines Pi R ′ with R ′ . Thus
π is contained in S R ′ and hence all lines of π ′ on R meet a plane of L (even one of the planes that
projects to a line of R′). �
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We denote the line contained in the set B j by m j , and so m j is projected from R on m̃ j . Now we
consider again the hole R and the regulus LR .

Lemma 3.12. The generator blocking set LR arises as the projection from R of a regulus, of which the lines are
contained in the elements of L.

Proof. An element gi ∈ L that is projected from R on the line m̃ j must meet the plane 〈R,m̃ j〉 in
a line. But an element gi ∈ L cannot meet a plane 〈R, l̃i〉 and a plane 〈R,m̃ j〉 in a line, since then
gi would be a generator of Q(6,q) contained in R⊥ not containing R , a contradiction. So at most δ

elements of L meet S R in a line that is projected on a line m̃ j . Hence, at least q +1− δ planes 〈R,m̃ j〉
do not contain a line li , so, by Lemma 3.11, there are at least q + 1 − δ lines m j ⊆ B j not coming from
the intersection of an element of L and S R , that are projected on a line of the opposite regulus of LR .
Number these n � q + 1 − δ lines from 1 to n.

Suppose that l1, l2, . . . , lq+1 are transversal to m1. Since δ � q−1
2 , a second transversal m2 has

at least q+3
2 common transversals with m1. So we find lines l1, . . . , l q+3

2
lying in the same 3-space

〈m1,m2〉. A third line m j , j �= 1,2, has at least 2 common transversals with m1 and m2, so all
transversals m j lie in 〈m1,m2〉. Suppose that we find at most q lines l1, . . . , lq which are transver-
sal to m1, . . . ,mq+1−δ . Then q + 1 − δ remaining points on the lines m j must be covered by the δ + 1
remaining lines li , so δ + 1 � q + 1 − δ, a contradiction with the assumption on δ. So we find a regulus
of lines l1, . . . , lq+1 that is projected on LR from R . �
Lemma 3.13. Let q > 3. The set L contains q + 1 generators through a point P , which are projected from P on
a regulus.

Proof. Consider the hole R . By Lemma 3.12, R⊥ contains a regulus R1 of q + 1 lines li contained
in planes of L. Denote the 3-dimensional space containing R1 by π3. Consider any hole R ′ ∈
Q(6,q) \ π⊥

3 . By the assumption made before Lemma 3.11 and Lemma 3.12, R ′ gives rise to a reg-

ulus R2 of q + 1 lines contained in planes of L. Since R ′ ∈ Q(6,q) \π⊥
3 , R1 �=R2. Hence, at least q+3

2
planes of L contain a line of both R1 and R2 and in at most one plane, the reguli R1 and R2 can
share the same line. The reguli R1 and R2 define a 4- or 5-dimensional space Π .

If Π is 4-dimensional, then Π ∩ Q(6,q) = 〈P ,Q〉, for some point P and some hyperbolic quadric
Q+(3,q), denoted by Q. For Q we may choose the hyperbolic quadric containing R1. There are at
least q+1

2 planes of Q(6,q), completely contained in Π , containing a line of R1 and a different line
of R2. These planes are necessarily planes of L. Consider now a plane π2 of Q(6,q), completely
contained in Π , only containing a line of R1 and not containing a different line of R2. If π2 is not
a plane of L, it contains a hole Q . Then Q ⊥ intersects the at least q+1

2 planes of L on P in a line,

and the projection of these at least q+1
2 lines from Q is one line l. If this line l belongs to LQ ,

then at least q more elements of L are projected from Q on the q other elements of LQ , hence,
q + q+1

2 � q + 1 + δ, a contradiction with δ <
q−1

2 . Hence, π2 is a plane of L, and L contains q + 1
generators of Q(6,q) through P , which are projected from P on a regulus.

If Π is 5-dimensional, then its intersection with Q(6,q) is a cone PQ, Q a parabolic quadric
Q(4,q), or a hyperbolic quadric Q+(5,q). If Π ∩ Q(6,q) = P Q(4,q), then the base Q can be chosen in
such a way that R1 ⊂Q. But then the same arguments as in the case that Π is 4-dimensional apply,
and the lemma follows.

So assume that Π ∩ Q(6,q) = Q+(5,q). Consider again the n � q+1
2 planes π1, . . . ,πn of L con-

taining a line of R1 and a different line of R2. Then half of these planes lie in the same equivalence
class of planes of Q+(5,q) and so intersect mutually in a point. If q > 3, then we can assume that the
two planes π1 and π2 intersect in a point P , hence, 〈π1,π2〉 is a 4-dimensional space necessarily
intersecting Q(6,q) in a cone PQ, Q a hyperbolic quadric Q+(3,q). Clearly, since two distinct lines of
R1 span 〈R1〉, and two distinct lines of R2 span 〈R2〉, the reguli R1,R2 ⊆ 〈π1,π2〉. But since the
planes π3, . . . ,πn contain a different line from R1 and R2, these n � q+1

2 planes of L are completely
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contained in 〈π1,π2〉. But then again the same arguments as in the case that Π is 4-dimensional
apply, and the lemma follows. �

From now on we assume that n � 3, and that there exists a hole R such that LR has a non-trivial
vertex α. This means that also for n = 3, this vertex is non-trivial. This assumption will be in use for
Lemmas 3.14, 3.16, 3.17, 3.18, and Corollary 3.15. Remark that also the induction hypothesis is used.
We will call the subspace 〈R,α〉 the vertex of S R .

A nice point is a point that lies in at least q − δ − 1 elements of L. In the next lemma, for a hole X ,
we denote by L̄X the set of generators of L that are projected from X on the elements of LX . Hence,
the generators of L̄X intersect S X in (n − 2)-dimensional subspaces.

Lemma 3.14. Call α the vertex of LR . Then there exists a nice point N on every line through R meeting α.

Proof. Part 1. We show the existence of a particular plane π on l.
Let l be a line on R projecting to a point of α. Consider g ∈ L. As R is a hole, either g meets l in

a point S or g ∩ l = ∅. In the first case, l⊥ ∩ g = R⊥ ∩ S⊥ ∩ g is an (n − 2)-dimensional space, hence
we find θn−3 planes on l meeting g in a line. In the second case, l⊥ ∩ g is an (n − 3)-dimensional
space, so we find θn−3 planes on l meeting g in one point. As there are θ2n−5 planes of Q (2n,q) on l,
a double counting argument shows that there exists such a plane π such that π \ l meets at most
|L|θn−3/θ2n−5 < 2 generators of L. Then we find a point Q ∈ π \ l not being covered by L. In case
there exists a generator g ∈ L meeting π \ l in a single point T , which implies that g is skew to l,
then we can choose Q in such a way that Q , R and T are not collinear.

Part 2. We show the existence of a nice point.
Since L̄Q and L̄R share at least q + 1 − δ generators, then q + 1 − δ generators of L̄Q meet l, and

at most one of these contains a point of π \ l. Hence, we find q − δ generators gi ∈ L̄Q ∩ L̄R , each of
them meeting π in one point, which is on l. Assume now that l has no nice point, then at least two
of the q − δ generators, say g1 and g2, do not meet l in a common point.

Case 1. First assume that the generators of L̄Q are projected from Q on a generator blocking set
with an (n − 3)-dimensional vertex and base a conic Q(2,q). The points Pi := gi ∩ l, i = 1,2, are
collinear, so are projected from Q onto two collinear points in distinct elements of LQ . So they must
be contained in their intersection, which is the vertex of LQ . Then π is a plane in the vertex of S Q ,
so all the generators of L̄Q meet π in a line different from l, which is a contradiction with the choice
of π . Hence, the q − δ generators meeting l in a point must all meet l in the same point X , and we
are done.

Case 2. Now assume that the generators of L̄Q are projected from Q on a generator blocking set
with an (n − 4)-dimensional vertex, and base a regulus R. Consider again the two distinct generators
g1 and g2 meeting l in two distinct points P1 and P2. If n = 3, then the vertex of S Q is just the
point Q , and hence the line l is skew to the vertex of S Q . So let n � 4 and suppose that l meets
the vertex of S Q in one point U . The generators g1 and g2 contain the vertex of LQ after projection
from Q , so must contain a point on the line 〈Q , U 〉 before projection. At most one of the generators
g1 and g2, say g1, can contain the point U itself. Then g2 meets π in a line containing a point of l not
on 〈Q , U 〉 and a point on the line 〈Q , U 〉. Now consider any other generator g ∈ (L̄Q ∩ L̄R) \ {g1, g2}.
As g contains the vertex of LQ after projection from Q , g meets the line 〈Q , U 〉 before projection.
Assume that g does not contain U , then g contains a point of l different from U , and a point of
〈Q , U 〉 \ {U }, so g2 meets π in a line different from l. But now two generators, g and g2, meet π in a
line, a contradiction. So necessarily, g must contain the point U . So assuming that l meets S Q in one
point U , we found that at least q − δ − 2 generators in (L̄Q ∩ L̄R) \ {g1, g2} meet l in one point U .
Together with the generator g1, we find q − δ − 1 generators meeting l in one point U , and we are
done.
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So we may now assume that l is skew to the vertex of S Q , and this handles also the case n = 3.
A line of the regulus R is contained in exactly one element of LQ and meets no other elements
of LQ , so l must be projected from the vertex of S Q on a line of the opposite regulus R′ . Hence,
each line on Q must meet a generator of L̄Q . By the choice of the plane π , at most one generator
meets π \ l in a point T not on the line 〈R, Q 〉 or at most one generator meets π in a line m �= l. This
leads immediately to a contradiction in the first case. In the second case, the line 〈Q , R〉 meets the
line m, which is the intersection line of π and of some generator g′ ∈ L. Necessarily, g′ is projected
on a line of R. But then any other line on Q must meet another generator different from g′ . Again,
this is a contradiction with the choice of π . This finalizes Case 2 completely, and we are done. �
Corollary 3.15. If R is a hole such that LR has a non-trivial vertex, and N ∈ R⊥ is a nice point, then N lies in
the vertex of S R .

Proof. A nice point lies in at least q − δ − 1 generators of L and at least q − 2δ − 1 � 2 of these must
belong to L̄R . As two elements of L̄R necessarily meet in a point of the vertex of S R , the assertion
follows. �
Lemma 3.16. Let n � 4. If β denotes the subspace generated by all nice points, then dim(β) � n − 3.

Proof. Suppose that R is a hole. If n � 4, then by the induction hypothesis, the vertex of LR has
dimension at least n − 4. Hence, using Lemma 3.14, the nice points generate a subspace γ of di-
mension at least n − 4. Suppose that dim(γ ) = n − 4, then γ ⊆ Q(2n,q) by Corollary 3.15 and so
dim(γ ⊥) = n + 3 < 2n, and so we find a hole P /∈ γ ⊥ . Consider this hole P , then the same argument
gives us a subspace γ ′ spanned by nice points in P⊥ of dimension at least n − 4, different from γ . So
dim(β) � n − 3. �
Lemma 3.17. There exists a hole R such that the vertex of S R is an (n − 2)-dimensional subspace and there
exists a generator g on the vertex of S R such that g meets exactly one element of L in an (n − 2)-dimensional
subspace and such that all other elements of L do not meet g or meet g only in points of the vertex of S R .

Proof. First let n = 3. By the assumption, there exists a hole R such that LR has a non-trivial vertex,
which is a point X . So the vertex of S R is the line R X and has dimension n − 2.

Now let n � 4. By Lemma 3.16, we find a subspace γ of dimension n − 3 spanned by nice points.
Consider a hole R ∈ γ ⊥ \ γ . Clearly, the vertex of S R will be spanned by R and the projection of γ
from R , so has dimension n − 2.

So for n � 3, we always find a hole R such that the vertex V of S R has dimension n − 2, and
V = 〈R,πn−3〉, with πn−3 the vertex of LR . There are q +1 generators π i on V , which in the quotient
of V form a conic Q(2,q). Hence, any generator of Q(2n,q) can meet at most one of these in a
point not in V . There are also q + 1 elements τ i of L which provide the example LR , and τ i �→
π i := 〈R, τ i ∩ R⊥〉 is a one-to-one correspondence between the q + 1 subspaces τ i and π i . As the
remaining δ elements of L can each meet at most one of the generators π i not in V , this proves the
statement. �
Lemma 3.18. Let n � 3. There exists an (n − 3)-dimensional subspace contained in at least q elements of L.

Proof. By Lemma 3.17, we may consider a hole R , such that the vertex of S R is an (n−2)-dimensional
subspace and there exists a generator g on the vertex of S R such that g meets exactly one element of
L in an (n − 2)-dimensional subspace and such that all other elements of L do not meet g or meet
g only in points of the vertex of S R . Call again V = 〈R,πn−3〉 the vertex of S R , with πn−3 the vertex
of LR . Denote the elements of L intersecting S R in an (n − 2)-dimensional subspace by gi . Note that
g is projected from R onto an element of LR , and we may call g1 the unique element of L meeting
g in an (n − 2)-dimensional space. We find also a hole Q �= R , Q ∈ g \ V .
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Part 1. We show that LQ is a cone π ′
n−3Q(2,q). Clearly, at least q − δ elements of L that meet S R in

an (n − 2)-dimensional subspace, also meet S Q in an (n − 2)-dimensional subspace and are projected
on elements of LQ . Consider now the hole Q , and suppose that LQ is a cone πn−4R, R a regulus.
The generator g1 is projected from Q on a subspace g̃1 not in LQ , since g̃1 meets at least q − δ

of the projected spaces gi , i �= 1, in an (n − 3)-dimensional space, which has larger dimension than
the vertex of LQ . But g̃1 lies in πn−4R, since it intersects at least q − δ spaces gi in an (n − 3)-
dimensional subspace. Hence, g̃1 meets the q + 1 elements of LQ in different (n − 3)-spaces and is
completely covered. So the projection of R from Q is covered by elements of LQ , and hence, the line
l = 〈R, Q 〉 must meet an element of L \ {g1}, a contradiction. So LQ is a cone π ′

n−3Q(2,q).

Part 2. We show that g is contained in S Q . Consider two of the at least q − δ − 1 generators, both
different from g1 and meeting V in an (n − 3)-dimensional subspace, call them g2 and g3, de-
note π i

n−3 := gi ∩ V , i = 2,3. Both generators are projected from Q onto two elements of LQ . If

π2
n−3 = π3

n−3, then the projection of g from Q also contains the projection of π2
n−3 from Q , and so g

is contained in S Q . If π2
n−3 �= π3

n−3, then choose a point P ∈ π2
n−3 \π3

n−3 and a point P ′ ∈ π3
n−3 \π2

n−3.
The collinear points P and P ′ are projected from Q on collinear points, contained in the projection
of π2

n−3 and π3
n−3 respectively, and hence the projection of g from Q contains two collinear points,

which is a contradiction unless g is projected on g2 or g3. In both cases, g is contained in S Q .

Part 3. We prove the final statement. It follows that g̃1, the projection of g1 from Q , is contained
in LQ , so π ′

n−3 ⊂ g̃1, and g1 and V are projected from Q on g̃1. Before projection from R , the
elements gi meet V in (n − 3)-dimensional subspaces contained in V .

The subspace π ′
n−3 lies in the projection from Q of elements of L meeting 〈π ′

n−3, Q 〉 in an (n−3)-
dimensional subspace. But the choice of g implies that there is only a unique element of L meeting
〈π ′

n−3, Q 〉 in an (n − 3)-dimensional subspace and in points outside of V (the element meeting g
in g1), so at least q other elements of L intersect V in the same (n − 3)-dimensional subspace. �

The following lemma summarizes in fact Lemmas 3.14, 3.16 and 3.17, 3.18, and Corollary 3.15. The
condition on δ enables the use of the induction hypothesis.

Lemma 3.19. Let n � 3. Suppose that L is a minimal generator blocking set of size q+1+δ of Q(2n,q), δ � δ0 .
If there exists a hole R that projects L on a generator blocking set containing a minimal generator blocking set
of Q(2n − 2,q) that has a non-trivial vertex, then L is a generator blocking set of Q(2n,q) listed in Table 1.

Proof. By Lemma 3.18, we can find an (n − 3)-dimensional subspace α of Q(2n,q) that is contained
in at least q elements of L. Consider now a hole H /∈ α⊥ . Then H⊥ ∩ α⊥ is an (n + 1)-dimensional
space, which meets the elements of L inducing the example LH and passing through α, in (n − 2)-
dimensional subspaces. Hence, at least q − δ elements of L on α meet H⊥ in an (n − 2)-dimensional
subspace that is projected from H onto elements of LH . These (n − 2)-dimensional subspaces are all
containing the (n − 4)-dimensional subspace H⊥ ∩ α. Since S H is (n + 1)-dimensional, these q − δ

(n − 2)-dimensional subspaces lie in the n-dimensional space S H ∩α⊥ . Hence, we find in the (n + 1)-
dimensional space 〈α, S H ∩α⊥〉 at least q − δ > δ + 2 elements of L. Lemma 3.4 assures that L is one
of the generator blocking sets of Q(2n,q) listed in Table 1. �

Finally, we can prove Theorem 3.1 (a). Note that the technical condition q > 3 is due to
Lemma 3.13.

Lemma 3.20. Theorem 3.1 (a) is true for Q(2n,q), n � 3, q > 3.

Proof. Proposition 1.1 assures that the assumptions of either Lemma 3.13 or Lemma 3.19, n = 3, are
true. Hence, Theorem 3.1 (a) follows for n = 3. But then the assumption of Lemma 3.19 is true for
Q(2n,q) and n = 4, and then Theorem 3.1 (a) follows by induction. �



338 J. De Beule et al. / Journal of Combinatorial Theory, Series A 120 (2013) 318–339
Table 2
Bounds on the size of small maximal partial spreads.

Polar space Lower bound

Q−(2n + 1,q) n � 3: q2 + 1
2 (3q − √

5q2 + 2q + 1 )

Q+(4n + 3,q) n � 1, q � 7: 2q + 1

Q(2n,q), q odd n � 3, q > 3: q + 1 + δ0, with δ0 = min{ q−2
2 , ε},

ε such that q + 1 + ε is the size of the smallest
non-trivial blocking set in PG(2,q).

Q(2n + 2,q), q even; n � 2, q � 5: 2q + 1
W(2n + 1,q),
q odd and even

H(2n,q2) n � 3: q3 + q − 2

H(2n + 1,q2) q � 13 and n � 2: 2q + 3

4. Remarks

We mentioned already that a maximal partial spread is in fact a special generator blocking set.
The results of Theorem 3.1 imply an improvement of the lower bound on the size of maximal partial
spreads in the polar spaces Q−(2n + 1,q), Q(2n,q), and H(2n,q2) when the rank is at least 3. In
Table 2, we summarize the known lower bounds on the size of small maximal partial spreads of
polar spaces. The results for Q+(2n + 1,q), W(2n + 1,q) and H(2n + 1,q2) are proved in [7]. Note
that the polar space Q(2n + 2,q), q even, is isomorphic with the polar space W(2n + 1,q), q even.
The isomorphism is induced by projecting Q(2n + 2,q), q even, from its nucleus. As the lower bounds
mentioned in Table 2 for the polar spaces Q(2n,q) and W(2n + 1,q) are in both cases true for even
and odd q, the lower bound for Q(2n + 2,q), q even, is not as good as the previous known lower
bound found through the polar space W(2n + 1,q), q even.

One can wonder what happens with generator blocking sets of the polar spaces Q+(2n + 1,q),
W(2n + 1,q), q odd, and H(2n + 1,q2). Unfortunately, the approach presented in Section 2 for these
polar spaces fails, which makes the complete approach of this paper not usable for these polar spaces
in higher rank.

In [1], an overview of the size of the smallest non-trivial blocking sets of PG(2,q) is given. If q
is an odd prime, then ε = q+1

2 . So if q is an odd prime, the condition on δ in the case of generator

blocking sets of Q(2n,q), n � 3, drops to δ <
q−1

2 .
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