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In this paper we study the asyinptotic behavior of so-called autoregressive integrated
moving average processes. These processes constitute a large class of stochastic difference
equations which includes among many other well-known processes the simple one-dimen-
siona! random walk. They were dubbed by G.E.P. Box and G.M. Jenkins who fcund thzm
to provide useful models for studying and controlling the behavior of certain economic
variables and various chemical processes. We show that autoregressive integrated moving
average processes aze asymptotically normally distributed, and that the sample paths of
such processes saticfy a law of the iterates logarithm. We also establish a law which deter-
mines the time spent by a sample path on one or the other side of the “trend line” of the
process.

probability theory econometrics
time series

1. Introduction and statement of resuits

In this paper we study the asymptotic behavior of so-called autoregres-
sive integrated moving average processes. These processes constitute a
large class of stochastic difference equaticns which includes among many
other well-known processes the simple one-dimensional random walk.
They were dubbed by G.E.P. Box and G.M. Jenkins who found them to
provide useful models for studying and controlling the behavior of certain
economic variables and various chemical processes [2, pp. 85—125].

An autoregressive integrated moving average process (hereafter an
ARIMA process) is defined as follows:

* Sponsored by the United States Army under Contract No. DA-31-124-AR0-D462.
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316 B.P. Stigum [ Autoregressive integrated moving average processes

Definition 1. Let x = {x(#): t = -n +1, —n +2, ...} be a family of real-
valued random variables. Then x is an AR/MA process if and only if it
satisfies the foilowing conditions:

(1) There exist constants X,, —n +1 < ¢ < 0, such that

x(1)=x, w.p.1(= with probability 1), ¢=-n+1,..,0.
(1.1)
(2) There exists a family of rion-degenerate, identically and indepen-
dently distributed real-valued random variables n = {n(¢): t= ..., -1, 0,

1, ...} with mean zero and finite variance 0,27, and two sequences of con-
stants {a;: k=0, ...,n},{a: s= ..., —1,0, 1, ..} such thatay = = 1,
a, ¥ 0, and

<

2 o<, (1.2)
n oo
Zapx(t k)= I am(t+s), 1=1,2,... (1.3)

(3) There exists a positive integer /), non-negative integers l;, and com-
plex constants z;,j = 1, ..., 1, such that

n l
Za F=e - Il e-2% (1.4)

Izl < 1, j=1,..,L (1.9)

In interpreting this definition note that, whenn = | and oy = 0 for
s # 0, then x is a simple one-dimensional random walk. Note also that
Box and Jenkins always assumed that n = [, that ag =0 for s > 0, and
that la | < KB*! for some 8 € (0,1) and some suitably large constant X.
Since the iatter assumptions are not nezded to establish our results, we
have not insisted on them being valid here.

The behavior of x can be characterized in the following way:!

Theorem 1. Suppose that x is an ARIMA process and let

-]

y= 2 an(t+s), t=1,2,... (1.6)

s=_.ao

! A similar result is stated and proved in [6, pp. 177-178]}.
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Then there exists a function ¢(+) and a sequence of real constants v,,
§=0, 1, ..., whici1 satisfy the following conditions:

Yo = 1. (1.7)
v
k§0ak79—k=0’ v=1,..,n-1, (1.8)
n
Z;/ Yy k‘O v=nn+l, .., (1.9)
w(t) =%, t=-n+l,..,0, (1.10)
n
2 ae(t—k=0, 1=1,2,., (1.11)
x(t)=np(t)+s2_% Yyt —5), t=1,2,... (1.12)

In interpreting this theorem note that (1.10), (1.11) and (1.4) imply
that there exist constants A]-k(i =1,.,k=0,.., l,- —~1)and
By(k=0, ..l - 1) such that

hi—1 I. -1

o(t) = E Z_,A,k(r f)+L Btk t=—n+1,...(1.13)

Since Izjl < 1 for all j we can conclude from (1.13) that, for large ¢, the
“trend line” ¢(-) satisfies the approximnate ==lztion

o(t)t~ oD~ B,o_l. (1.14)
Next note that (1 7)—(1.9), (1.3) and (1.4) imply that there exist
constants Ck G= wk=0,.,,—1)and D, (k= 0, ...,1g— 1) such
that
0
] -1 lo-1
-E L G+ T Dyt (1.16)

Thus v, satisfies for large enough s the approximate relation
Vs o=V ~D, . (1.17)
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Finally, note that, if we assume that

0<|Z e (1.18)
$=—c0
and that the function
o ) 2
=] 27 e e 62, \e[-mm), (1.19)
§=—oo

is piecewise continuous on [—m, 7) and continuous in a neighborhood of
A =0, then [10, Lemma 1] implies that, for all non-negative integers q,

T
lim P[Q 4 y({T?*1 £, (0)/(2g + }~12 < z] =

T—o

=@my 2 [ zexp[—%uzldu. (1.20)
But if that is so, an:d h
S'tED,o . g sh=1 y(t - 5)
lh-1 t i
=Dy _y 2 (ophyro=t=k v?;l (—0)* »(v),

then there exists a normally distributed random variable @ with mean
zero and variance

Ip—1 Iy ~1
~2 2 lo-1y (lg -1 \k -1
@=f,OD} _, L 2 (opty (o) (—1F ™ (k+m+1)
=f,0) D} _,/(2l,—1) (1.21)
such that, for large enough ¢ and for all g € (-, ),
PS8, 1= 0o-1D < g) ~P[g < a]. (1.22)

Evidently, if (1.18) is satisfied, then (1.14), (1.15), (1.17), (1.20) and
{1.22) imply that for large ¢ the behavior of x(¢) is completely dominated
by the behavior of 3',. From this fact and (1.22) we can infer the validity
of Theorem 2 below. A formal proof of it is given in Section 2.

Theorem 2. Suppose that x is an ARIMA process that satisfies (1.18),
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and let 5% be s defined in (1.21). Moreover, assume that f (+) is piece-
wise contin:.ous on [-m, ®) and continuous in a nezghborhood of A\=0.
Then, for all z & (—o, =),

lim P{x(s) 6-1~G-1D <« 7] = hm PL(x(2) —p(£))G-1 ¢~ Go-11D) < 7]

{ =»oo

=(2m)~ 12 f expl—4 u?j du. (1.23)

The latter theorem characterizes the asymptotic distribution of x(¢).
We can also characterize the asymptotic behavior of x by giving upper
bounds on the growth of |x(#)| and by estimating the fraction of time
x(t) spends above the trend-line ¢(-). This is done in Theorems 3 and 4.

Before we state Theorems 3 and 4 we must introduce a certain nota-
tional convention and state an invariance principle: Let C denote the
set of continuous functions on [0, 1], let § denote the class of Borel
sets in C, and let P be a probability measure on (C, §). If m.(+) is a func-
tion on (C,d') with value 7_(X) = X(7) at X € C, then m,(+) is a random
variable on (C, d, P). Moreover, {m_(+): 7 € [0, 1]} is a well-defined random
process on (C,d, P). Next, let D be the szt of functions on [0, 1] that are
right continuous and have left-hand limits, and let D be the class of Borel
sets for the Skorohod topology in D (cf. [1,pp. 111-123]). Both P snd
the m_(-) can be extended to (D, D ). We denote by X, both the func-
tion 7_(+) on (D, D) and the value of 7 (-) at X € D.

The invariance principle we seek to establish concerns all processes
consisting of independently and identically distributed random varia-
bles with finite fourth moments.

An Invariance Principle. Let n be as above, let ¢ > 0 be an integer, let
Ap=0,and let

A= Z)l(i-i)q nG)., i=1,2,... (1.24)
p=

Moreover, for each 7€ [0,1]and eachn =1, 2, ..., let [n7] denote the
largest integer k such that k < n7, let

T) (zq + 1)1/2 Cf "(‘I"'l/z) A (125)

n\ [nr]?

and note that X (-)EDw.p. lioralln= 1, 2, .... Finally,let f’ denote
the distribution of X () on (D, D). Then there ex1sts a probdblhty mea-
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sure Wq on {D,D ) with the following three properties:
(i) Foreacht€ (0,1])and a € (—o°, ),

a
Wq{X: X <a}= (21:'72‘7"‘1)‘”2 f expl—1u? 74" D) du, (1.26)

and for 7 =0,
W AX: Xo=0}=1. (1.27)
(ii) For each finite m-tuple {7, ..., 7,,} such that 0< 1, < ... <7, < 1,

the vector (X, , ..., X;,,) is normally distributed with mean zero and co-
variance matrix

ORI S (128)
where, for k = min{i, j} and p = max {i, j},
.
My, = Qg +1) 7L MZ=)O @ T, —7 M 14 Qq+1-uy . (129)

. (iii) The stochastic process {X,: 7 € [0, 1]] is continuous w.p. 1 under
W, .
q ~ n
Moreover, if E{n(#)*} < =, then the P, converge weakly to W,

For g = 0 this ir.variance principle (without the fourth moment assump-
tion on 7} is due to Donsker. To the best of our knowledge it is new for
q > 0. A similar invariance principle for weighted sums of the form
i
27 199()
j=1
is proved in [10] (cf. [10, Lemma 4, p. 17]) without the fourth moment
assumption or: 7.
Now the thzorems.

Theorem 3. Suppose that x is an ARIMA process that satisfies the con-
diiions of Theorem 2. Moreover, let

T
Np= 2 d(x() —90), T=1,2,..., (1.30)
where
- J1 ifs>0,
vis)= 0 otherwise. (1.31)
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Then
lim 2[N,/T <] = W, {X: h(X) < B}, (1.32)

where

h(X) = f dr, (1.33)
{re[0,1]: x>0}

and (3 ranges over the set of continuity points of the distribution of h(-)
under W,o__l. Finally, when Iy = 1,

Wy{X: h(X) < B} =(2/m)arcsin /2, g€ [0, 1]. (1.34)

Theorem 4. Suppose that x is an ARIMA process that satisfies the condi-
tions of Thecorem 2, and let &2 be as defined ir: (1.21). Then

li;‘n sup {1(x(8) — (1) [252 o~ lloglog t1- 2} =1 w.p. 1. (1.35)

Of the two theorems the last is the easiest to interpret. It simply says
that, whatever be the positive value of €, with probability one

o(1) — [252 Ho-Lloglog 1112 (1 4 2) <

< x(f) < (t) + [262 2o~ M loglog 112 (1 +¢)
for all but a finite number of values of ¢, und for infinitely many ¢ either
x(#) < (1) — [262 *o-loglog t1/2(1 —e),
or
x(£) = (1) + [262 121 log log 112 (1 — e).

While harder to interpret, Theorem 3 is from an econometric point of
view by far the most interesting of the twc theorems. When [y = 1, (1.32)
and (1.34) imply that the chances are one in ten that x{#) will be iarger
than ¢(¢) for more than 97.6% of the time. The chances are one in five
that x(¢) will be larger than ¢(¢) for at least 90.5% of the time. Similar
estimaies hold for the likelihood that x(¢) will be less than ¢(¢). The
fact that :x(¢) with such a large probability will either be greater than
¢(t) most of the time or smaller than ¢(f) most of the time, and the
fact that (¢) for large ¢ is dominated by S, (cf. (1.20)) makes it nearly
impossible, when [y = 1, to use observations on x(¢) to estimate (p(f).

We have not been able to derive the distribution of k() under W,o,l
for Iy > 1. However, the results of the simulation experiment on an
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ARIMA process with /, = 2 presented in Example 1 below suggest that
the chances of estimatirg o(f) from time-series observations on x/-) are,
if anything, poorer when /y > | than when /j = 1. To see why, compare
the result of Feller’s simulation experiment on the standard random walk
[4, Fig. 5, p. 84] with the result of our simulation experiment (cf. Figs. 1
and 2). One striking difference is that Feller’s process seems to change
sign much more frequently than our process. In fact the number of
changes of sign of an ordinary random walk grows (very roughly spoken)
as some constant multiple of /¢, while the number of changes of sign of
our process for [, > 1 grows as some constant multiple of log &.

Example 1. Let x = {x(#): t = -2, -1, ...} be an ARIMA process which
satisfies the equations

x(t) —2.5x(t—1)+2x(t—2)-0.5 x(t - 3)=n(s), (1.36)

x=2)=1, x(-1)=0.7, x(0)=0:5. (1.37)
In this case n = 3 and
3 .
kg a,2°"* = (2 -1)? (z - 0.5). (1.38)
Morzover,
e(t)=0.4—0.1 £+0.1 (0.5, t=-2,-1,.., (1.39)
¥,=02+195+0.8{0.5°, s5=0,1,.., (1.40)
¢ =5(1.9)0. (1.41)

Cons:querstly, for all z € (—oe, c0),

lim Plx(0)[4(1.9) 02 £1-2<z1=2m) 2 [ expl—}u] du,
Fben " e (1.42)
lim sup{l(x(#*) —0.4+0.1¢ 0.1 (0.5))

1o
X [3(1.9) 62 Ploglog 472} =1 w.p. 1. (143)
Moreover, for all 8 € (0,1] which are continuity points of the distribu-
tion of 4() under W,,
T
lim P[T! t_El Y(x(1)—0.4+0.1 £t —0.1 (0.5)) < ] =

=W {X: h{X)< B} (1.44)
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To bring home the implications of (1.42) and (1.44) for time-series
analysis of X we have simulated the behavior of x(¢), fort =1, 2, ...,
10000. The results of the simulations are presented in the two graphs of
Figs. 1 and 2 which picture one (!) realization of X under the assump-
tion that 7 is a (pseudo-) Bernoulli process with

P{n(t) = 1}=P{n(t) = -1} =1,

The generating method we used is described in the Reference Manual for
the 1108 computer at the University of Wisconsin Computing Center. In
studying the figures note that the maximum value of x(+) in Fig. 2 is
985236 0. In contrast ¢(10000) = —999.6.

In voncluding this section we should poini out that the proofs of
Theove:as 3 and 4 are based on the validity of two general theorems con-
cerning the asymptotxc behavior of sums of the form

L (T — s)9 ¥(s), (1.45)

where the y(s) are as defined in (1.6) and g is a non-negative integer.
Since these theorems are of interest in themselves, we state them below,
and prove them in Section 2.

Theorem 5. Suppose that y = {y(t): t = 1, 2, ...} satisfies (1.6), (.2} and
(1.18). Moreover, suppose that the function f, (*) defined in (1.19) is
piecewise continuous on [ —n,w) ard contmuous in a neighborhood cf
A =0. Finally, let

T

Sr= s§ (T—s¥ y6s), T=1,2,..,

where q is a non-negative integer, let Y(-) be as defined in (1.31), and iet
h(-) be as defined in (1 ..:3) Then

lim P[ -1 24 U(S )<B] Wq{X: n(X) < 6}, (1.46)

T = oo

where B € [0,1] ranges over the set of continuity points of the distribu-
tion of h(-) under Wq.

This theorem for the case ¢ = 0 was established in [10]‘ (cf. [10, Theo-
rem 1, p. 3]).
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Theorem 6. Suppose that y = {v(t): t = 1, 2, ...} satisfies the conditions
nf Theorem 5. Then, for any integer q = 0,

T-1
lim sup { {2Q2q + 1)'1fy (0) T?9*1 Jog log T}~1/2 ?:% 4 y(T— t)” =]
w.p. L.
(147)

This theorem is an extension of theorems previously obtained by
Gaposkin [5, Theorem 1, p. 412] and Oodaira [8, Coroilary to Theorem
3,p. 31.

2. Proofs of Theorems 1—-6

In this section we will give brief proofs of Theorems 1—6. Wz begin
with Theorem 1, which is basically a well-known theorem.

2.1. Proof of Theorem 1. The existence of a function ¢(+) and a set of
constants vy, that satisfy (1.10) and (1.12) is easy to verify. So we will
not prove it here.
To establish (1.7)—(1.9) and (1.11) we use (1.3), (1.6) and (1.12) to
note that, forallz =1, 2, ...and »' = min{n, t -1},
n
y(£) = k?_:o 2, x(t— k)

n n t—-k-1
% \ -
=0 ao(t—k)+2 a, 24 v(t—k—5)
o WPl — T Zoa o 7y
i1 i t—1
- =
=IZ:I0 oot —k)+ 1?:'0 % L Vi VE—V)
‘{t_\ n'-1 i
=27 a,0(t—k)+ ( a )vt—v
K0 A=k =0 L0 % Yo- y(t-v)
t-1 (_1_\
+ t — v). 2.1
v§1'(kL=/0 % 7""‘) =)

Since (2.1) is an identity in y(¢), (2.1) implies the validity of (1.6)—(1.8)
and {1.10). O
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2.2. Proof of Theorem 2. It follows from (1.14) that
lim {p(¢t) t~% - 12} =, (2.2)

1 ~>oo

Moreover, it follows from [9, Lemn:a 6] and some algebra that, for all
j=1,.,land k=0,..,]; -1,

t—1 |
lim { sk 28 3i(t—s) = o~ '/2>} =0 w.p.l. (2.3)
t—oo {5=0 U

Finally, if we let R, (£ —s) = E{y(¢) ()}, then (cf. [10, equation (2.3)]),
fork=0,..170,-1,

t-1 | -1
E{E sk v(t —s) z—<’o---1/2>]2=r<2’o-1> 2 s*FA R (r—s), (2.4)
s=0 s, r=0 y

t—>oe 5r=0

t":-'l
lim{t'm‘“) 27 s"r"Ry(r—s)}=(2k+1)‘1fy(0), (2.5)

210—1—2k-1=2(10-—k)-—2. (2.6)
From (2.4)—(2.6) and the Borel—Cantelli Lemma it follows that, if
Io > 1, then
-1

lim 2 s* y@—s)r®-Y2=0 wp. 1 fork=0,..0,—2. 2.7

t—o 5=0

But if that is so, then (2.2}, (2.3), (2.7), (1.12), (1.15)—(1.16), (1.21),
[10, Lemma ], and the easily verifiable fact that

lim E(3? 26012} = 2 (2.8)

=
imply that, for all z € (—o0, =),
lim Plx(s) 51 =% 12 < 2] = lim Pi(x(t) - (1)) 51~ Po-1D < 7]

t > t =>oo

= fim P[S, &1 G- < 7

e ]

2
=(2n-)‘1/2f exp[—3u®l du, (2.9)

which proves the theorem. O
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2.3. Proof of the Invariance Principle. We begin by establishiag the exist-
ence of Wq Let {G;: i =1, 2, ...} be a sequence of independently and
identically distr:buted Gaussian random variables with mean zero and
variance one, let Ry = 0, and let

]
Riszl(i—~j)q G, i=1,2,..n, n=12,...
]=

Moreover, foreach 7€ [0,1)andeachn =1, 2, ..., let
X, n=Qq+ )2 a-@IDR

Finally, let (2, § , P) denote the probability space of the G;, and let P,
denote the distributign of X,,(+) on (D, D). We will show that the P,
converge weakiy to Wq. To do that we first fix 7€ (0,1], and observe
that X, (7) is normally distributed with mean zero and variance
(n7]
o} = Qq+1)n G0 I ((nr] -y 2.10)

and that oz(n) converges to 724*1, Since X, 2(0)=0w.p. 1 foralln,it
follows that for all 7 € [0,1] the distribu tlon of X, (1) converges weakly
to the distribution specified for X, under W in (1 .26) and (1.27).

Next observe that, if {7;: i =1, ..., m} is an m-tuple such that
0<7<..<7, <1, then (X ('rl) ., £,(7,,)) is normally distributed
with mean zero and covariance matrix

) -
(2w, ) g, ()
= 2
Pn(’l'l, ceny Tm) = H.T?,,Tl (n) ofz(n) oee “Tz’fm(n) ’ (21 l)
IO I T ) I )

where for £k = min{i,j} and p = max {i,j}, i #j,
[n7g]

My (M) = g +1) n~@4*D ’23; (I 1= (a7, )= (2.12)

IfI'(7y, ..., 7,,) is as defined in (1.28) and (1.29), it is easy to see that
| N PP 4 ) = lim T (7, .. o> Tpp)- (2.13)

1l =>co

Consecuently, the distribution of (X,,(1y), ..., X,,(7,,,)) converges weakly
to the distribution specified for (X(r,), ..., X(7,,)) under Wq.
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To cor.clude the proof of the existence of Wq on (D, D ) it now suffi-
ces (gf. [1, Theorem 6.1]) to show that {P,} is a tight sequence, and that
the Wq with the finite-dimensional distributions specified in (1.26)-(1.29)
assigns measure 1 to C. We first show that {P,} is a tight sequence. This
we can do (cf. [1, Theorem 15.6]) by showing that for any 0< 7, <7<,
there exists a finite positive constant K, independent of 7 and 7,, such
that

E{(X (1) - X (1)) (X (1,) — X, (M)} < K(r, — 7))*. (2.14)

The proof of the validity of (2.14) involves very lengthy calculations.
Since they are all of an elementary nature we will only sketch the barest
outline of a proof here. Note first that the existence of K is hard to as-
certain only because the difference 7, — 7, may become arbltran}y small.
Next note that (2.14) is trivially satisfied if n < (75 — 7 y~! since then
[n7] must equal either [n7,] or {n7,]. Consequently, we need only worry
about (2.14) for large n. Finally note that, for all 7 € {0, 1],

t —[ntlln<nl,
and that, for all integers k.

n —>oo

lim {n"("”l) 2)1 s"} =(k+1)"1.
s::

By repeated use of the last two observations we can show that thare ex-
ist finite positive constants K, K5, K3, independent of n, such that, for
alln > (72 — 71)-1,

E{(X,(7) — X (1)) (X,(7,) — X (r))*} <

< Kln‘1 {n~1([n7,] — (a7 D}+ K,{n~Y(Inm,) —-[rz'rI])}2

q-1

+ K3 k.iZ=;0 (%){n— 1([1’!72] — [n'rl])}zq -k-j

_ 2 .
< Kyn 1(12 — 1)+ K (1, — 7)) <K+ K )7y —7 )(2.]5)

for suitably large finite constants K, and K. ilence (2.14) is valid with
K=K;+K;s.

The preceding observations imply that there exists a measure W on
(D, D) which satisfies (1.26)—(1.29) in the subset of [0 1}in Wthh
w,(+) is continuous except at points forming a set of W -measure 0. We
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will show that this subset is all of [0,1] by showing that {X: 7 € [0,1]}
is continuous w.p. | under W To do the latter we need only observz:
(cf. [7, Theorem 4, pp. 969—970]) that, with respect to W

E{(X(r)) - X(r)Y?} = 7341 — 2, +734%]
< 72 gt g (gD (r, - 1)

for0<r <7,<1, (2.i6)
and that

§
Ju? Gogu )y 2 du< 2P (og ey 2 <. (2.17)
0

We have shown that a Wq with the required properties exists on (D, ).
We have also shown that the P, converge weakly to Wq. With the only
exception that we have to appeal to the Central Limit Theorem in [10,
pp. 6--9] to show that the finite-dimensional distributions of X .{7) con-
verge to the finite-dimensional distrivutions of the X, under Wq the
proof of the weak convergence of the P to W is 1dentlcal with the
proof that P, converges weakly to Wq Slnce there is no reed to repeat
the proof, we can consider the invariance principle established. O

2.4. Proof of Theorem 5. To begin with, let k > 1 be fixed; let

Tl. = [i(T/k)], i=0,1,.,k, T=>21, (2.18)
and let
T;
S(T) = Z) (T, y(1) = 2 @ T (1Y Z> thy(n),
i=0,1,..k.
2.19)

Thea it follows from [10, eq. (2.18)] that, for all a € (—o0, ),

lim P(S(T) T-@*Y2 < g} = (2m)~12 o f exp[—$u? o7 %] du,
T —»o )
(2.20)
v. here

=£,(0) Qq+1)~1 g~ Ca*t2a* (2.21)
It is also easy to show that, for large T and i < m,
(Si(T) T-@ “"1/2), Sm(T) T-(@ +1/2))
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is approximately normally distributed with mean zero and covariance
matrix

2
= 0; oim ,
Fim ("im ot ) (2.22)
where
q
Oy = F, O k= @D @t 25 ()@ (ifmP (1P (+p+1)7.
Lp=0 (2.23)

Since most of the detailed calculations needed to establish this fact are
given in [10,pp.21-25], we omi: them here for brevity’s sake. Similar
calculations for an n-tuple {i, ..., i,}, 1 <i; < ...<i, < k, show that,
for large T,

(Si,(T) 7-(q+ ‘»/2), - Si,,(T) T—(q+1/2))

is approximately normally distributed with mean zerc and covariance
matrix

2
oil pil;iz pil,in
= 2
Pil, ey in pil’iz oiz M piZ’in . (2.24)
. . )
piliin piz,in o oin i

Next n.ote that for 0 < /< 2¢ and i < m there exist constants K¢ and
K, that are independent of /, i and m, and satisfy

i
L=+ ™D 26 - i < Kgi ™, (2.25)
Jj=

and

i
i~q+1/2) m—(q+1/2).Z)1 G- (m—jy
’=

q
— (ifm)'? l Eo (D @ Wfmy*? (~1)"P (+p+ 1)~ H<
yP=

< K, (im)~ 12, (2.26)

Consequently, there exists a seguence of normaliy distributed random
variables {G;: i = 1, 2, ...} with mean zero and variance one such that,
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forlarge i and T, and for all a € (-0, ),
P({(2q + DK7Y f (00} V2 =@+ §,(7) T-@*12) < 4]
i
~ P[(2q + )2 j-@+1/2) 21 (i—-¥G, < a] : (2.27)
j=

Moreover, for large enough i, and T, and any n-tuple {ij, ..., i,}.
Hh<ip<..<iy,

PU(2q + D k2™ (P2 T-@HD (S, (1) ip@, .,

S; (Diy @) < (ay, ...,a))]
i In
~ 1/2(:~(q+1/2 N i—@+12) 3%
P [(2q+l) (11 q ”};(zl-])qu, R JQ {, ])qGI.)

< (@, an):l, (2.28)

where (4,, ..., a,) is an n-dimensional real vector; i.e., if
i

R;=¢

f=

(N

@ —-j)qu, i=1,2,..,

—

then the distributions of vectors of the form
(Qq+ 12T F @)Y T- @B, (i @D, s, (T)i;@+1i)

are, for large enough i; and T approximately equal to the distributions
of the corresponding vectors

Qq+D'2R; 7@, R,

i-(q+1/2)
Iy ln 1 )

Finally, lengthy calculations based on (2.21), (2.23)--(2.26) will also
show that, if € [0, 1] —{a countable set}, then for each v > 0 there is
a k,, such that, for k > k., and sufficiently large T,

P[k"é YR < ﬁ} ~y<P [k*liL_,‘?1 WS < B]

<P [k—l 2 Y(R,) < 3} +9. (2.29)

The basic idea underlying the proof of (2.29) can be described briefly
as follows: For each k, let B;, i=1, .., k, be normally distributed ran-
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dom variables with joint distributions equal to the limiting joint distri-
butions of the {(2g +1) kz‘l"l/fy(O)}‘/2 SAT) T-@*12 j=1, .., k. More-
over, let By = 0, and let

Un=k@Dp, . 7€10,1].

Then {U,{7): 7€ [0,1]} belongs to (D, D ), and it is easy to verify that,
if P, denotes the distribution of U,(+) on (D, ), then the finite-dimen-
sional distributions of the ?‘k converge weakly to the corresponding
finite-dimensional distributions of Wq. After lengthy calculations one
can also show that there exists a finite constant Kg such that, for any
triple 0< ¢, <t<t,<landallk>1,

E{[U(7) — U (r D12 [U(7,) — U1} < Kq(7, — 7% (2.30)

Hence the T"k constitute a tight sequence which converges weakly to Wq.
If we now let

_ k
g® =Pl W(R)<B|, Be 11,

- k
5 ®=P k' T yB)<6], se©,

)= W, (X: h(X)< B}, BE(O,1],

then it follows from the proof of the Invariance Principle and the easily
qstablished fact that h(-) is continuous except at points forming a set of
Wq -measure zero (cf. {1, p. 2311 for the necessary arguments) that g(-)
is well-defined. Finally it follows from the proof of the Invariance Princ-
iple, [1, Corollary 1 to Theorem 5.1, pp. 30—31], arguments similar to
those used to prove [10, Lemma 61, and the tightness of the P, that at
each continuity point 8 of g(+)

,}i_rpm g:(B) = kl‘_',’l g:(B) = &(B). (2.31)

For brevity’s sake we have left out most of the necessary details under-
lying the proofs of (2.30)—(2.31). Evidently, (2.31) and (2.25)—(2.28)
establish the validity of (2.29) for all 8 € {0, 1] that are continuity points
of g(+).

Before concluding the proof of the theorem we must define one more
sum and determine its asymptotir behavior.? So let

2 Whle the details of the calculations in (2.32)—(2.39) are our own, we have borrowed the idea
of them from Erdds and Kac’s paper [3, pp. 1012—-1014].
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S, =0,

r
S, = 21 =1y, r=1,2,...
=

Moreover, let
X T;
Ho=T'Z 25 (ST -y
refigt
Then
T;
E{1Hyl} < T~ 1§ 2 B - v 232)

Now, forre (T;_,, T}],
Ti r
E(IW(S,(T)) — $(S)I} =P[E (=/T) y(0)> 0, & (1—t/r¥! yi) < 0]
Ti
+ P[L(l—t/T ¥y) <0, 2 (1~t/ny(t) > 0]

(2.33)
Moreover, for large T,

Tl
[Z(l t/T¥(t) >0, E(l—t/r)qv(¢)< o}
Tl
<P[E(l t/T)"v(z‘)>eT1/2 F (i—- t/r)qv(t)<0]
Ti
+ P[O <L (-tTYy< e T}/’l‘]
t=1

< P[Z)l [(A—¢/TY — (1= /r)9] y(t) > Le T}lz]
T
+ P[t=§1 (1- t/T,.)q_v(l) >ie Til/z] +Kye
q

< [GeX T/ Z,,Zo {(;3,1)(3)(—1)"“"

X = C/TY 1= /TY p~(r¥m+l) 2 "R (¢~ S)l

t,s=1
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+Ge) (T =T, _DIT)T, ~T,_)™
T;
X 2 A=tTF (15T YR (¢ ~5) + Kye

<K g€ 2(A—(T,_JT, 2 + K, e 2i"! + Kye (2.34)

for suitably large constants K, K, K;, all of which are independent of
€. Similar calculations show that, for large T,

L r
P[El}(l— t/T Yy () <0, :21 (1—t/ry(1) > 0] <
<Ke 20— (T,_ /T + R e i + Rye (2.35)
for suitably large constants Ky, K)o and K;,. From (2.32)—(2.35) it fol-
lows that with K¥= 2max{K, K;},i=9,10, 11,
k
E{lH I} < k7! Z‘{ {KYye 20— (T,_/T)D? + K} e 2i7'}+ K2e
=

= M(T, €; k). (2.36)
Since, for large T,
(1—(T,_,/T)H* = 0(~2),
it follows from (2.36) that, for some large K ,,
lim sup E{1H7l} < K, {e 2k 1(1 +log k) + €} (2.37)

Now, for any § > 0,
T k
P[ LT WES) T 5 (T,-T,_) xp(s,.m)! > a] =
t=1 i=1
=PlH | > 81< 8 "1 M(T, €; k). (2.38)
Hence, for any 8 € (0,1),

P [T‘l é W(s,) < 3] <

T T
-1 -1 '
<P [T tZE W(S,) < B, IH I < 5] +P[T Zi Y(S) < B, 1Hyl > 5]
k

<P [T—lzi (T,—T,_) U(S(TH< B+ a] +6-1M(T, e:k),  (2.39)
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T
pr-! 25 (s < 3
= -

k
>P [T—l 2 (T, = T,_DY(S,(T) <~ 5] — 57LM(T, €; k).

From (2.39) and (2.40), from the fact that (2.40)

TH-?L {T—I(Ti -1, )= K,

from (2.37), and from (2.29) and (2.31) it follows that, if € (0,1]is a
coatinuity point of g(+), then, for any given € > 0 and 6 < {3, and for
=25"leKandk>k,,

k
g(®) —y < lim P [T-l Zi (T, =T, ) U(ST) < 6]
<g®+7, (2.41)
g(B—28) — 287 1K, {e 2k~ 1(1 + log k) + 2¢€} <

T T
< lim inf P[T“ b WS, < 3] < lim supP[T“ 2 w(st)<13]
T—roo t=1 T t=1

< g(B+28) + 2671 K ,{e 2k (1 + log k) + 2€}. (2.42)

By letting k - = and (€, 6) - 0 appropriately, the validity of the relation
{1.49) of Thecrem 5 becomes an immediate consequence of (2.42). O

2.5 Proof of Theorem 3. In light of {1.12), (1.15), (1.16), (2.2), (2.3)
and (2.7) the validity of equation (1.32) of Theorem 3 becOmes a simple
corollary nf Theorem S which needs no further proof. The validity of
equation (1.34) was established in [10]. O

2.6. Proof of Theorem 6. To establish (1.47) we begin by showing that,
for any given integerg = 1,

=] w.p.l (2.43)

| t-1.
lim sup {l{iZ(iZqH)‘1 oi 1*9* oglog s 2 Z(r s np(t—s)

l—>o0 s=0
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To do so we fix the value of g and pick an arbitrary € > 0. Moreover we
let @ > 1 be a constant whose value we will determine later, and we let
=[025),s=1, 2, .... Finally, we let

-1—{2(2q+1) 62 Nloglog N}'?, N=1,2,....

It follows easily from [10, Lemma 1] and Feller’s [4, Theorem VIII.5]
that, for large s,
NS

P[th El (1-t/N)in(t) = 1 +e] <expl[—(1+ €)? log logNs]
t: .

=(log Ns)”(1 +9% ~ (28 log 6))’“‘”'5)2 .

(2.44)
Consequently, by the Borel—-Cantelli lemma,
NS
lim sup {tN E (i—t/N)* n(t)} 1+e w.p. 1. (2.45)
§ > o0

Next, fors=1, 2, ... let

N Ng_ 1
R.=  sup t 120 A= t/NYin(t)— 20 (1—t/N._ Y|}, (2.46)
s Nle=1 t=1 s-1

NS—-1<N<NS
Ng_y
Ri=  sup {tN 2 [(l—t/N)‘I—(1~t/Ns_,)"]n(t)”, (2.47)
§ Ng_<N<N; t=1
fs sup { L (l—t/N)"n(t)l}. (2.48)
s 1< <N =Ng_1+1
Then?
R <R!+R?, s=1,2,... (2.49)

Moreover, if we let
i

0= 2w, i>N_,,

I

t=Ng_,+1
and observe that
N IY—l
L (A-tN¥n)= 25 [(-t/NY —(1-@+D/NFIS]
t=Ng_,+1 t=Ng_,+1

3 The details of the calculations in (2.49)—(2.55) are our own. However, we have borfowed the
idea of them from GapoSkin (cf. {5, pp. 414-415]).
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- it is easy to see that
RI<ty (I-(N,_;+D)IN)  sup N|s?|. (2.50)

_1<i<

Since, for large s, tng_ l..’:Ns ~ 0, and by [10, Theorem 2]
lim sup {£, 1Sy} <1 wp.1,

(2.50) imnlies that there is a 6,(e) > 1 such that, forall 1< 8 < 4, 1 (),

h?liuP Rz <le wp L (2.51)
Finally, if we observe that
q . Ns—1 l
Ri=, sp . {rNLmQO QNN B Comny]
q Ns_,
<M~slu<pN<N {MEO ,,,)l w7 I‘N/Ns . "tN E (- t)'"n(t)}
Ny
QNS_ISE ~ {7‘ @) (- 9"2'")|’N/t IN . tz=> (—#/N,_ 1)m7?(t)'}
we can use [10, Theorem 2] to conclude that
lim sup Ry < ZZ)O @) A -0 (m+1)"1 2q+1). (2.52)

From (2.52) it follows that there is a number 1 < 6,(e) < 6,(¢€) such that,
if1<6<60,(e)and 6 — 1< Le, then

limsupR!<le w.p. 1. (2.53)

§~> o
} <
Ng_1

<Ry l1-Cy 1ty Z (1~-i‘,’./\/'s_1)"n(t)|, (2.54)

Since
Ng_y

N
ty Z(A—t/NFa() —ty, Zr (1=t/N,_ F' (1)

Su {
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we can conclude from (2.45), (2.49), (2.51), (2.52) and (2.53) that
N
limsup ty, 22(1—t/NYin(H)< 1+4e w.p. 1. (2.55)
Noew =1
But if that is so, then the fact that € > 0 was chosen arbitrarily implies

T-1
an sup[[2(2q +1)~1 o2 T20*1 Jog log T11/2 EO An(T— z)}
-3 0O =

<1 wpl. (2.56)

Since (2.35) is obviously true for —n(+) as well as for n(+), we have
shown that

I} | 1)
lim sup {[2(2q+1)-lag T24*1 100 10g T1-12| 22 t"n(T—t)”

<1 wp L (2.57)

r-'-
(D

€ > 0 be chosen arbltranly, and let c.' be an mteger such tha
[(d - D)/d1%9*1 >8> 1—¢, (2.58)

where 8 is a constant whose value will be determined later. Aiso, let
T,=d,r=1,2,..and let

T,-1
B, { 27 AnT,—0>58{22q+) o 2T24+lloglog:r,}1/2} (2.59)
t=

Tyy
Then with K2 = d2a+1 (d .,])-(24+1) —(d=1)-24+D> |
T,—-1
P(B,]= P[(2q+1)”2 “(T T, )~ (@+1/2) . ; AT, — )
r—1

> 8{2T3‘I+l (Tr _ Tr— 1)— (2g+1) log log Tr}IIZ:l

Tp—Typ_y~1
P[(2q+1)1/2 o\ (T,~T, ) @*'? 2 (+T,_ (T, -1

t=0

> (26 log log Tr)l'l:{‘
J
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y R
>P[(2q+1)“2oglk”l(Tr—Thl)'(qJ"uz) 2 (Tt n(T._ + 1)

> (28 log log 7;)1/2:]

T,-T,—
= P[2q+ )27 1 R-1(T,~T,_ )@ T @00
t:

> (28 log log T,)1/2] : (2.60)

It follows from {10, I.emma 1], some algebra, Feller’s [4, Theorem VIII.5]
and (2.60) that, for large r,

P(B.] > (281loglog T,) "' exp [~8loglog T ]

={(26loglog T)) (log T, 1> rl. 2.61)
Consequently,
2__3[ P(B,) = . (2.62)

Next note that (by (2.44)), for any v > 0 and for large r,
Tr—y-1
P[ ,:ZE, (T, ~)> (1+7) [2q+1) o2 T loglog Tr_lll/z] _

r'—l_l

=P t;) (T, _ -0 = (1+7) [2(2(1*‘1)—10;‘; T;"Z*l'lloglog Tr_lll/z]
<expl~(1+7)* loglog T, 1 =(logT,_)""*"' =((r~1) log @)~ *»"
(2.63)

Since (2.63) holds for - n(-) as well, we can use (2.63) to find for each
¢ > 0 an N so large that for all » > N the probability is greater than or
equal to 1 — ¢ that

Tp1-1
,Z-:; (T, 1)[< 202Q2q+ 1)~ 0% T2 loglog T, _, 112, (2.64)
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So, if we choose 6 so closc to 1 that

1 -8<i(d+e—- 1), (2.65)
we find that
AT2 1 =A(T,/d)* 4 < T (5 + e - 1), (2.66)

and hence that (by (2.64)), with probability greater than or equal to
l — ¥,
Tp_1-1
FZ)O AT, — 1> - (8+e—1)[22g+1) o? T?9* loglogT]'2 .
(2.67)

When we add (2.67) to both sides of the inequality defining B, , we see

immediately from (2.62) and the Borel —Cantelli lemma that the event
T-1

[2Q2q +1)7! 0% T24* log log T]~1/2 Z% AnT—-1>1-¢

1=

happens infinitely often w.p. 1. Since € was arbitrary, we have shown

that
T-1

lim sup [2Q2q+1)7"' 62 T24* loglog T1~ /2 EO An(T-0D1=1wp. 1.
~» 00 t=

(2.68)

The validity of (2.43) now follows from (2.68) and (2.57), and the fact
that (2.68) remains val'd if we replace n(+) by —n(+). So much for (2.43).
To conclude the preof of (1.47) we next let N be a large positive in-

teger, and we let

N
= 2 a (v =91 n(T —v)

T+s-1

q N
=2 @) 2 af=sFm L mn(T-v). (269

m=0 s=-N
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Then (2.43) implies that

hm 1 sup Sp2(2q+D)! £3(0) T**lloglog T1"12=1 w.p. 1.
(2.70)
Since we can replace ¥(-) by —p(+) in the definition of ST without
changing the conclusion (2.70), we also find that

lim sup {18, 2g+D) £;(0) 71" loglog T2} =1 w.p. 1.
2.71)

The arguments used to establish (2.71) suffice to show that, for any
Nand M,

N
111713 sup{ tZi 2 A a, n(T—1t-5) [2(2q+1)” 1f (0) T29*!10glog T1- Uzl}
sl =0 s=-N
> o] =
=|s——N Z ol wol, 2.72)
TZ—;I Nf_‘,M
1 — -1 2q+1 -1/2
ng!»sg {t L N+1tq{ a, (T—1t-—s) [2(2q+1) f(O)T loglog T} l}
N+M oo -1
AT ol T
Isl=N+1 §=—o0
= -1
g . .
!s'-N+las sz_)was w.p- 1, (2.73)

where ky is the integer which maximizes the value of |Z{j- vy o .
Next we note that

y() = hm{ E K r’t—s)} w.p. 1, t=1,2,..
§=

‘v =) GO

Thus, if for each N we let

|s§1v a n(r—s) = v(t) — 2 o n(t—s), t=1,2,..
then (2,72) and €2.73) can easily be seen to imply that
T-1 i
tz.g Ay(T—1) [2Qq+1)71 £,(0) T24*110g log T1-1/2|}

*

B
im sup {

ky o
™ - -1
<{| 4v |t ZI E o 1.
[mw s| " =41 as} el wp.d (2.74)
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From (2.74) it follows that

T-1
lirzp_’sgp{ t=20 Hy(T~-1) [2(2q+1)7' £,(0) T24*! loglog T]"”zl} <1
w.p. 1.
(2.75)

Finally, it is easy to see that (2.72), (2.73) and
T-1

T-1
2 AT -2 —t—
=0 " ) Ff) |s|2>1vasn(T t=5)

T-1
2 H E an(T—t—s
t=0  |sIKN s T )

T-1 T-1
2 Ay(T-D|+| 2 1 2« n(T——:-—s)I
t=0 t=0 §

< +
1sI>N

2.76)

imply that, for any € > 0,

T-1

111}1 sup{ tZ)O Hy(T—1) [2(2g+1)~1 £,(0) T24* |og log T]-1/2|} >1-¢
w.p. 1.
.77

This concludes the proof of Theorem 6. O

2.7. Proof of Theorem 4. The validity of (1.35) is an immediate conse-
quence of (1.12), (1.153, (1.16), (2.2), (2.3), (2.7), [10, Theorem 2], and
(1.47) for g =1, — 1 and, therefore, needs no further proof. O
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