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In this paper we study the asymptotic behavior of so-called autoregressive integrated 
moving average processes. These processes constitute a large class of stochastic difference 
equations which includes among many other well-known processes the simple one-dimen- 
sional random walk. They were dubbed by G.E.P. Box and G.M. Jenkins who fcund thsm 
to provide useful models for studying and controlling the behavior of certain economic 
variables and various chemical processes. We show that autoregressive integrated mowinp 
average processes a:e asymptotically normally distributed, and that the sample paths of 
such processes satisfy a law of the iterate@ logarithm. We also establish a law whtch deter- 
mines the time spent by a sample path on one or the other side of the “trend line” of the 
process. 
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In this paper we study the asymptotic behavior of so-called autoregres- 
sive integrated moving average processes. These processes constitute a 
large class1 of stochastic difference equations which includes among many 
other well-known processes the simple one-dimensional random walk. 

hey were dubbed by GE Jenkins who foun 
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efined as follows: 
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316 BP. St&urn / Autoregressive integrated moving average processes 

efinition 1. Let x cs {x(t): t = -n + 1, -n + 2, ,..} be a family of real- 
valued random variables. Then x is an ARAI4A process if and only if it 
satisfies the foilowing conditioins: 

(1) There exist constants rt, --k2 += I < t G 0, such that 

x(t) = X* w.p. 1 (= with probability l), t= -+I + 1, . . . . 0. 
(1.1) 

(2) There exists a family of rondegenerate, identically and indepen- 
dently distributed real-valued random variables q E {q(t): t = . . . . - 1 , 0, 
1, . ..) with mean zero and finite variance u:, and two sequences of con- 
stants{aF,:k=O ,..., n),{cr,:s= . . . . -l,O, l,...)suchthataO=~O= 1, 
a, + 0, and 

tQ , 

c a;<-, u -2) 
s=- 00 

5 a x(t - k) = c a,??(t +s), 
k=O k 

t = 1, 2, . . . . 
s= --oo 

(1 l 3) 

(3) There exists a positive integer IO, non-negative integers Z,+ and corn- 
plex constants zi, j = 1, . . . . I, such that 

n 1 

z ak zn - k 

k =0 
= (2 - 1 )lo I-I (2 - zi>‘i, 

j=l 

I+ C 1, j = 1, . . . . 2. 

(1*4) 

(1-5) 

In interpr<Ang this definition note that, when n = I and as = 0 for 
s # 0, then x is a simple one-dimensional random walk. Note also that 

ox and Jenkins always assumed -that n = IO, that cy, = 0 for s > 0, and 
piss for some /3 E (0, 1) and some suitably large constant K. 

Since ,the Patter assumptions are not needed to establish our results, we 
have not ansi:jted O;I them being valid here. 

e behavior of x can be characterized in the following way: l 

. Suppose that x is an 

y(t) f q-a =+ sh t = 1, 2, . . . . WI 
s=--ar 

ar result is stated and proved in 16, pp. 177-1783. 
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Then there exists a function v7(’ ) and a sequance of real mutants rsl 
s = 0, 1, . ..) whicii satisfy the following conditions: 

Y() = 1 9 (1.7) 

U 

k=Oakru_k=O, v= L-4 -1, c 
n 

c ksO ak%- k =O, v=n,n+l, . . . . 

wo 

(1.9) 

p(t) = Z,, t = -n + 1, . . . . 0, (1.10) 

5 akcp(t- k)=O, 
k=O 

t= 1,2, . . . . (1.11) 

t-l 

x(t) = p(t) + c r,y(t - s), t = 1, 2, . . . . (1.12) 
s=o 

In interpreting this theorem note that (1. lo), (1.11) and (1.4) imply 
that there exist constants Ajk (j = 1, . . . . I; k = 0, . . . . Zj - 1) and 
Bk(k = 0, . . . . 2, - 1) such that 

1 jp-1 1, - 1 

q(_t)=C ‘Z Ajk(t’:z’)’ Z Bktk, t=-n+l, ,.. . (1.13) 
j=l k--O : k=O 

Since lzil < 1 for all j we can conclude from (1 .13) that, for large t, the 
“trend line” cp( 0) satisfies the approximate Action 

p(t) t-f10 - I) - B 1, -1. (1.14) 

Next note that (1.7)-( 1.9), (1.3) and (1.4) imply that there exist 
‘constants cjk (j = 1, .._, 1; k = 0, . . . . 1’ - 1) and Dk (k = 0, . . . . lo - 1) such 
that 

D 1,--l # O, 

s “Is satisfies for Ia e re 

(1.15) 

(1.17) 
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inally, note that, if we assume that 

and that the function 
013 

f,(h) - z--+ = I d a,e -ish 

s=-00 I z a* q9 JPE k--vo, 

(l.18) 

(1.19) 

is piecewise continuous on [ -76, n) and continuous in a neighborhood of 
X = 6, then [ 16, Lemma 11 implies that, for all non-negative integers q, 

T 
iim 

T-tGx!I 
2;3 P y(t)(T2q+1 
:= 1 fy (6)/(2q + 1 )}- l’* < z 1 = 

(1.26) 

But if that is so, and 
t-l 

3: = Dlo _1 c s’~--~ y(t -- s) 
s=o 

lo - 1 
. 

t 

=D1 1 c 
0- k=O 

(‘0;‘) t’o - l -k ZT (-v)” y(v), 
u=l 

then there exists ,r?, normally distributed random variab1.e Q with mean 
zero and variance 

I, - 1 I, - 1 

a”* F(,CO,D; 1 z 
0- 

x +$) (‘o$j (-l)k+n’(k+m+ 1)-l 
k=O m=O 

= “fv (0) LJ; 
0- 

J(21, - I ) , 

:;uch that, for large enough t and for all a E 6.--w, 00)) 

(1.21) 

(1.22j 

vidently, if (1.18) is satisfied, then (1.4 
he behavior of 

m this fact and (1.22) we can infer th 
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and let C2 be L’S defined in ( 1.2 1). Moreover, assume that fJ, (9 ) is piece- 
wise continmm on L-n, &) and continuous in a neighborhood of h = 0. 
Then, for al/ z c (-QQ, w), 

[x(t> i~_lt-(I,-1/2) < z] = lim 
t+= 

[(x(t) _ (p(t)):-1 t- UQ - m < z] 
t-*-J 

= (2n)- ‘I2 s ’ exp[-$ u2; du. (1.23) 
-_ 00 

The latter th earem characterizes the asymptotic distribution of x(t). 
We can also characterize the asymptotic behavior of x by giving upper 

bounds on the growth of Ix(t)1 and by estimating the fraction of time 
x(t) spends above the trend-line q(a). This is done in Theorems 3 and 4. 

Before we state Theorems 3 and 4 we must introduce a certain nota- 
tional convention and state an invariance principle: Let C denote the 
set of continuous functions on [0, 13, let 3 denote the class of Bore1 
sets in C, and let P be a probability -measure on (C, J ). If n,( l ) is a func- 
tion on (C,&) with value n,(X) = X(T) at X E C, then n,( l ) is a random 
variable on (C, 3, P). Moreover, (n,(a): 7 E [.O, 11) is a well-defined random 
process on (C,J , P). Next, let D be the set of funct’lons on [O, 1 ] that are 
right continuous and have left-hand limits, and let CJ) be the class of Bore1 
sets for the Skorohod topology in D (cf. [ 1, pp. 11 l-1 231). Both P qnd 
the gJ*) can be extended to (D, Q ). We denote by X7 both the fun;-- 
tion n,(e) on (D, (b ) and the value of n,(e) at XE D. 

The invariance principle we seek to ‘establish concerns all processes 
consisting of independently and identically distributed aandom varia- 
bles with finite fourth moments. 

A, = 0, and let 
le. Let q be as above, let q 2 0 be an integer, let 

Ai f (i- j)q q(j)p i= 1,2, . . . . 
j=l 

oreover, for each T E [ ,I] and each n = 1,2, . . . . let [nr3 
largest integer k such that k < m-, let 
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sure J@ on [D,cO ) with the following three properties: 
“(0 fi 

. 
or each rE (0, 11 and ar E (-=, m), 

x: x7 < a) = (2n~~q+‘)-‘~~ s” exp[-$u2 T- (2q+1)] (1.26) 

and for 7 = 0, 

i#q{x:xo=o}=l. (1..27) 

or each finite m-rtuple {TI, .*., rm} such that 0 G 71 f . . . < TmG 1, 
the vector (X7 , ...9 
variance matri: 

Xrm) .is normally distributed with mean zero and co- 

(1.28) 

here, for k s min{i, j) and p f max{i, j], 
Q’ 

Ir ‘i,‘i = (2q+l) $+I c (z) \T~-Q)’ +-“(2q+l-u)-? (1.29) 
iv = 0 * 

h (iii) The stochastic proc:ess {X, : r E [0, 1 ]] is continuous w.p. 1 under 

oreover, if E{ am) <: 00, then the pn converge weakly to cq, 

For q = 0 this invariance principle (without *the fourth moment assump- 
tion on q) is due to Donsker. To the best of our knowledge it is new for 
q > 0. A similar invariance! principle for weighlted sums of the form 

k /%io’) 
j=l 

is proved in [ 1 O] (cf. [ 10, Lemma 4, p. 17 I) without the fourth moment 
assumption on q. 

ow the theorems. 

t x is an ARIMA process that satisfies the cm- 

+(X(t) -- cp( t)), T = 1) 2, . . . ) (1.30) 

(1.31) 
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Then 

lim P[N,lT c p] = I$ 
T 

1{X: h(X) < /3}, 
-I 00 0- 

(1.32) 

h(;:r) z s dT9 (1.33) 
{7E[ O,l] : X(T)> 0) 

and p ranges over the set of continuity points of the distribution o.fh(* ) 
under Qlo __ 1. Finally, when lo = 1, 

fio{X: h(X) < 0) =(2/n)arcsin /3’12, p E [O, I]. (J .34) 

Theorem 4. Suppose that x is an ARIMA process that satisfies the condi- 
tions of Theorem 2, and let G2 be as defined irz (1.2 1). Then 

lim sup {1(x(t) - p(t)) [2G2 t2’o-’ log log t]-1/21) = 1 w.p. 1.. (1.35) 
t-,w 

Of the two theorems the last is the easiest to interpret. Pt simply says 
that, whatever be the positive value of E, with probability one 

p(t) - [2B2 t2’o- l log log t] u2 (1 + z) < 

< x(t) < p(t) + [2$ t210- * 1CIg log t]1’2 (1 I- E) 

for all but a finite number of values of t, :lnd for infinitely many f either 

x(t) G q(t) - [2G2 t2’o-’ log log t]l12(1 - E), 

x(t) > q(t) + [252 t2zo-1 log log t] 1’2 (1 - e). 

While harder to interpret, Theorem 3 is from an econometric point of 
view by far the most interesting of the twc,l theorems. When 2, = 1) (1.32) 
and (1.34) imply that the chances are one in ten that x(t) will be iarger 
than p(t) for more than 97.6% of the time. The chances are one in five 
that x(t) will be larger than p(t) for at least 90.5% of thle time. Similar 
estimates hold for the likelihood that x(t) will be less than cp(t 

fact that x(t) with such a large probability will either be great 
p(t) most of the time or smaller 
fact that q(t) for large t is dominated by 
im ‘ble, when I, = 1, to 

ave not been able to 
owever, the results 
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process with 20 = 2 presented in Example 1 blelow suggest that 
the chances of estimating s(t) from time-series observations on xc*) are, 

an whenlo = 1. o see why, colTpare 
eriment on the tandard random walk 

P grows as some constant multiple of log 2’. 

e 1. Letx =(x(t): t = -2, - 1, . ..) be an ARID&I process which 
satisfies the equations 

x(t) -* 2.5 x(t - 1) + 2 x(t - 2) - 6.5 x(t - 3) = q(t), (1.36) 

XC+29 = 1, x(--l) = 0.7, x(0) = 05. (1.37) 

this case y2 == 3 and 
3 

akz3 - k = (2 - 19” (2 - 0.5). (1.38) 
k=O 

orz.Qver, 

g(t)=O.4-0.1 t+O.l (O.#, t=-2,-l,..., (1.39) 

TS = 0.2 + 1.9 3: + 0.8 (o.5)s, s = 0, 1, . . . . (1.40) 

ii2 = b (1.9)%$ (1.41) 

Consquently, for all 2 E (-00, 009, 

[x(t)[i (1.9)2 0; t3]- II2 < z] = (2n)-*“2 s” exp[ --$ u2] du, 
-00 (1.42) 

lim sup{ 1(x(t) -- 0. + 0.1 t -- 0.1 (0.5)‘) 
t-*- 

x [“* (I 3 l 
992 cJ2 t3 log log t]-“21) = 1 

rl 
w 

CO,1 3 which are continuity points of 
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To bring home the implications of (1. 2) and (1.44) for time-series 
analysis of X we have simulated the beh ior of x(t), for t = 1, 2, . . . . 
10000. The results of t e simulations are presented in the two graphs of 
Figs. 1 and 2 which picture one (!) realization of X under the assump- 
tion that q is a (pseudo-) ernoulli process with 

The generating method we used is de 
the 1108 computer at the University 
studying the figures note that the m 
985236 0. In contrast q( 10000) = -999.6. 

In ::oncluding this section we should point out that the 
Theox.xs 3 and 4 are based on the validity of two general 
cerning the asymptotic behavior.of sums of the form 

T 
z”; (T - s)q y(s), s:=l 

where the y(s) are as defined in (1.6) 2nd q is a non-negative integer. 
Since these theorems are of interest in themselves, we state them below, 
and prove them in Section 2. 

5. Suppose that y = @(t): t = 1, 2, . ..} sat&j?es (1.6), (5.2) and 
(1.18). Moreover, suppose that the function fy (e ) defined in (1.19) & 
piecewise continuous on I-n, ?r) and continuous in a neighborhood bf 
X = 0. Final@, let 

T 

STz c (T-s)q y(s), T= 1,2, . . . , 
s=l 

where q is a non-negative integer, let $J(.) be as defined in (1.3 1), and Zet 
h(e ) be IIS defined in (1.33). Then 

[T-l 2 $&St)< /3] = 
1: 

e set of con tinuitv points of ti 

was esta 
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. Suppose that y s {_v[t): t = 1, 2, . ..) satisfies the conditions 
of Theorem 5. Tlzen, for any integer q > 0, 

T-l 

{2(2q + 1)” f,(O) T2q+l log log Tp12 c tQ yu= t) 
t=O II 

== 1 
w.p. 1. 

(1.47) 

his ;!heorem is an extension of theorems previously obtained by 
aposkin [ 5, Theorem 1, p. 4121 and Oodaira [S, Corollary to Theorem 

. 31 . 

eore 

n this section we will give brief proofs of Theorems l-6. WS begin 
heorem 1, *which is basically a well-known theorem. 

roof of ewe 1. The existence of a function q(e) and a set of 
constants yS that satisfy (1.10) and 1( 1.12) is easy to verify. SO we will 
not prove it here. 

To establish (1.7)-( 1.9) and (1.11) we use (1.3), (1 A) and (1.12) to 

note that, for all 1 = I, 2, . . . and n’ :i min (n, t - l}, 
n 

y(t) = :3 apY(t- k) 
k=8 

fl 92’ t-k-l 

= ii2o ak&t - k) + := : ak 
k=O s=o 

r,y(t - k-s) 
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2. It follows from (1.14) that 

lim {q(t) t-(lcr - 1/2)} = 0. (2.2) 
t+- 

oreover, it follows from uI.9, Lemma 61 and some algebra that, for all 
j = Ii, . ..) Iand k=O, . . ..$--1. 

I 
t-l 

lim C Sk 2; v/(t - s) t+O- 112) 
I 

= 0 ” w.p. 1. 
P-r- s=o 

I 

(2.3) 

Finally, if we let R,, (t -s) 1% {y(t)y(s)), then (cf. [ 10, equation (2.3)]), 
for k = 0, . . . . 2, - E, 

I 
t-l t-l 

c 

s=o 
,k Jf(t _ s) 

2 
= t-(2zo-1) c sk rk R,,(F-s), (2. 

s,r=O t-- 1 

1: sk ti R/r-s) 
s,r=O 

= (2k + 1)-‘2’,(O) , (2.5) 

210 - 1 - 2k - 1 = 2(2, - k) - 2. (2 6) 

From (2.4)-(2.6) and the Borel-Cantelli Lemma it follows that, if 
IO> f,then 

r-1 

lim x sk _v(t-s) t”-(1c~-m1/2) = 0 w.p. 1 for k = 0, . . . . lo - 2. (2.7) 
t-*m s--o 

But if that isso, then (2.2’1,(2.3),(2.7), (1.12), (1X)-(1.16), (1.21), 
[ 10, Learnma 11, and the easily verifiable fact that 

imply that, for all z E (-06, OQ), 

[x(t) 5-l ,t-(zo -U2) < z] = lim [(x(t) - g(t)) 5-l t-Q-1W zl 
t-t- t+- 

= hi~m 
t-+* 

eore 
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e begin by establish& the exist- 
a sequence of independently and 

identically dist r%bu dom variables with mean zero and 
variance one, let I?, = 0, and let 

. 

R, ~ t: (i -. j)Q Gi, i=1,2 ,..., n, n=l,2, . . . . 
j=l 

oreaver, for each r E [O, 11 and each n = 1,2, . . . . let 

= (2q + 1 )lt2 n-(q+1i2) R [n7l . 

inally, let (S2,3, P) denote the probability space of the Gi, and let PpI 
denote the distribution of X,(e) on (D, Q ). We will show that the P, 

weakly to pq. To do that we first fix T E (0, 1 1, and observe 
) is normally distributed with mean zero and variance 

In4 
a:(n) = (2q+I) n -(2q+I) C ([nr] - jj2fl (2.10) 

j=l 

and that 0,2(n) converges to r2q+r. Since X,(O) E 0 w.p. 1 for all n, it 
that for all r E [O,l] the distribuIion of X&) converges weakly 
istribution specified for X, under $q in (1.26) and (1.27). 

ext observe that, if {ri: i = 1, . . . . m) is an m-tuple such that 
0 < 71 < . . . < TV \< 1, then (X&-r), . ..) X,&)) is normally distributed 
with mean zero and covariance matrix 

‘2 Gz) 
71. 

p 
71972 

( ) n *.. 

of2(n) . . . 
’ (2.11) 

here for k = min {i, j} and p == max (i, j}, i’ # i, 

7i * $2) :z (2q + 1) .-(2q+1) (b$ -i)q W=pl -i)4* (2.12) 

a1 9 ***9 7,:) is as define in (1.28) and ( .29), it is easy to see that 



43. P. Stigu m / Au toregressive in tegru ted moviq cwrage proc. ses 329 

o corzlude the proof of the existence of on (D, CD ) it now suffi- 
ces (ff. [ I, Theorem 6.11) to show that (P,} is i tight sequence, and that 
the EV* with the finite-dimensional distributions specified in ( I .26) -( 1.29) 

assigns measure 1 to C. We first show that {Pn) is a tight sequence. This 
we can do (cf. [ 1, Theorem 15.6]) by showing that for any 0 < TV < T < 72 
there exists a finite positive constant K, independent of 71 and r2, such 
tha 2 

((x,(r) - X,(T~))~ (&(T~) - X,(T))~} G K(r2 - ~r)~. (2.14) 

The Froof of the validity of (2.14) involves very lengthy calculations. 
Since they are all of an elementary nature we will only sketch the barest 
outline of a proof here. Note first that the existence of K is hard to as- 
certain only because the difference r2 - rI may become arbitrarily small. 
Next note that (2.14) is trivially satisfied if n G (TV -- Q-’ since then 
[no] must equal either [nrl] or [~/7~]. Consequently, we need only worry 
about (2.14) for large ~2. Finally note that, for all t E 10, i;, 

t - [nt]/rl < 12-1, 

and that, for all integers k,, 

lim ,--@+lj 2 .$ = (k+ 1)--l, 
t1 -+m 1 I 

s’: 1 

By repeated use of the last two observations PJe caln show that there ex- 
ist finite positive constants K,, K,, K,, independent of yt, such that, for 
all k2 > (72 - r&l, 

q-1 
+ x, 

k,j=O 
(~){n-1([,,~2]-[n711)}2q-k-j 

receding observations i 
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will show that this subset is all of [ 0, 1 ] by showing that { 
do the latter we need 
) that, with respect to 

g fg4f+1 --r2qcl< (2q+l)& -9,) 1 

foirO~71<72f P, (2.2 6) 

and that 

J ‘,-112 1 (log u- )- 112 du <; 2 e112 (log &)-1l2 < oo. (2.1‘9 
0 

e have shown that a F?Q with the required properties exists on (D, g ). * 
e have also shown that the Pn 

exception that we have to a 
converge weakly to I$. Wi 

peal to the Central Limit Theorem in [ 10, 
pp. 6-91 to show that the finite-dimensional distributions of g,,(r) con- 
verge to the finite-dimensional distributions of the X7 under IV& the 
proof of the weak convergence of the & to I$ is identical with the 
proof that P,, converges weakly to Qq. Since there is no need to repeat 
the proof, we can consider the invariance principle established. Cl 

core . To begin with, let k > 1 be fixed; let 

Ti = [i(T i= 0, 1, . . . . k, I? 1, (2.18) 

and let 
Ti Ti 

= s,CO - . (Ti-tF y(t) = 
I=0 

(f)Tf-I(-l)l 
f=l 

t’v (0, 

i = 0, 1, . . . . k. 
(2.19) 

en it folio om [ 10, eq. (2.1 at, for all a E (-=, m), 

-tQ+l/a) < r2) = (2@2 q-1 j exp[-au2 oi2] du, 
-00 (2.20) 

v. ere 
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is approximate y normally distributed with mean zero and covariance 
matrix 

(2.22) 

where 

0 i,m = f,(O) k-(2q+1) 2 q+l mq 5 (Q)(q) (i/my (-l)‘+P (l+p+l)~-‘. 
l,p=O l p (2.123) 

Since most of the detailed calculations needed to establish this fact are 
given in [ 10,~~. 21-253, we omi: them here for brevity’s sake. Similar 
calculations for an n-tuple (il, . . . . in}, 1 G i, < . . . < in G k, show that, 
for large T, 

(Sil(~ T-(‘l+ ‘12), . ..) Sin(r> T-(q+1’2)) 

is app,iroximately normally distributed with mean zero and covariance 

- o2 
4 

4, i2 ? 
. . . 

Pi,, i, 

Next c-.ote that for 0 G 2 *G 2q and i < m there exist constants 
I<, that ar 

and 

P- h,i2 

cJ2 
i2 

pi,,in 

. . . 

. . . 

. 

*.. 

Pi, in 9 

Pi2 , in 

. 

o2 
in , 

. 

in.dependent of I, i and m, and satisfy 
. 

]I -(l+ l)i-(l*ll 

j=l 
(2.25) 

i- ((I + 112) m- (q + 112) 

o (P, (F) (i/m)‘+p (- 1 )l+P (I Q 
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for large i and T, and for all a E (--00, =), 

[{(Q + l)li2”+‘,‘f,(o)l} II2 i-Q+1~2) S,(T) T-@+t/2) < ,Q] 

. 

L- 
(2q + #I2 i-(4+*1/2) t: (i - j)q(+ < a] . 

j= 1 
(2.27) 

oreover, for large enough i, and T, and any n-tuple {it, . . . . i,}. 
< i2 < . . . < in, 

[{(2q + 1) k’q+1/~Y(0)}1’2 T--(q+1/2) (Si, (T) i;(4+1/2), .,., 

4 
. 

- i’ r(1q-k 1)112 (i;(qi1/2) C(i 
h 

iyfJG 1- / .’ 3 
i-(4+1/2) C <i 

--*3 a4 
j=l 

v\ ,-iIqGj 

C (al 9 l -9 a,,) 
1 

I) (2.28) 

where (rat, . . . . a,,) is an rt-dimensional real vector; i.e., if 
. 

li‘i s k (i - i)’ Gj, 
i= 1 

i = 1, 2, . . . . 

theh the distriktions of vectors of the form 

((2q + 1 j k2Y+1/fy(Q))1~2 T-(Q+1/2j(~i~(~,i,-(~+1/2), ,..J. (T)i-(q+1/2)) 
Ql n 

are, for large enough il and T, approximately equal to the distributions 
of the corresponding vectors 

(2q + 1)l12(RiI i;(q+1/2), . . . . Rin il~-(‘+~‘~)). 

Finally, lengthy calculations based on (2.2 l), (2.23)~-(2.26) will also 
show that, if fl E [0, l] -{a countable set}, then for each y > 0 there is 
a k, such that, for k > k, and sufficiently large T, 

i) < P] + ~0 (2.29) 
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dom variables with joint distributions equal to the limiting joint distri- 
butions of the ((2q + 1) k2q+1/fy(0)}112 Si(T) T-(q+1/2), i = 1, . . . . k. 
over, let B.* z 0, and let 

v,(r) s k-(‘J+1’2)Bik71, T E [0, l]. 

Then (U,&): r E [0, 11) belongs to (D, CD ), and it is easy to verify that, 
if pk denotes the distribution of U&> on (D/SD ), then the finite-dimen- 
sional distributions of the & conve!gc weakly to the corresponding 
finite-dimensional distributions of Wq. After lengthy calculations one 
can also show that there exists a finite constant K’, such that, for any 
triple 0 < lr < t G t2 < 1 and all k 2 1, 

Hence the & constitute a fight sequence which converges weakly to cq. 
If we now let 

k 

Sk(P) E P [k-I C $(‘i) ’ p3 3 PE (0,11, 
i=l 

g(P) = lGq cx’: t?(x) < p), p E (0, 11, 

then it follows from the proof of the Invariance Principle and the easily 
established fact that h(e ) is continuous except at points forming a set of 
Qq-measure zero (cf. [ 1, p. 23 I! for the necessary arguments) that g( l ) 

is well-defined. Finally it follows from the proof of the Invariance Princ- 
iple, [ 1, Corollary 1 to Theorem 5.1, pp. 30-3 11, arguments similar to 
those used to prove [ 10, emma 61, and the tightness of the pk that at 
each continuity point /3 of g(m) 

(2.3 1) 

For brevity’s sake we have left out most of the necessary details under-= 
lying the proofs of (2.30)-(2.3 1). Evidently, (2.3 1) and (2.25)-(2.28) * 

establish the validity of (2.29) for all 0 E [0, l] that are continuity points 
of g(o). 

efore concludin e 

sum and determine its asy 
2 

of them from Erd’ds and KS’S paper [3, pp. 1012-10141. 
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c 

Ti 

Z (I - t/Ti)’ y(t) G 0, h (l- t/r)” y(t) > 0 
t=l t=l 

Moreover, for large T, 
(2.33) 

[ 5 (lmt/TijqJ4:t) > 0, gl(l- t/r)q_V(t) G O] 6 
t=1 = 

I 

< (:I- tl~;)*_V(t) > E Ti”*, gl ( 2 - f/r)cl.V(t) Q 0 1 
(1 +yy(t) 6 e T//” 

3 

Q [(l-t/q>” - (l- ,t/‘r)q] y(t) ‘, $e Ti”* 1 
(l- tlT,)q_V(t) > 3 ~ ~~I2 

I 
+ 

(;)(g(-n)“+n 
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G Kloe-* (l-(Ti_~/~)‘)* + K,le-* ia1 + 

for suitably large constants 119 all of which are independent of 
e. Similar calculations show that, for large T, 

. 7” 

[ C(l- t/Ti)‘u(t) ~ 0, ~ (l- t/r)qv(t) $01 ~ 
t=l t=1 

G Elo~-* (1 - (Ti_l/Ti)‘j2 + (2.35) 

for suitably large constants z 
t 

, o and rII. From (2.32)-(2.35) it fol- 
10~s that with Kr = 2 max { i, Ki), i = 9, 10, 11, 

k 

{IHTI) G k-l c (KToe- 
i=l 

*(l-(Ti_,/Ti)‘)* +KT,e-*i-l}+ 

= MIT, e; k). 

She, for large T, 

(2.36) 

(1s (Ti_l/ Ti)Q)* = O(i-*), 

it follows from (2.36) that, for some large K12, 

{lH,l) G K,, {e-*k+( 1 + log k) + e}. (2.37) 

Now, for any 6 > 0, 

[I 
T k 

C T-‘J/(S,)-T--l C (Ti-Ti_1) $(Si(n) a 6 = 
t=l i=l I 1 

ence, f0r any p E (O,l), 
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k 

c (ri - II;._,)$(S,(T)) < p - 6 
i=l 1 - S-lM(T, e; k). 

From (2.39) and (2.40), from the fact that 
(2.40) 

lim { ?‘I’ (jr) - Pri_l)) = k--l, 
T-t00 

from (2.37), and from (2.29) and (2.31) it follows that, if p f (OJ] is a 
continuity point ofg(*), then, for any given E > 0 and 6 C $0, and for 
7~ :‘::S’% K,, and k>b k,, 

(2.41) 

T 

c J/(S,)< p 
t=l 1 

< g(p -e 26) + 26 -’ K12{c2k-‘(1 + logk)+2& (2.42) 

By letting k + 90 and (e., 6) + 0 appropriately, the validity of the relation 
(1 . 49) of Theorem 5 becomes an immediate consequence of (2.42). 0 

roof ofTheorem 3. In light of(1.12), (l.lS), (LK), (2.2), (2.3) 
and (2.7) the validity of equation (I. .32) of Theorem 3 becomes a simple 
corollary nf Theorem 5 which needs no further proof. The validity of 
equation C: 1.34) was established in [ lo]. U 

6. To establish (1.47) we begin by showing that, 
for any given integer (4 > 1, 
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To do so we fix the value of q and pick an arbitrary e > 0. Moreover we 
let 8 > 1 be a constant whose value we will determine later, and-we let 
N S = [PI, s = 1 

h? -1 s 

It follows easily 
that, for large s, 

r NS 

92 ) . . . . Finally, we let 

[2(2q+l)-1 0; NloglogN)r’2, N= 1,2, . . . 0 

from [ 10, Lemma 1 ] and Feller’s [4, Theorem VIIIS] 

pit N C(1-t/&)4dt)~ l+c] <exp[-(l%~)~ log&$?] 
s t=l 

= (log N,)-(1 + d2 - (2s log @-(l+c)2 . 
(2.44) 

Consequently, lby the Borel-Cantelli lemma, 
4 

1imsuP tN C(&t/~s)"'q(t) 

S t=l 
1 < 1-h w.p. 1. 

S-+=J i 

(2.45) 

Next, for s = 1, 2, . . . lzt 

N Ns- 1 

Rs= SUP c (l-tlN)4q(t)- z 
N s_l<N<Ns t=l t=l 

(l-t/N,_,)qq(t) 
!I 

, (2.46) 

N- 

R' - S=N sup 5’ [(l-tlN)4 3 (2.47) - 
s-~<N<J$ t=l 

- (1- t/Ns 1)ql q(t) 

fi (l-t,mq,(t)i) . 
t=Ns_+ 1 

(2.48) 

Then3 

R <R,l+R,2, s= 1,2,.... 
S 

(2.49) 

Moreover, if we let 

and observe that 
N N-l 

c 
t=Ns__lfl 

(1-t/N-)%?(t)=t /Jz [(l-t/NY -(l-(t+l) 
= s-1+1 

3 The details of the calculations in (2.49)-(2.55) are our own. *WCVefY we have borrowed t 
fro ixl (cf. [S, p 14-415]). 
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t is easy to see that 

(2.50) 

ince, for large s, tAvs I$_Ws N 8, and by [lo, Theorem 21 

(2.50) implies that there is a 8, (E) > 1 such that, for all 1~ 8 < &(s), 

(2.5 1) 

inally, if we observe that 
1 

(4,) U++J-“-N,-:~I G 0” w 

I 
1 

1j 

’ 

q 4- 1 

x (q)(l-@m) It&N 
m=O m 

1 
s- 1 I 

tN 
S-l t=l 

II 

9 

e can use [ 10, Theorem 21 to conclude that 

lim sup R,’ G (L) (1 - &-2m ) (m + 1)-l (29+1). (2.52) 
s-+= m=O 

rom (2.52) it follows .that there is a number 1 < O,(E) G 0,(e) such that, 
ifl<6<62(~)andO-I<~~,then 

lim supRf \< 4~ w.p. I. 
s+w 

(2.53) 

ince 
N S--l 

N tN (1-t ‘q(t) - tN 
F 

(1 -tlN,_,Yq(t? 
S- 

” - . . 
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we can conclude from (2. 5), (2.49), (2.51), (2.52) and (2.53) that 

lim sup tN (l-t/iV)q?j(t)G 1+4e w.p. 1. (2.55) 
IV-+- 

ut if that is so, then the fact that e > 0 was chosen arbitrarily implies 

( 
lim sup [2(29+1)-l ui T2q+l log log T]--li2 fl q(T- t) 

T+= I 

6 1 w.p, 1. ( ) 

Since (2.35) is obviously true for -q(e) as well as for q(e), we have 
shown that 

I 
lim sup [2(2q+l)-1 0: T’q+l Zag log T] -“* fl r7(T-0 

T-,- Ii 

Gl w.p. 1. (2.57) 

To establish the “‘converse” of (2.57) we proceed as follows. 
E > 0 be chosen arbitrarily, and let L? be an integer such that 

[(d - l)/61j2q+‘> 6 > l-6, (2.58) 

where 6 is a constant whose value will be determined later. 
T,.=#‘,t= l,2,C..,andlet 

B, = F q(T,- t) > 6 {2(2q+l)-’ 0; T;q+l log log T+, “’ . (2.59) 

Then with R 2 z &q+i (d _l)-@q+lj _ (&__l)--(zq+ija 1 

[B 1 (2q+l)‘12 0;’ (T, - Tr_1)-(q+“2j 
[ 

fl Q(Tr - t) r t=Tr- 1 

> 6{2T;q+’ (T, - _ 1)-(2q+1j log Ifig Tr}‘12 1 
Tr- 1-l 

_ ;>‘-” + ml - 0 

..J 
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Tr- Tr-. 1 

+ 1p2 CJ- l 
rl 

-1(Tr-Tr_l)-(q+1’2) L’ (T,- t)“q(Tr__I + it) 
t=1 

> (26 log log Trj1j2 1 
Tr-G-1 

= (2q+ 1)“2 a; 1 ~-‘(Tr-Tr_,)-(q+1’2) c 
t=l 

(T,-- t)q q(t) 

> (26 log log Tr)‘12 1 . (2.60) 

Iit follows from f. 10, Iemma 11, some algebra, Feller’s [4, Theorem VIII.51 
and (2.60) that, for large r, 

[B,] > (28 log log Tr>-” exp E-S log log TJ 

= ((26 log log T,) ( og T,)s)-’ > r-? (2.61) 

Consequently, 

=CQ. (2.62) 

Next note that (by (2.44)), for any v > 0 and for large r, 

T r-1-1 

c 
t=O 

tqq(T -t)> (Icy) [2(24+1)-‘CJ; T,2_4;110glogTr_111’2 = r 1 
= - t) 2 (1 +T) [2(2vq+l)-‘0; T;q;r log log Tr J112 

- 1 
G exp[ -(l +f~)~ log log T,r__,] = (log T,_,)-c’+7Y=((+-l) log @-(‘+y’2. 

(2.63) 

Since (2.63) holds for .q(*) as well, we can use (2.63) to find for each 
> O an N so large .that for all Y > N t ae probability is greater than or 

equal to 1 - cp that 

q+l loglog Tr_l]l’2. (2.6 
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So, if we choose 6 so close: to 1 that 

l-S<$(s+e-1)2, 

we find that 

341 

(2.65) 

4T24+l =4(Tr/d)2q+1 < T;q+’ (6 + c - l)2 , 
r-l (2.66) 

and hence that (by (2.64)), with probability greater than or equal to 

1 -V, 

T r- 1-l 

c f4~(Tr-~)>-(8+~-1)[2(2q+l)-1~; T;q+110glogTr]*‘2. 
t=O 

(2.67) 

that 
T-l 

hn sup 
T+- 

[2(2q+l)-1 0: T2q+l log log T]-lj2 c tQ(T- t) 1 
t=O I 

2 1 w.p. 1. 

(2.68) 

When we add (2.67) to both sides of the inequality defining Br( we see 
immediately from (2.62) and the Borel-Cantelli lemma that the event 

T-l 

[2(2q + l)-’ u; T2q+’ log log T]-l12 c t4 r/( T- t) a 1 - E 
t=O 

happens infinitely often w.p. 1. Since e was arbitrary, we have shown 

The validity of (2.43) now follows from (2.68) an(J (2.57), and the fact 
that (2.68) remains val:.d if we replace ~(0) by -r)(*). So much for (2.43). 

To conclude the prcof of (1.47) we next let N be a large positive in- 
teger, and we let 

N 

j(t) = c _i (Ys q(t +s), t = 1, 2, . ..) 
S= 

T-l 

iT = c fl T(T- t) 
t=O 

T-B N 

= tcr (xs q(T- L-S) 

= 
s=- N % ( v - s)q q(T - v) 

v=s 

a N T+s- 1 
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lim sup i&M24 2 +l -1 J$ (0) T 4 log log T] -1,‘2 = 1 w.p. 1. 
T-,= (2.70) 

Since we can replace p(e) by -PII:+ in the definition of $ without 
changing the conclusion (2.70), 3lwe also find that 

lim SUP {lj;. [2(2q+1)-l_+(O) T’*l+l log ‘log T]-1’21) = 1 W.P. 1. 
T+@@ 

(2.7 1) 

T’hk arguments used to establksh (2.71) suffice to show that, for any 
N and M, 

T-l ,N 

lim sup c 
T-,= 

12 tQ cu, q(T-d-s) [2(2q+l)-‘f,(O) T2q+‘loglog Tl--“12 
t=Q s= -fV 

(2.‘72) 

T-l N+M 

I,im sup c c 
T a-*00 t=O IsI=N+l 

[2(2q+l)-1 fy(0)T2~+‘10glogT]-1~2 
I 

(2.73) 

where kN is the integer 
Next we note that 

* which maximizes the value c>f IX~s,=N+l % a. 

,a,r”t-s) 1 w.p. 1, t= 1,2,.... 

us, if for each PJ 
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From (2.74) it follows that 

lim sup 
T-*- 

‘gl fly(T-t) Wq+l)-‘f,(O) T*q+l loglog T]-‘“~J < 1 
t=o 

w.p. 1. 

(2.75) 

Finally, it is easy to see that (2.72), (2.73) and 
T-l 

t=O 
y<r--t) - 22 tcr 

t=O 
NQS m=- t-4 

I 

lim sup 
T-,f= 

I 
T-l 

G c fly(T-t) 
t=O I + 

imply that, for any e > 0, 
_V 1 

T-l 

fl 
t=O ISI >,v 

a, q(T- r-s) 

(2.76) 

(I *iif fly(T- t) [2(2q+l)-1 f,(O) T*q+l log log T]-1/2 > 1 - E 
t=O 

w.p. 1. 
(2.77) 

This concludes the proof of Theorem 6. c? 

roof of Theorem . The validity of (1.35) is an immediate conse- 
quence of (1.12), (l.lS), (1.16), (2.2), (2.3), (2.7), [lO,Theoreim 21, and 
(1.47) for q = 2, - 1 and, therefore, needs no further proof. 0 

The research for this paper was begun while the author was visiting 
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