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Abstract

We establish large deviation principles and phase transition results for both quenched and annealed set-
tings of nearest-neighbor random walks with constant drift in random nonnegative potentials on Zd . We
complement the analysis of M.P.W. Zerner [Directional decay of the Green’s function for a random non-
negative potential on Zd , Ann. Appl. Probab. 8 (1996) 246–280], where a shape theorem on the Lyapunov
functions and a large deviation principle in absence of the drift are achieved for the quenched setting.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Let S = (S(n))n∈N0 be a symmetric nearest-neighbor random walk on Zd starting at
the origin, and denote by P , respectively E , the associated probability measure, respectively
expectation. The aim of this article is a probabilistic description of the long-time behavior of the
random walk, endowed with a drift and evolving in a random environment given by a random
potential on the lattice. This description will be done for concrete realizations of the environment,
the quenched setting, as well as for the averaged environment, the so-called annealed setting. For
details, we make the following assumptions:
(Qu) V = (Vx )x∈Zd is a family of independent, identically and not trivially distributed random

variables in Ld(Ω ,F, P), which is independent of the random walk itself and satisfies
ess inf Vx = 0.
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(An) ϕ : [0, ∞) → [0, ∞) is a non constant, non decreasing and concave function with ϕ(0) = 0
and limt→∞ ϕ(t)/t = 0.

For ω ∈ Ω , n ∈ N and h ∈ Rd , the quenched path measure Qh
n,ω for the random walk S with

constant drift h under the path potential

Ψ(n, ω)
def
=

∑
1≤m≤n

VS(m)(ω)

is defined by means of the density function

dQh
n,ω

dP
def
=

1
Zh

n,ω

exp(h · S(n) − Ψ(n, ω)) ,

where Zh
n,ω denotes the corresponding (quenched) normalization. Notice that Qh

n,· is a random
probability measure, the randomness coming from the random potential Ψ(n, ·).

For x ∈ Zd , let now

lx (n)
def
= ] {1 ≤ m ≤ n : S(m) = x}

denote the number of the random walk’s visits to the site x up to time n. The annealed path
measure Qh

n for the random walk S with constant drift h under the path potential

Φ(n)
def
=

∑
x∈Zd

ϕ(lx (n))

is defined by means of the density function

dQh
n

dP
def
=

1
Zh

n
exp(h · S(n) − Φ(n)) ,

where Zh
n is the corresponding (annealed) normalization constant.

The model we come to introduce is a discrete-setting model for a particle moving in a random
media. In the quenched setting, the walker jumps from site to site, thereby trying to avoid those
regions where the potential takes on high values. The drift however implies a restriction in the
search of such an “optimal strategy” by imposing a particular direction to the walk.

We shall point out that in the definition of the annealed path measures we are making a slight
abuse of standard terminology. To clarify this aspect, consider

ϕV(t) def
= − log E exp(−tVx ), t ∈ [0, ∞),

for a given potential V. By Hölder inequality, dominated convergence and the assumption
ess inf Vx = 0, it is easy to see that ϕV fulfills the requirements (An). Let Qh

V,n denote the
annealed path measure corresponding to ϕV. The quenched potential can be rewritten as

Ψ(n, ω) =

∑
x∈Zd

lx (n)Vx (ω).

By the independence assumption on the potential, it now is easily seen that

dQh
V,n

dP
=

1
EZh

n,·

E
[
exp(h · S(n) − Ψ(n, ·))

]
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for any drift h and all n ∈ N, which is the “classical” annealed path measure. Our results cover
this standard case, but do not rely on the particular form of ϕV in the above definition.

An interesting example of such a potential ϕV is considered at the so-called hard obstacle or
trap model. There, one assumes Vx : Ω → {0, ∞} with positive probability for both values. The
name of the model comes from the fact that

Zh
n,ω = E

[
exp(h · S(n)) ; VS(m)(ω) = 0 for 1 < m ≤ n

]
,

which describes the probability for the drifted random walk not to step into one of the “traps”
{x ∈ Zd

: Vx (ω) = ∞} up to time n ∈ N. Such a potential is not in L1(Ω ,F, P) and
consequently does not satisfy assumption (Qu). Yet, the function ϕV(t), associated to the classical
annealed terms, does fulfill the required properties (An), and satisfies

ϕV(t) =

{
− log P [Vx = 0] if t > 0,

0 if t = 0.

Again, the expected probability EZh
n,· of not stepping into a trap equals the annealed

normalization constant Zh
V,n corresponding to ϕV. We thus have

EZh
n,· = E

[
exp(h · S(n) − γ ]{S(m) : 1 ≤ m ≤ n})

]
with γ = − log P[Vx = 0] and n ∈ N.

We come back to the general setup of a random walk in a random potential. A similar model
in a continuous setting, namely Brownian motion in a Poissonian potential, was first studied
by A.S. Sznitman. By means of the powerful method of enlargement of obstacles, Sznitman
established a precise picture in both quenched and annealed settings. He achieved results such as
a shape theorem, large deviation principles (LDP’s) and an accurate description of the transition
between small and large drift. We refer the reader to Chapter 5 of [6] for a complete review of
these results. In the discrete setting, an ample study of the random walk under the influence of the
quenched potential was made by Zerner [8]. His results, however, are limited to the case where
no drift is present.

The aim of the present work is to add the missing pieces to Zerner’s analysis, recovering
the larger picture for the random walk with drift in both quenched and annealed settings. The
organization of the article is as follows: In Section 2, we state the main results. In Section 3, we
follow Zerner’s analysis and prove a shape theorem for the directed random walk. Section 4 is
devoted to the proof of the LDP’s. In Section 5, we closely follow Sznitman’s path to analyze
phase transitions in the long-time behavior of the random walk, related to the size of the drift.

2. Main results

The essential quantities in our study of the large time asymptotics of the random walk are the
so-called Lyapunov functions on Rd . Let

H(x)
def
= inf{n ∈ N0 : S(n) = x}

denote the time of the random walk’s first visit to the lattice site x ∈ Zd . For λ ≥ 0, ω ∈ Ω and
x ∈ Zd , we define the two-point functions

aλ(x, ω)
def
= − log E

[
exp(−λH(x) − Ψ(H(x), ω)) ; H(x) < ∞

]
,

bλ(x)
def
= − log E

[
exp(−λH(x) − Φ(H(x))) ; H(x) < ∞

]
.
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Our first result introduces the Lyapunov functions αλ and βλ, and sets them in relation to the
asymptotic behavior of aλ and bλ.

Theorem A (Shape Theorem).
(a) [8] There is a family (αλ)λ≥0 of norms on Rd , such that for any λ ≥ 0 and all sequences

(xk)k∈N on Zd with ‖xk‖1 → ∞ as k → ∞, we have

lim
k→∞

aλ(xk, ω)

αλ(xk)
= 1 (1)

on a set Ωλ of full P-measure and in L1(Ω ,F, P). Moreover, αλ(x) is continuous in
(λ, x) ∈ [0, ∞) × Rd , concave increasing in λ ∈ [0, ∞), and satisfies

‖x‖1 (λ − log E exp(−Vx )) ≤ αλ(x) ≤ ‖x‖1 (λ + log(2d) + EVx ) . (2)

(b) There is a family (βλ)λ≥0 of norms on Rd , such that for any λ ≥ 0 and all sequences (xk)k∈N
on Zd with ‖xk‖1 → ∞ as k → ∞, we have

lim
k→∞

bλ(xk)

βλ(xk)
= 1. (3)

Moreover, βλ(x) is continuous in (λ, x) ∈ [0, ∞) × Rd , concave increasing in λ ∈ [0, ∞),
and satisfies

‖x‖1 (λ + ϕ(1)) ≤ βλ(x) ≤ ‖x‖1 (λ + log(2d) + ϕ(1)) .

The first part of Theorem A, accounting for the quenched Lyapunov functions αλ, is taken
from [8]. We will not repeat the proof, which relies on the subadditive ergodic theorem, but
refer the reader to the original paper. The second part of the theorem on the annealed Lyapunov
functions βλ is proven in Section 3 with the help of the subadditive limit theorem.

The Lyapunov functions play an important role in the large deviation principles. For x ∈ Rd ,
we set

I (x)
def
= sup

λ≥0
(αλ(x) − λ) and J (x)

def
= sup

λ≥0
(βλ(x) − λ) .

Both the functions I and J are continuous and convex increasing on their effective domains

DI
def
= {x ∈ Rd

: I (x) < ∞} and DJ
def
= {x ∈ Rd

: J (x) < ∞},

of which both equal the closed unit ball of the 1-norm in Zd (see p. 272 in [8] and Section 4
of the present article). In particular, I and J are lower semicontinuous functions with compact
level-sets, which makes them good rate functions (see e.g. [1]).

Theorem B (Large Deviation Principles).
(a) There is a set Ω ′ of full P-measure, such that for all ω ∈ Ω ′ and any drift h ∈ Rd , we have

lim
n→∞

log Zh
n,ω

n
= sup

x∈Rd
(h · x − I (x)) , (4)

and S(n)/n satisfies a large deviation principle under Qh
n,ω with rate n and good rate

function

Ih(x)
def
= I (x) − h · x + sup

y∈Rd
(h · y − I (y)) , x ∈ Rd ,
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as n tends to infinity. Namely, for any ω ∈ Ω ′ and h ∈ Rd ,

lim
n→∞

1
n

log Qh
n,ω[S(n) ∈ n A] ≤ − inf

x∈A
Ih(x),

lim
n→∞

1
n

log Qh
n,ω[S(n) ∈ nO] ≥ − inf

x∈O
Ih(x)

for all closed subsets A ⊂ Rd and all open subsets O ⊂ Rd .
(b) For any drift h ∈ Rd , we have

lim
n→∞

log Zh
n

n
= sup

x∈Rd
(h · x − J (x)) , (5)

and S(n)/n satisfies a large deviation principle under Qh
n with rate n and good rate function

Jh(x)
def
= J (x) − h · x + sup

y∈Rd
(h · y − J (y)) , x ∈ Rd ,

as n tends to infinity. Namely, for any h ∈ Rd ,

lim
n→∞

1
n

log Qh
n[S(n) ∈ n A] ≤ − inf

x∈A
Jh(x),

lim
n→∞

1
n

log Qh
n[S(n) ∈ nO] ≥ − inf

x∈O
Jh(x)

for all closed subsets A ⊂ Rd and all open subsets O ⊂ Rd .

The crucial case of Theorem B is the one of vanishing drift, which for the quenched setting
already is proved in [8]. The extension to arbitrary drifts then follows by general principles
(essentially Varadhan’s lemma).

To describe the transition between small and large drift, we quantify the size of h in terms of
the dual norms of the Lyapunov functions. For λ ≥ 0, the dual norm of αλ is defined by

α∗
λ(`)

def
= sup

x 6=0

(
` · x
αλ(x)

)
, ` ∈ Rd ,

while the dual norm of βλ is defined by

β∗
λ(`)

def
= sup

x 6=0

(
` · x
βλ(x)

)
, ` ∈ Rd .

It is plain to see that α∗
λ and β∗

λ indeed are norms again. Further elementary properties are
established in Section 5.

As a corollary to Theorem A, we have the following “point to hyperplane” interpretation on
the dual norms: For ` 6= 0 and u ≥ 0, let

H`(u)
def
= inf{n ≥ 0 : ` · S(n) ≥ u}

be the time of the random walk’s first entrance into the half-space {x ∈ Rd
: ` · x ≥ u}.

Corollary C (Point to Hyperplane Characterization of Dual Norms).
(a) There is a set of full P-measure, on which for all λ ∈ [0, ∞) and ` ∈ Rd

\ {0}, we have

lim
u→∞

1
u

log E
[
exp(−λH`(u) − Ψ(H`(u), ω))

]
= −

1
α∗

λ(`)
.
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(b) For all λ ∈ [0, ∞) and ` ∈ Rd
\ {0}, we have

lim
u→∞

1
u

log E
[
exp(−λH`(u) − Φ(H`(u)))

]
= −

1
β∗

λ(`)
.

Corollary C is the discrete counterpart to Sznitman’s results for Brownian motion in a Poissonian
potential [6, Corollary 2.11 and Corollary 3.6 of Chapter 5].

As the following theorem shows, the phase transition in the long-time behavior of the random
walk is appropriately characterized by the size of the drift, measured in terms of the dual norms
α∗

0 and β∗

0 .

Theorem D (Phase Transitions).

(a) On the set Ω ′ appearing in Theorem B, and for any h ∈ Rd , we have

lim
n→∞

1
n

log Zh
n,ω =

{
0 if α∗

0(h) ≤ 1,

λ
qu
h if α∗

0(h) > 1,
(6)

where λ
qu
h > 0 is the unique number with α∗

λ
qu
h

(h) = 1. Again on Ω ′, we furthermore have

the following limiting behavior: When α∗

0(h) < 1, then

S(n)

n
→ 0 in Qh

n,ω probability as n → ∞.

When α∗

0(h) > 1, then

dist
(

S(n)

n
, Mh

)
→ 0 in Qh

n,ω probability as n → ∞,

where Mh
def
= {x ∈ Rd

: h · x − I (x) = λ
qu
h } is a compact set not containing the origin.

(b) For any h ∈ Rd , we have

lim
n→∞

1
n

log Zh
n =

{
0 if β∗

0 (h) ≤ 1,

λan
h if β∗

0 (h) > 1,

where λan
h > 0 is the unique number with β∗

λan
h
(h) = 1. We furthermore have the following

limiting behavior: When β∗

0 (h) < 1,

S(n)

n
→ 0 in Qh

n probability as n → ∞.

When β∗

0 (h) > 1,

dist
(

S(n)

n
, Nh

)
→ 0 in Qh

n probability as n → ∞,

where Nh
def
= {x ∈ Rd

: h · x − J (x) = λan
h } is a compact set containing the origin.

Remark that for large drifts, since Mh and Nh are bounded away from the origin, Theorem D
implies that the random walk S(n) typically moves away from the origin, with distance of order
O(n) as n → ∞. For small drifts, on the other hand, the dislocation rate ‖S(n)/n‖ typically falls
below any positive value in the limit n → ∞. Theorem D thus displays two phase transitions,
one for the quenched and one for the annealed setting, between ballistic behavior of the walk for
large h and sub-ballistic behavior for small h. The unit spheres of α∗

0 and β∗

0 correspond to the
sets of critical drifts.
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The normalization for the asymptotics in Theorem D is appropriate in the ballistic regime. In
the continuous model, more exact asymptotics for the sub-ballistic phase are established in [4,
5]. In the discrete setting, by analogy to the continuous model, we thus believe that convenient
normalizations for log Zh

n,ω, respectively log Zh
n , should be given by n(log n)−2/d , respectively

nd/d+2.
To conclude this section, we stress that Theorems A and B, Corollary C and Theorem D

essentially are discrete counterparts to Sznitman’s results for the Brownian motion in Poissonian
potentials. We however would like to point out the introduction of λ

qu
h and λan

h in Theorem D,
which we believe to be new: In order to obtain the ballistic behavior of the random walk, for either
the continuous or the discrete setting, it actually suffices to show that the so-called Lyapunov
exponents

lim
n→∞

1
n

log Zh
n,ω and lim

n→∞

1
n

log Zh
n

are strictly positive (in fact, this is Sznitman’s approach). By means of λ
qu
h and λan

h , on the
other hand, we are able to express these limits in an implicit way, providing a useful relation
to their counterparts in the simpler “point to hyperplane” setting of Corollary C. In fact, in the
second, forthcoming paper [2], this relation is used in the context of a renewal formalism to
transfer an exponential gap result from the “point to hyperplane” to the “fixed number of steps”
setting, implying analyticity of the annealed Lyapunov exponent, and providing coincidence of
the quenched and the annealed exponent for weak potentials in dimensions d ≥ 4.

3. Lyapunov functions and shape theorem

The quenched part of Theorem A has been proved by M.P.W. Zerner in [8]: the existence
of the norms αλ and the bounds in (2) are part of Proposition 4, the asymptotic equivalence in
(1) corresponds to his Theorem 8, and the further properties of αλ are established on page 272.
Observe that Zerner left out the condition ess inf Vx = 0 instead of introducing the parameter λ.

In the rest of this section, we follow Zerner’s line to prove the remaining annealed part of
Theorem A. Recall the two-point function

bλ(x) = − log E
[
exp(−λH(x) − Φ(H(x))) ; H(x) < ∞

]
(7)

for λ ≥ 0 and x ∈ Zd . The stopping time H(x) denotes the time of the random walk’s first visit
to the lattice site x , and the path potential Φ is given by

Φ(n) =

∑
z∈Zd

ϕ(lz(n)) (8)

for n ∈ N. Here, ϕ : [0, ∞) → [0, ∞) is a non-constant, concave increasing function, satisfying
ϕ(0) = 0 and limt→∞ ϕ(t)/t = 0. By dominated convergence and Hölder inequality, it is plain
that bλ(x), to any fixed x ∈ Zd , is continuous and concave increasing in the variable λ ∈ [0, ∞).
Moreover, we have H(x) ≥ ‖x‖1 and thus Φ(H(x)) ≥ ϕ(1)‖x‖1 for all x ∈ Zd by the concavity
of ϕ. For any λ ≥ 0, this yields the lower bound

bλ(x) ≥ ‖x‖1 (λ + ϕ(1)) , (9)

while the upper bound

bλ(x) ≤ ‖x‖1 (log(2d) + λ + ϕ(1)) (10)
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comes from restricting the expectation in (7) to a single ‖x‖1-step path from the origin to x ∈ Zd .
To a fixed λ, we want to establish the triangle inequality for bλ as a function on Zd . To this

end, let

H(x, z) def
= inf{m ≥ H(x) : S(m) = z}

be the time of the random walk’s first visit to the site z ∈ Zd after its first visit to the site x ∈ Zd ,
and set

Φ(n, m)
def
=

∑
z∈Zd

ϕ (lz(n) − lz(m))

for n, m ∈ N0 with n ≥ m. Again by the concavity of ϕ, we have

Φ(n) ≤ Φ(m) + Φ(m, n) (11)

for all m ≥ n. The strong Markov property, applied to the stopping time H(x), then implies

bλ(x + y) ≤ − log E
[
1{H(x)≤H(x,x+y)<∞} exp(−λH(x) − Φ(H(x)))

× exp(λH(x, x + y) − Φ(H(x), H(x, x + y)))
]

= bλ(x) + bλ(y). (12)

Given the validity of the triangle inequality (12), we can now apply the subadditive limit
theorem (see e.g. [3] Appendix II), which guarantees the existence of a function βλ : Zd

→

[0, ∞), such that

lim
n→∞

1
n

bλ(nx) = inf
n∈N

1
n

bλ(nx) = βλ(x) (13)

for every x ∈ Zd . It is easy to conclude that βλ inherits from bλ the same bounds as in (9) and
(10), that is

λ + ϕ(1) ≤
βλ(x)

‖x‖1
≤ log(2d) + λ + ϕ(1) (14)

for all x ∈ Zd
\ {0}, and that

βλ(nx) = nβλ(x),

βλ(x + y) ≤ βλ(x) + βλ(y)
(15)

are satisfied for any n ∈ N and x, y ∈ Z. Moreover, to fixed x ∈ Zd , βλ(x) is continuous and
concave increasing in λ ∈ [0, ∞): As a limit of concave functions, βλ(x) is concave again and
thus lower semicontinuous (possibly being discontinuous in λ = 0). The upper semicontinuity,
by the representation of βλ(x) as an infimum in (13), is derived from the continuity of bλ(nx) in
λ for any n ∈ N.

By setting βλ(qx) = qβλ(x) for q ∈ Q, we extend βλ well-defined at first to a function on
Qd , and then by continuity to a function on Rd . Thereby, βλ maintains its properties as a function
of λ, and still satisfies (14) and (15). In particular, βλ is a norm on Rd . Moreover, since∣∣βλk (xk) − βλ(x)

∣∣ ≤

∣∣∣∣βmax
j∈N

λ j (xk − x)

∣∣∣∣+ ∣∣βλk (x) − βλ(x)
∣∣
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for all sequences (λk)k∈N and (xk)k∈N with λk → λ and xk → x , we obtain the joint continuity
of βλ(x) in (λ, x) ∈ [0, ∞) × Rd from the continuity in the single arguments.

It remains to prove the limiting behavior of bλ/βλ in (3). It suffices to show

lim
k→∞

∣∣∣∣bλ(xk) − βλ(xk)

‖xk‖1

∣∣∣∣ = 0 (16)

for any sequence (xk)k∈N on Zd with ‖xk‖1 → ∞. We yet can restrict to the case where
xk/‖xk‖1 → e for some point e ∈ Sd−1; if (16) was not true for an arbitrary sequence, it
would not be true for a subsequence with this convergence property either.

To this end, for any ε > 0, choose ẽ ∈ Qd and m ∈ N such that mẽ ∈ Zd and ‖e − ẽ‖1 < ε, as
well as |βλ(e) − βλ(ẽ)| < ε. We approximate (xk)k∈N by the sequence (nk x)k∈N on Zd , where

x = mẽ ∈ Zd and nk =

⌊
‖xk‖1

m

⌋
.

Thereby b·c denotes the largest integer less than or equal to a real number. Notice first that
limk→∞ ‖xk‖1/nk = m. We thus have

‖xk − nk x‖1 ≤

∥∥∥∥xk −
nkm
‖xk‖1

xk

∥∥∥∥
1
+

∥∥∥∥ nkm
‖xk‖1

xk − nk x
∥∥∥∥

1

=

(
1 −

nkm
‖xk‖1

)
‖xk‖1 + nkm

∥∥∥∥ xk

‖xk‖1
− ẽ

∥∥∥∥
1

< ε‖xk‖1 (17)

for k large enough. By the (inverted) triangle inequality (12) for bλ, we get∣∣∣∣bλ(xk) − βλ(xk)

‖xk‖1

∣∣∣∣ ≤
bλ(xk − nk x)

‖xk‖1
+

∣∣∣∣bλ(nk x)

‖xk‖1
− βλ(ẽ)

∣∣∣∣+ ∣∣∣∣βλ(ẽ) − βλ

(
xk

‖xk‖1

)∣∣∣∣ .
The first summand on the right-hand side is bounded from above by εcλ with cλ = log(2d) +

λ + ϕ(1) due to (10) and (17). The second summand tends to zero for k going to infinity since
‖xk‖1/nk → m and bλ(nk x)/nk → βλ(x). The last summand finally is smaller than ε for
k large enough by the assumptions limk→∞ xk/‖xk‖1 = e and |βλ(ẽ) − βλ(e)| < ε. Hence,
letting ε tend to zero implies (16) and completes the proof of the shape theorem in the annealed
setting.

4. Large deviation principles

The aim of this section is to prove Theorem B. The limit results (4) and (5) for arbitrary drifts
as well as the LDP’s for Qh 6=0

n and Qh 6=0
n,ω thereby follow from the LDP’s for Qh=0

n and Qh=0
n,ω as

an application of Varadhan’s lemma (see e.g. [1] Theorem 2.1.10 and Exercise 2.1.24). To this
purpose, we only need to establish the “exponential tightness estimates”

lim
L→∞

lim
n→∞

1
n

log E
[
exp(h · S(n) − Ψ(n, ω)) ; h · S(n) ≥ nL

]
= −∞,

for the quenched setting and

lim
L→∞

lim
n→∞

1
n

log E
[
exp(h · S(n) − Φ(n)) ; h · S(n) ≥ nL

]
= −∞
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for the annealed setting. But, since both the expectations in the above limits are bounded by

E
[
exp(h · S(n)); h · S(n) ≥ nL

]
≤ exp(−nL)E

[
exp(2h · S(n))

]
= exp(−nL)E

[
exp(2h · S(1))

]n
,

the exponential estimates follow immediately.

For vanishing drift, the limit in (4) and the large deviation property in the quenched setting
have already been proved [8, Proposition 17 and Theorem 19].

We follow Zerner’s line to prove the remaining annealed part of Theorem B for the case
h = 0. That is, we investigate the large deviations of the symmetric random walk under the
annealed path measures Qn with density

dQn

dP
def
=

exp(−Φ(n))

Zn

when n ∈ N tends to infinity, where the normalization constant Zn is given by

Zn
def
= E

[
exp(−Φ(n))

]
= E

[
exp

(
−

∑
x∈Zd

ϕ(lx (n))

)]
.

Thereby, we have Qn = Qh=0
n and Zn = Zh=0

n according to the notations from Section 1.

We first take care of the normalization constant Zn . Claim (5) in Theorem B reduces to

lim
n→∞

− log Zn

n
= 0. (18)

In fact, it turns out that the above limit equals limn→∞ ϕ(n)/n, which is assumed to be zero. To
see this, observe that

lim
n→∞

ϕ(n)

n
= inf

n∈N

ϕ(n)

n
,

once again by the concavity of ϕ. By the definition of Φ, we therefore have

lim
n→∞

− log Zn

n
≥ lim

n→∞

ϕ(n)

n
.

It remains to prove the upper estimate. For any integer R and all n ∈ N, we obviously have

Zn ≥ E
[
exp(−Φ(n)); ‖S(m)‖1 ≤ R for m ≤ n

]
.

In order to find a lower bound for the right-hand side of this inequality, observe that∑
x∈Zd

ϕ(lx (n))1{‖S(m)‖1≤R for m≤n} ≤ (2R + 1)dϕ(n)

is valid for all n ∈ N, and that a 2R-step path with start and end at the origin remains within the
cube {x ∈ Zd

: ‖x‖1 ≤ R}. By the Markov property, we thus obtain
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− lim
n→∞

1
n

log E
[
exp(−Φ(n)); ‖S(m)‖1 ≤ R for m ≤ n

]
≤ lim

n→∞

ϕ(n)

n
− lim

n→∞

1
n

log P [‖S(m)‖1 ≤ R for m ≤ n]

≤ lim
n→∞

ϕ(n)

n
−

1
2R

log P[S(2R) = 0],

of which the last summand vanishes when R tends to infinity by the local central limit
theorem (see e.g. [7]). This completes the proof of (18).

We step forward to the large deviation principle. For the case h = 0, the rate function will be

J (x) = sup
λ≥0

(βλ(x) − λ) , x ∈ Rd .

As a supremum of continuous functions, J is lower semicontinuous. Furthermore, J inherits the
convexity from the norms βλ, and hence is upper semicontinuous on its effective domain

DJ = {x ∈ Rd
: J (x) < ∞}.

Moreover, the bounds for βλ in (14) yield that DJ equals the closed unit ball of the 1-norm.
The rest of this section is devoted to the proof of the large deviations estimates: For any closed

subset A ⊂ Rd and open subset O ⊂ Rd ,

lim
n→∞

1
n

log Qn[S(n) ∈ n A] ≤ − inf
x∈A

J (x), (19)

lim
n→∞

1
n

log Qn[S(n) ∈ nO] ≥ − inf
x∈O

J (x). (20)

We start with the upper estimate. Since J (x) = ∞ if ‖x‖ > 1 and ‖S(n)‖1 ≤ n for n ∈ N, we can
restrict to the case where A ⊂ DJ is compact. For n ∈ N, we set H(n A) = inf{H(x) : x ∈ n A}.
Since {S(n) ∈ n A} ⊂ {H(n A) ≤ n}, we have

log E
[
exp(−Φ(n)); S(n) ∈ n A

]
≤ −(bλ(n A) − λn)

for all λ ≥ 0, where bλ(n A) is defined as in (7), but with H(y) replaced by H(n A). From the
representation in (13) of βλ(x) as an infimum, and since A is bounded, we obtain

bλ(n A)

n
≥

− log |n A ∩ Zd
|

n
+ sup

x∈A∩
1
nZd

bλ(nx)

n

≥
− log(nK )

n
+ sup

x∈A
βλ(a)

for all n ∈ N and some constant K = K (A, d). By (18), we then have

lim
n→∞

1
n

log Qn[S(n) ∈ n A] = − sup
λ≥0

inf
x∈A

βλ(x) − λ. (21)

However, in order to complete the proof of (19), we need to exchange infimum and supremum
in (21). For any ε > 0, thanks to the compactness of A, there are m ∈ N and λ1, . . . , λm > 0,
such that the compact sets

Ai =

{
y ∈ A : βλi (y) − λi ≥ inf

x∈A
J (x) − ε

}
, i = 1, . . . , m,
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cover A. From (21) applied to the sets Ai , we therefore obtain

lim
n→∞

1
n

log Qn[S(n) ∈ n A] ≤ max
i=1,...,m

lim
n→∞

1
n

log Qn[S(n) ∈ n Ai ]

≤ − min
i=1,...,m

inf
x∈Ai

βλi (x) − λi

≤ − inf
y∈A

J (x) + ε.

Since ε > 0 was arbitrary, this proves (19).
We step forward to the proof of (20). That is, for an open set O ⊂ Rd , we need to show

lim
n→∞

1
n

log Qn[Sn ∈ nO] ≥ −J (x) (22)

for all x ∈ O ∩ DJ \ {0}, where the origin can be excluded since J is continuous on DJ . To do
this, we first determine some number λ0, at which βλ(x) − λ attains its maximum as a function
of λ: Since βλ(x) is concave in λ, the right derivative

β̇+

λ (x) = lim
ε↓0

βλ+ε(x) − βλ(x)

ε

of βλ(x) is a well-defined and nondecreasing (but not necessarily continuous) function of
λ ∈ [0, ∞). Now, if β̇+

λ (x) < 1 for all λ > 0, the maximum is located at λ0 = 0. Otherwise, we
choose

λ0 = inf{λ > 0 : β̇+

λ (x) < 1},

which is finite since x ∈ DJ ∩O , and which is a transition point from nondecreasing to decreasing
behavior for the map λ 7→ βλ(x) − λ. Hence, in both cases, we have

I (x) = βλ0(x) − λ0. (23)

We now take care of the fact that β̇+

λ (x) might be discontinuous in λ0. In that case, there is a
non trivial “interval” in the half-line {sx : s ∈ [0, ∞)}, on which (23) remains true with the fixed
constant λ0. We express x by a linear combination of the end points of this interval. Let β̇−

λ (x)

denote the left derivative of βλ(x) with respect to λ > 0. Set

y+
=

x
β̇+

λ0
(x)

and y−
=

0 if λ0 = 0,
x

β̇−

λ0
(x)

if λ0 > 0.

We then have

(1 − t)y−
+ t y+

= x

with t =
|y−y−

|

|y+−y−|
< 1 if β̇+

λ0
(x) < β̇−

λ0
(x), and with t = 1 in the continuous case. For a

reason that will become clear later, we furthermore approximate y− by slightly “smaller” sites

y−
ρ

def
= ρy−. Since O is open, we can choose ρ < 1 large enough to fulfill

(1 − t)y−
ρ + t y+

∈ O. (24)



608 M. Flury / Stochastic Processes and their Applications 117 (2007) 596–612

Let finally (y−
ρ,n) and (y+

n ) be two sequences in Zd , such that

lim
n→∞

y−
ρ,n

n
= (1 − t)y−

ρ and lim
n→∞

y+
n

n
= t y+, (25)

and set xn = y−
ρ,n + y+

n for n ∈ N. Thereby, if λ0 = 0 or t = 1, we may simply set y−
ρ,n = 0.

We want to renew the Markov chain at the sites y−
ρ,n and xn . To this end, let R be an arbitrary

integer. Since O is open, we obtain from (24) and (25) that there exists some n0 ∈ N such that
xn + y ∈ nO is valid for all ‖y‖1 ≤ R and all n ≥ n0. As a consequence,{

H(y−
ρ,n) ≤ (1 − t)n

}
∩
{

H(y−
ρ,n, xn) ≤ n

}
∩
{
‖S(m) − xn‖1 ≤ R for H(y−

ρ,n, xn) < m ≤ H(y−
ρ,n, xn) + n

}
is contained in {S(n) ∈ nO} for n large enough. By the monotonicity of Φ and a double
application of (11), we furthermore have

Φ(n) ≤ Φ
(
H(y−

ρ,n)
)
+ Φ

(
H(y−

ρ,n), H(y−
ρ,n, xn)

)
+ Φ

(
H(y−

ρ,n, xn), H(y−
ρ,n, xn) + n

)
.

From (18) and the strong Markov property, it thus follows that the left-hand side of (20) is not
smaller than

lim
n→∞

1
n

log E
[
exp

(
−Φ(H(y−

ρ,n))
)
; H(y−

ρ,n) ≤ (1 − t)n
]

(26)

+ lim
n→∞

1
n

log E
[
exp

(
−Φ(H(y+

n ))
)
; H(y+

n ) ≤ tn
]

(27)

+ lim
n→∞

1
n

log E
[
exp(−Φ(n)) ; ‖S(m)‖1 ≤ R for m ≤ n

]
,

of which the last summand vanishes when R tends to infinity, as we have seen in the proof of (18).
In order to bound the first and the second summand, we need the following result: For λ ≥ 0

and y ∈ Zd , let the distribution P y
λ be given by means of the density

dP y
λ

dP
=

1
Z y

λ

exp(−λH(y) − Φ(H(y))) 1{H(y)<∞},

where Z y
λ = bλ(y) is the corresponding normalization constant.

Lemma 1. Let (yn) a be a sequence in Zd with limn→∞ yn/n = y ∈ Rd
\ {0}. For every λ > 0

and γ < β̇+

λ (y) ≤ β̇−

λ (y) < δ, we have

lim
n→∞

P yn
λ [H(yn)/n ∈ [γ, δ]] = 1. (28)

Proof. For any 0 < ε < λ, we have

E
[
exp(−λH(yn) − Φ(H(yn))) ; H(yn) 6∈ [γ n, δn]

]
≤ exp(εγ n)E

[
exp(−(λ + ε)H(yn) − Φ(H(yn))) ; H(yn) < ∞

]
+ exp(−εδn)E

[
exp(−(λ − ε)H(yn) − Φ(H(yn))) ; H(yn) < ∞

]
.

From the shape theorem therefore follows
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lim
n→∞

1
n

log P yn
λ [H(yn)/n 6∈ [γ, δ]]

≤ −ε min
{

βλ+ε(y) − βλ(y)

ε
− γ, δ −

βε(y) − βλ−ε(y)

ε

}
.

By the assumptions on γ and δ, the right-hand side of this last expression is strictly negative for
ε > 0 small enough, which then implies (28). �

We are now able to complete the proof of (20). Suppose λ > λ0 and γ < β̇+

λ (y+). The shape
theorem provides that (27) is not smaller than

γ λ − βλ(t y+) + lim
n→∞

1
n

log P y+
n

λ

[
H(y+

n )/n ∈ [γ, t]
]
,

for which Lemma 1 applies because of β̇−

λ (y+) < β̇+

λ0
(y+) = t , the strict inequality coming

from the choice of λ0. Since β̇+

λ (y+) is upper semicontinuous in λ0, we thus obtain that (27) is
not smaller than

sup
λ>λ0

sup
γ<β̇+

λ (y+)

γ λ − βλ(t y+) ≥ tλ0 − βλ0(t y+).

If λ0 = 0 or t = 1 is the case, by setting y−
ρ,n = 0 for n ∈ N, this already proves (22). Suppose

now λ0 > 0 and t < 1, which implies y−
ρ 6= 0. Since β̇−

λ (y−) is lower semicontinuous in λ0, we
have ρ(1 − t) = β̇−

λ0
(y−

ρ ) ≤ β̇+

λ (y−
ρ ) and β̇−

λ (y−
ρ ) < (1 − t) whenever λ < λ0 is large enough.

The shape theorem and Lemma 1 with γ = ρ2(1 − t) and δ = (1 − t) then imply that (26) is not
smaller than

sup
λ<λ0

ρ2(1 − t)λ − βλ((1 − t)y−
ρ ) ≥ ρ2(1 − t)λ0 − βλ0(ρ(1 − t)y−).

Since ρ < 1 was arbitrary, we obtain (22). This completes the proof of (20).

5. Dual norms and phase transitions

The aim of this section is to prove Corollary C and Theorem D. Recall the definition of the
dual norms

α∗
λ(`) = sup

x 6=0

(
` · x
αλ(x)

)
and β∗

λ(`) = sup
x 6=0

(
` · x
βλ(x)

)
for λ ≥ 0 and ` ∈ Rd . We first prove some elementary properties of α∗

λ and β∗
λ , similar to the

ones of the Lyapunov functions αλ and βλ in Theorem A.

Lemma 2. (a) 1/α∗
λ(`) is continuous in (λ, `) ∈ [0, ∞) × Rd and concave increasing in

λ ∈ [0, ∞), satisfying
‖`‖1

λ + log(2d) + EVx
≤ α∗

λ(`) ≤
‖`‖1

λ − log E exp(−Vx )
.

(b) 1/β∗
λ(`) is continuous in (λ, `) ∈ [0, ∞) × Rd and concave increasing in λ ∈ [0, ∞),

satisfying
‖`‖1

λ + log(2d) + ϕ(1)
≤ β∗

λ(`) ≤
‖`‖1

λ + ϕ(1)
.
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Proof. Since the proof works the same way for either the quenched or the annealed case, we
can restrict to the quenched setting. By the definition of α∗

λ(`), to fixed ` ∈ Rd , the concavity
of α∗

λ(`) in λ is derived from the concavity of αλ(x) in λ to every fixed x ∈ Rd . The concavity
then implies lower semicontinuity in λ, while the upper semicontinuity, again by the definition
of α∗

λ(`), is derived from the continuity of αλ(x) in λ. This proves continuity in the λ variable;
continuity in the x variable is obvious. Let now (λk)k∈N and (`k)k∈N be two sequences with
λk → λ and `k → `. We then have∣∣α∗

λk
(`k) − α∗

λ(`)
∣∣ ≤

∣∣∣∣α∗
max
j∈N

λ j
(`k − `)

∣∣∣∣+ ∣∣α∗
λk

(`) − α∗
λ(`)

∣∣
and thus limk→∞ α∗

λk
(`k) = α∗

λ(`). This proves the joint continuity. The bounds for α∗
λ(`) finally

follow from the bounds for αλ(x) in (2) by standard calculations. �

The “point to hyperplane” interpretation on the dual norms in Corollary C is derived from the
shape theorem (Theorem A). The proof is a modification of Sznitman’s proof for the continuous
setting [6]. Since it works in a similar way for either the quenched or annealed case, we restrict
to the more complex quenched model. Here, we have to find a set of full P-measure, on which

lim
u→∞

1
u

log E
[
exp(−λH`(u) − Ψ(H`(u), ω))

]
= −

1
α∗

λ(`)
(29)

for all λ ∈ [0, ∞) and ` ∈ Rd
\ {0}, where H`(u) is the time of first entrance into the half-

space {x ∈ Rd
: ` · x ≥ u}. To this end, let (un)n∈N be an arbitrary sequence of numbers with

limn→∞ un = ∞. For any fixed λ ∈ [0, ∞), by the scalar linearity of αλ on Rd , we have

α∗
λ(`) = sup

x∈Rd :`·x=1

1
αλ(x)

.

Consequently, since αλ is continuous and lim‖x‖1→∞ αλ(x) = ∞, there exists x∗
∈ Rd such that

` · x∗
= 1 and

α∗
λ(`) =

1
αλ(x∗)

.

In order to find a lower bound for the left-hand side of (29), choose a sequence (xn)n∈N in Zd ,
such that xn · ` ≥ un and limn→∞ xn/un = x∗. We then have H`(un) ≤ H(xn), and thus

log E
[
exp(−λH`(u) − Φ(H`(u), ω))

]
≥ −aλ(xn, ω)

for all ω ∈ Ω and n ∈ N. On the set Ωλ of full P-measure appearing in Theorem A, we
consequently have

lim
n→∞

aλ(xn, ω)

un
= αλ(x∗).

Since the set Ωλ does not depend on the sequence (xn)n∈N, this proves the lower bound part of
(29) on Ωλ for a fixed λ and all ` 6= 0.

For the upper estimate of the left-hand side of (29), choose a number R large enough, such
that

inf{αλ(x) : ‖x‖1 ≥ R} ≥ αλ(x∗), (30)
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which is possible since αλ is a norm. For ω ∈ Ω and any K ⊂ Zd , we set

aλ(K , ω) = − log E
[
exp(−λH(K ) − Ψ(H(K ), ω)) ; H(K ) < ∞

]
with H(K ) = inf{H(y) : y ∈ K }. For n ∈ N, we furthermore set

Dn = {x ∈ Zd
: ‖x‖1 ≥ Run} ∩ {x ∈ Zd

: ` · x ≥ un},

whose interior boundary is

Ln = {x ∈ Dn : ‖x − y‖1 = 1 for some y 6= Dn}.

Since we have H(Dn) ≤ H`(un), the logarithmic expectation in (29) is bounded from above by

−aλ(Dn, ω) = −aλ(Ln, ω) ≤ log |Ln| − min
x∈Ln

aλ(x, ω). (31)

Now, since |Ln| ≤ (2Run + 1)d , it only remains to take care of the minimum in (31), which we
assume to be attained at a site xn ∈ Ln . Again by the shape theorem, we have

lim
n→∞

aλ(xn, ω)

un
= lim

n→∞

α(xn)

un
≥ lim

n→∞

inf
x∈Dn

αλ(x)

un
≥ αλ(x∗)

on the same Ωλ of full P-measure as before, where the last estimate follows from (30). This
completes the proof of (29) on Ωλ for a fixed λ and all ` 6= 0.

It remains to extend the result to all λ on a common set of full P-measure. But, since the left-
hand side in (29) is nondecreasing in λ, as well as the right-hand side is continuous in λ, such a
set is given by

⋂
λ′∈[0,∞)∩Q Ωλ′ .

We step forward to the proof of Theorem D. Again, we restrict to the quenched setting. The
annealed part of the theorem then follows by a simple change of notations.

We first want to establish (6). By Theorem B, it suffices to show

sup
x∈Rd

(h · x − I (x)) =

{
0 if α∗

0(h) ≤ 1,

λ
qu
h if α∗

0(h) > 1,
(32)

where λ
qu
h > 0 is the unique number with α∗

λ
qu
h

(h) = 1. Existence and uniqueness of λ
qu
h , as well

as the property λ
qu
h > 0, thereby follow from Lemma 2.

In the case α∗

0(h) ≤ 1, the lower estimate for the supremum is obvious. Assume now
α∗

0(h) > 1. From Theorem A, we know that αλ(x), to fixed x ∈ Rd
\ {0}, is concave and

strictly increasing in λ ∈ [0, ∞). Therefore, the right derivative

α̇+

λ
qu
h

(x) = lim
ε↓0

αλ
qu
h +ε(x) − αλ

qu
h

(x)

ε

is well-defined and strictly positive. From αλ
qu
h

(x), it furthermore inherits the scalar linearity in

x ∈ Rd . As a consequence, there exist e ∈ Sd−1 and y = e/α̇+

λ
qu
h

(e), such that α̇+

λ
qu
h

(y) = 1 and

1 = α∗

λ
qu
h

(h) = sup
x∈Sd−1

(
h · x

αλ
qu
h

(x)

)
=

h · e
αλ

qu
h

(e)
=

h · y
αλ

qu
h

(y)
.

By the first condition on y, the map λ 7→ αλ(y) − λ is nondecreasing for λ ≤ λ
qu
h and

nonincreasing for λ > λ
qu
h . We therefore have I (y) = αλ

qu
h

(y) − λ
qu
h . The second condition
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on y now implies

sup
x∈Rd

(h · x − I (x)) ≥ h · y − I (y) = λ
qu
h .

For the reversed estimate, we additionally set λ
qu
h = 0 when α∗

0(h) ≤ 1. We can assume
h 6= 0. The definition of α∗

λ then yields

sup
y:h·y≥0

(h · y − αλ(y)) ≤ sup
y∈Rd

(
h · y −

h · y
α∗

λ(h)

)
=

{
0 if λ = λ

qu
h ,

∞ if λ 6= λ
qu
h ,

which leads to

sup
x∈Rd

(h · x − I (x)) ≤ inf
λ≥0

(
sup

y:h·y≥0
(h · y − αλ(y)) + λ

)
= λ

qu
h .

This completes the proof of (32).
It remains to establish the limiting behavior of S(n)/n. To this end, observe that the rate

function Ih satisfies

Ih(x) ≥ α(x) − h · x

for all x ∈ Rd . When α∗

0(h) < 1, it only vanishes at the origin, and the sub-ballistic behavior
follows by the large deviation estimates in the quenched part of Theorem B.

On the other hand, when α∗

0(h) > 1, the rate function Ih only vanishes on the set Mh , which
is compact by the continuity of I on its effective domain DI (which itself is compact). Observe
furthermore that Mh cannot contain the origin since λ

qu
h > 0. The ballistic behavior now follows

again by the large deviation estimates. This completes the proof of Theorem D.
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