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1. Introduction

In this article we consider the problem of dependence on an unknown paranter
the solutionz(¢; ¢) of the semilinear abstract Cauchy problem

P { 0 =A@+ F(g,1,2(0), 20 €Z,

120 =z0. tel0,T],
where Z, a Banach space, € Qaq C Q, a normed linear spaca&gg is an open subset
of Q), andA(q) is the infinitesimal generator of an analytic semigrdup; ¢) on Z for
all g € Qag. The spaceg andQ are referred to as the state space and the parameter space,
respectively, whileQ ,q will be referred to as the admissible parameter set. Th&ggt
reflects the fact that sometimes not all elementgddire “admissible” for the particular
problem at hand, although quite often one ighg = Q.

Parameter identification problems for syst¢®), and other similar type of equa-
tions [2,5,7] are usually solved by direct methods such as quasilinearization. For the
application of these methods it is essential that solutions be differentiable with respect to
the parametey. For a concrete application of quasilinearization in a model similgPg
for the dynamics of Shape Memory Alloys see [10].

In 1977, Clark and Gibson [4] analyzed the differentiability of solutions in linear ab-
stract Cauchy problems of the type

%Z(I) = A(g)z(t) +u(),

whereA(g) generates a strongly continuous semigroup 4ag) = A + B(q) whereB(q)
is assumed to be bounded. That is, the dependengecomes through a bounded compo-
nent of A(g).

Later on, in 1982 [1] this problem was studied under weaker assumptions, allowing for
the parameteq to appear in unbounded terms 4fg).

In 2000 Burns et al. [3] derived conditions under which the solutions of nonlinear
Cauchy problems of the type

d
Ez(t) = Az(t)+ F(q.1,2(1)),

are differentiable with respect to the parametein this case, the parametgrwas not
allowed to appear in the linear part of the equation.

In this article we shall obtain conditions under which the solutions of the general ab-
stract Cauchy problerti?), are Fréchet differentiable with respecttoro our knowledge,
this problem has never been dealt with before. Moreover, we will prove that, under certain
conditions, the corresponding Fréchet derivatives are solutions of particular nonhomoge-
neous evolution equations called the “sensitivity equations.” We will provide an explicit
form for these equations.

2. Preliminary results

Throughout this paper we shall consider the following standing hypotheses:
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H1: There existo > 0 such that the type df (1; ¢), call it wy, is less than or equal tesg
for all g € Qaq and there exist€, > 0 such that|7 (¢; ¢)|| < Cye* forall r >0
andq € Qagd. The constan€, depends o but it can be chosen independenyofn
compact subsets @ q.

Note. Although we will make explicit use of the hypothesig < —go for ¢ € Qag, this
can be relaxed by requiring only that gup,_, w, < oo.

H2: D(A(g)) = D is independent of and D is a dense subspace Bf

For g € Qag, let 6(A(q)), p(A(q)) denote the spectrum and resolvent, respectively,
of the operatorA(g). Sincew,; < —eg, we have sufRe(1), A € 0 (A(q))} < —eo. For
A € C such that Re\) > —gq the fractional powergil — A(g))® of Al — A(q) are
well defined, closed, linear, invertible operators Znwhen § € [0, 1] (see [13, Sec-
tion 2.6]). We shall denote by, s the spaceD((—A(g))?) embedded with the norm of
the graph o —A(q))’. For fixeds, these spaces are all the same, independeptsifice
D((—A(q))?) =D, Z]1_s (the real interpolation space of order-15 betweenD andZ),
in the sense of an isomorphism (see [8, Corollary 2.2.3]). Hence, far allQ, these
spaces are all set theoretically equal and topologically isomorphic. In order to simplify
the notation, we shall then dendi((—A(g))%) with Ds and Z,.s with Zs. Now, since
0 € p(A(g)), it follows that the graph norm is equivalentffoll, s = (—A(g))%z]|. Also,
there exists a constaM,, such that| (—A(g))°T (t; ¢)|| < qu;—zot, forall > 0 (see [13,
Theorem 2.6.13)).

H3: There exists a constafie (0, 1) such that the mapping : Qagx [0, T1x Z; s — Z
is locally Lipschitz continuous in andz; i.e., for anyg € Qaq and any bounded
subsetl of [0, T] x Zs there exists a constaht= L(g, U) such that foi =1, 2,

|F(g.11.21) — F(q. 12, 22)| , < L(1ta — t2] + llz1 — 22ll¢.5)

for (1, z;) € U, where the constarit can be chosen independenyodn any compact
subset 0fQ 4.

This regularity condition guarantees existence and uniqueness of solutions of prob-
lem (P),, provided that the initial conditiogy is in Zs. See [12] and [11] for details.
We will now state and prove two results that will be needed later on.

Lemma 1. Under hypothesed1 andH2, for anyg1, g2 € Qagands € (0, 1) we have

(i) A(q1)(—A(g2))~? is bounded orZ_;.
(i) A(qT(;q2) € LY0,00; £(Z)) and A(qD)T (-; q2) € L™y, 00; L(Z)) for each
n > 0.
(i) T(:q2) € LY0,00: L(Z, Zgy5)) and T(-; q2) € L®(n, 00; L(Z; Zy, 5)) for each
n > 0.
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Proof. Since A(g2) is the infinitesimal generator of an analytic semigrolifr; ¢2),
this semigroup commutes with any fractional power-efi(¢2). Hence, for anyz €
D((—A(g2))?) and anyr > 0 we have

AT (t; g2z = A(qD)T (t; g2) (—A(g2) " (—Alg2)’z
= AlqD(=A(2) T 42 (- Ag2) =

Note that(—A(g2)) ™% € £(Z) and A(g1) is closed. By the Closed Graph Theorem it
follows thatA(g1)(—A(g2)) % is bounded oD ((—A(g2))1~?%) (this proves (i), which is
dense inZ.

Hence, forz € D((—A(g2))?),

[A@DT (5 920z < [AGD(-A@D) " | 22y, 21T E a2 (- A@2) 2|
—e&ot

e
< C(ql,qz)qutTllzll. 1)

Sincez € D((—A(g2))°%) is dense inZ andA(q1) T (t; ¢2) is everywhere defined, it follows
that (1) holds for alk € Z.
Therefore

|AGDT @5 92)] 1) < C(q1, g2) Mgyt °e™, 1>0,
which clearly implies (ii) since & § < 1 andeg > 0.
Finally,

[(—A@D)’ T: 99| £y = | (~A@D) " AGOT (592 £,
<I(=460)" g p 4@ T 02)]
< C(q) |A(qDT (1 g2) HE(Z)-

Thus, fort > 0,

|7 q2) Hﬁ(z;quj) <C@DAGDT 542 || £(7) < Clgr, g2t Pe ™"

Hence (iii) follows and the desired result is established.

Note. Although this result clearly implies that the operatbig1)T (¢; g2) is bounded for

¢t > 0, no uniform bound can be found fonear zero. Fog; = g2 = ¢, Lemma 1 implies,

in particular, that the derivativ%T(t; q) of the solution operator of the homogeneous
equation associated wittP), is integrable in a neighborhood ot= 0.

We will also require thatA(g) be “well-behaved” with respect tg in the following
sense:

H4: For thes in H3 and for anyy1, g2 € Qaqthere are constantd (¢1, g2) andC (g1, ¢2)
both depending og; andgz, such thaﬂl(—A(Q1))8(—A(qz))_5IIc(Z) < M(q1,92),
A(qD[A(g)]1™L = I1| < C(q1, g2) andC (g1, g2) — 0 asq1 — qo.
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For an example of a family of differential operators satisfying hypothesis H4 see [12,
Lemma 2.4, Appendix].

Note. It is sufficient to request that H4 be true #& 1, since in that case, it can be shown
that the first inequality of H4 holds for any0§ < 1 (see [9, Lemma 3.3]). We point out
that we can establish Theorem 2 below replacing H4 with the following hypothesis:

H4': For eachyg € Qaqthere exist€ = C(gp) such that

1(A(q) — A(g0))z|| < Cllg — 0| || A(q0)z

, z€D, g€ Qad

Theorem 2. SupposeéH1-H4 hold. Then for anyo € Qag ande > 0, there exists$ > 0
such that

[A@T (-, g0z = AGO)T (- q0)z| 110 0: 2y < 2]
forall z € Z, and for allg € Qaq satisfying|lg — qoll < §, that is

or equivalently, for every fixegh € Qaqthe mapping fronQ into L1(0, oo; £(Z)) defined
by

q— A@)T (-, q0)

is continuous orQ ag.

Proof. Lete > 0, go € Qag- Then forz € Z we have

[A@T (5 g0z = AGO) T (5 90)z | 11,001 2)

= / |A@T ¢t g0z — Algo) T (t; go)z | , di

0
0o

= /|| (A@Ago) ™ = I)A(qO)T (1: qo)z] , dt
0

<A@ Ao ™t 1| / |Aq0) T (1: q0)z , dt
0

<C(@,90) [ AG0)T ¢, 90| 110 001 (2 17l
<ellzll for llg —qoll <3,

whereC(q, qo) is the constant in H4. We have used Lemma 1(ii) to obtain the next to
last inequality while the last inequality follows by choosifigsmall enough such that

C(q.90) < elllA(GO) T (- 90l 110,00 £2y)) ! @Ndg € Qag, fOT lg — qoll <3. O
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3. Main results

We now proceed to prove the main results. Recall thatder Zs, the solutionz(z; g)
of (P), satisfies the integral equation

t

z(nq)=T(t;q>zo+/T(r—s;q)F(q,s,z<s;q>)ds
0
=T(t;q)z0+ S(t;q), te€][0,T].

It is important to note here that whilr; ¢) is defined only for € [0, T'] (where solutions
of (P), are known to exist)T (¢; ¢)zo is defined for alk > 0.

Consider now the following standing hypothesis concerning gheegularity of
d .
T q):
di

H5: The mappingg — A(g)T(-; go) from Q into L1(0, oo; £(Z)) is Fréchet differen-
tiable atqg for all go € Qaq (under H1-H4, we already know that this mapping is
continuous, by virtue of Theorem 2).

Observation. No general conditions on the family of operataté;) are known to guar-
antee hypothesis H5. However, in some examples H5 does hold. For example, in the case
of linear delay differential equations, withdenoting the vector of delays (see [1]).

Theorem 3. Supposdi1-H5 hold. It follows that

(i) The mappings — T (-; q) from Q — L*°(0, co; L(Z)) is Fréchet differentiable ajo,
for eachgg € Qag. Moreover, for anyr > 0 and h € Qag the g-Fréchet derivative
of T(z; q) evaluated alyo € Qag and applied toh € Q, i.e.,[D,T(t; go)lh, is the
solution vy (¢) of the following linear IVP, the so-called “sensitivity equation” for
T(t;q),in L(Z),

(51) { Lvop(t) = Aqo)va(t) + [Dg A(@) T (t; q0)|g=go 1.
vp(0) =0,
and
(it) foreverygo € Qad, DyT (:; q0) = DyT (:; q)|g=go € L*°(0, 00; L(Q; L(Z))).

Proof. Let go € Qag. From Lemma 1(ii) and Theorem 2 it follows immediately that for
z0 € D, A(¢)T (; q0)zo, viewed as a mapping fror@ into L1(0, oo; Z) satisfies the hy-
potheses of Theorem 1 in [1] and therefdf€; q)zo is Fréchetg-differentiable atgo

as a mapping fronQ into Z (in fact, our hypothesis H5 implies hypothesis H6 in [1],
Lemma 1(ii) implies hypothesis H4 in [1] and Theorem 2 implies hypothesis H5 in [1]).
Moreover, we have

t

[DyT (t: q0)z0] () = / T(t — s:90)[ Dy A(@)T (53 G0)Z0lg=go | () ds. ()
0
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It remains to show the Fréchet differentiability of the mapping> 7 (-; ¢) when
viewed as a mapping form@ into L>°(0, oo; L(Z2)), i.e., in the strongeL.> (0, oo; L(Z))
norm. Lete > 0, t > 0 andgg € Qag. First note that for any: € Q with ||a]| < (§ as

appearing in Theorem 2) we have

d
E[T(t; g0+ h)zo — T (t; q0)20)
=A(qo+h)T(t; g0+ h)zo — Algo) T (t; q0)zo

= A(go+ M| T (t; g0+ h)zo — T (1: q0)z0] + (A(go + h) — A(q0)) T (1; q0)z0.

From Theorem 2 we havéA(qo + h) — A(g0))T (-; go)zo0 € L1(0, 00; Z). It follows

(see [13, Corollary 2.2]) that

T(t;90+ h)zo— T (t; q0)z0
t

= / T(t —s:q0+ h)(A(qo+h) — A(q0))T (s: qo)zods.
0

Therefore, for alkh € Q with ||| < &, we have

|75 g0+ h)zo — T(t: q0)z0| ,

1
< / Mgorne™ 09| (Algo + )T (55 90) — A(q0)T (5: 90))z0]| , ds
0
< C[ (Ao +MmT(:q0) — AGO)T (3 40)) 20| 110 00: 2
< Cellzollz,
where the last inequality holds by virtue of H5. Thus for 0,
|7 go+h) = T(t540) | () < Ce forllhll <38,
and, since the consta@tabove does not depend on
17 ¢ g0+ 1) =T340 oo 0,00 2029 < C& - TOr IRl <.

Hence we have the estimate

t

T(t;qo+h) — T(t; q0) — / T (t = 5:90)[Dg A@)T (51 q0) lg=go |11 ds
0

t

/{T(r g0+ (Ao +h) — Aq0))T(s: go)
0

—T(t —5:90)[ Dg A@ T (55 q0) lg=qo |1 } ds

L£(Z)

@)

(4)
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t
f[T(t —s;90+h) — Tt —s590)|(A(qo + )T (s; g0) — A(q0) T (s: q0)) ds
0

t

+/T(r—s;qo>[A(qo+h)T<s;qo>—A(qo)T(s;qo)
0

— [DA@T (53 q0)|g=qo |1 ] ds

L(Z)
t
g/”T(r—s;qo+h) - T(f—S§CI0)||L(Z)
0
x | A(go+ )T (s: qo) — A(qo) T (s: qo) ”L(Z) ds
t
+/||T(f =590 | (2, Algo + T (53 g0) — A(g0) T (5 g0)
0
— [DgA@T (55 40)g=go )| £ 1) @5

t
<eCfHA<qo+h>T(s;qo> — AT (53 0)| £, ds
0

t
+ C/IIA(qo + )T (s; g0) — A(qo)T (s; q0)
0

— [DgA@T (51 0)lg=go |1 ||£(Z) ds
=¢C||A(go+MT (- g0) — Alqo)T (: q0) ||L1(0’,;£(Z))
+ C|A(go+MT(; q0) — Aqo)T (; q0)
- [DqA(q)T('§ q0)|‘1=f10]h”L1(0,t;£(Z))
<eC|A(go+MT(; q0) — Ago)T (-: q0)
~[DgA@T 340 lg=go] | 110,00: 2.2y
+&C||[Dg AT (5 40 lg=go J “Ll(o,oo;c(Z))
+ C||A(qo+mMT(:: g0) — A(go)T (:; g0)
—[DgA@T (1 q0)lg=go |1 ”Ll(O,oo;L(Z))
=(e+ 1C|Algo+ T (- g0) — A(qo)T (- g0)
- [DqA(‘I)T('Z QO)|q=qo]h || L1(0,00:£(2))
+6C|| [Py A@T 5 40)lg=0 )| 110,00 £:2))- )
Now by hypothesis H5 for the given> 0 there exist§ > 0 such that
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Ao +MT (5 g0) — AT (5 g0) — [Dg AT (5 40)lg=qo ] | 110,00 £:2))
<elhll (6)
for ||h|| <&.
Also, since D,;A(q)T (:; q0)lg=qo € L£(0, LY(0, 00; £(Z))), there existsM, 0 <
M < oo, such that

| Dy A@T ¢ 40)la=a0] (0. 130,00, 220 < M- (7)
Finally, employing (6) and (7) in (5), we get that fi|| < min(s, £),

t

T(t;q90+h) — T (t; q0) — / T (t — 5:q0) [ Dg A(@)T (53 q0)|g=qo |1 ds
0
< (e +1)Cellh|| +eCM|h| < Ke|hl|.

L(Z)

Here, the constarit depends ogq (and also o andé), but not orv. Hence the mapping
from Q into L*°(0, oco; L(Z)) defined by

qg—>T(q)
is Fréchet-differentiable atyg and

t
[D4T (15 90)] () =/T(t —5;90)[Dg A(@)T (55 q0)lg=go ] (-) ds. (8)
0

It is therefore clear that for evelye Q, the Fréchet derivativeD, T (¢; go) 14 is in fact the
solutionwy, (¢t) of the IVP (S1) in L(Z). Sinceqg € Qaqis arbitrary, part (i) of the theorem
follows.
To prove (i) we first note that by H5, fogo € Qad, DgA@)T (-; 90)lg=qo € L(Q;
L0, 00; £(Z))) and thus there exist§ = C(qgo) such that for: € Q,
| DaADT 3 40)lg=goht | 110,00 22y < C @ I, (9)

Now, it follows from (8) that fort > 0, go € Qagandh € Q,

‘
I[Py T (2 QO)]h”L(z) < Mqo[“ Dy AT (s ‘10)|q=qohHL(z) ds
0

< My, ”DqA(‘I)T(‘§ q0)lg=goh ||L1(0,oo;L(Z))
< My, C(qo) ||hl]
C(go) | h]l.

Thus
1D4T (t:90) | £(g: £(2y) < € (@0,

and sinceC(go) does not depend on > 0, it follows that D,T(:;q0) € L*(0, oo;
L(Q; L(Z))). O
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The next two theorems show that under slightly stronger assumptions on the map-

ping ¢ — A(g)T(:; qo0), it is possible to obtain the Lipschitz continuity of the mapping
g — Dy4T(;q0) as a mapping fromQ into L*°(0, oo; £(Q; £(Z))) and from Q into
L*>(0, 00; L(Q; L(Z, Zs))). More precisely, consider the following hypothesis:

H6: The mappingg — D,A(¢)T (-; gqo) from Q into LY(0, 00; L(Q; L(Z))) is locally
Lipschitz continuous ajo, for all g € Qag.

Theorem 4. Let go € Qag and assume hypotheseld—H6 hold. Then the mapping —
Dy T (:; qo) from Q into L*°(0, oo; L(Q; £(Z))) is locally Lipschitz continuous afp.

Proof. First of all, note that hypotheses H1-H5 imply, by virtue of Theorem 3(ii),
that D, T (-; g0) € L*°(0, 00; L(Q; L(Z))). Now, lett > 0, go € Qad, Selecth € Q
such that||h|| < & (5§ as appearing in Theorem 2) and let us den6tgr; go)(-) =

Dy AT (t; g0)lg=qo () € L(Q, L(Z)). Theorem 3 together with the appropriate choice
of a(h), 0< |a(h)| < 1, yield

[ D4 T (t: 90+ 1)) = DT (1 90) )| £, £y

t
/[T(t—s;q0+h)Gq(s;q0+h)(-)—T(I—SQQO)Gq(S;qO)(')]dS
0

L(Q.L(Z))

t
< /“T(t — 5140+ MGy (5190 +h) — Gg(5:90]O) | £ .20 45
0

t
+/H(T(t —S»f]0‘|'h) - T(t _Ssqo))Gq(Srqo)()‘}E(Q’ﬁ(z)) dS
0

t

< My / eI Gy(s390+h) — Gq(5:90) | £ 0. £(2)) 45
0

t
+/|| Dy T (t — 5590+ a()h)Gy(s; q0) b 1 7 ds
0

< Mygi1 |Gy (5 go+h) — Gy (-5 qo) HLl(o,oo;L(Q;L(Z)))

+ || Dy T('? qo + a(h)h) || L®(0,00: L(Q; L(Z))) || G4 (-1 q0) || L1(0,00; £(Q: L(2Z))) il
< C|\hll,

where the last inequality follows from H6, by the fact thBT(-,q) € L*(0, oc;
L(Q; £(Z))), which is provided by Theorem 3(ii), and by the fact th@y (-, g0) €
LY(0, 00; L(Q; £(Z))), which is a result of H6. Here the constahtlepends oo andh

but it can be chosen independent of them@ibounded sets. We then have the desired
result. o



666 T. Herdman, R. Spies / J. Math. Anal. Appl. 307 (2005) 656-676

As we will see later on, in order to obtain theFréchet differentiability ofS(-; ¢) we
will need stronger regularity results for the mappipg> D, T (-; go) than the one just
obtained in Theorem 4. In particular, we will need the local Lipschitz continuity of this
mapping when viewed as a mapping fr@hinto L>°(0, oco; L(Q; L(Z; Zs))). This can be
achieved by requiring slightly stronger assumptions on the mappingD, A(¢)T (-; qo)
than that found in H6. More precisely, consider the following hypothesis:

H7. Foreverygo € Qad, Dy A(g)T (-; 90)|g=qo € LY(0, 00; £(Q; L(Z; Zs))) and the map-
ping g — D, A(q)T (; go) from Q into LY(0, 00; £L(Q; L(Z; Zs))) is locally Lip-
schitz continuous ajg, for all go € Qag.

Clearly H7 implies H6 (since th&s-norm is stronger that th&-norm).

Theorem 5. AssumeH1-H5 and H7 hold. Then, for allgp € Qag, We have that
DyT(-;q0) € L*(0,00; L(Q; L(Z; Z5))) and, moreover, the mapping — D, T (-; q)
from Q into the spacd.®>(0, oo; L(Q; L(Z; Zs))) is locally Lipschitz continuous aty.

Proof. Lett >0,z € Z, h € Q. Then it follows that
|[DgT @ go) ]z,
= [(~A@)" ([D4T ¢: q0)]1)z]

t

= H (—Aq0)’ / T (t — 55 q0){[ Dy A(@)T (s: q0)lg=qo |}z ds
0

z

t

/ T(t — 5 q0) (~A(q0)) [ Dg AW@)T (53 40)lg—go |12 ds
0

V4

t
< / |7 —s; 610)(—A(610))6[DqA(‘1)T(5; q0)|q:q°]hZH z ds
0

t

_ _s 5
< My, / eI (= Ag0)” Dy AT (53 40)a=go |l (. £y 111 1211z ds
0

t
< Myl Nzl z / |(—Aq0)’ Dy A@T (53 90)lg=go | £(: 227, 45
0

t

= Myollhl llzllz / | DgA@DT (5540 a=q0 | £(0: £z, 24, 95
0

= Myglln 1 12112 | Dg A@T 5 40 la=ao | 110.1: 20 2: 2500
< C@lIhl lzlz.
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The last inequality above follows from H7.
Hence,

| DT 5 q)h] £ 4.7, < Clao)lIAll,
and we have

Since the constan€(go) does not depend on> 0, it follows that D, T (:; q0) €
L*>®(0, 00; L(Q; L(Z; Zs))). The Lipschitz continuity of this mapping is obtained imme-
diately by following exactly the same steps as in Theorem.

We will see next that this result implies that—> T'(-; g) is Fréchet differentiable as a
mapping fromQ into L°°(0, oo; L(Q; L(Z; Zs))). In fact we have the following:

Theorem 6. Under the same hypotheses of TheolenT (-; ¢) is Fréchet differentiable
at g, for eachgop € Qa¢, Wwhen viewed as a mapping frofhinto L°(0, co; L(Z; Zs)).

Proof. Let gg € Qag. Then forh € Q with ||k < & so thatgo + ah € Qaq, for all «
satisfying|e| < 1, B(h) appropriately chosen,Q |8(h)| < 1, and any > 0 we can write

|7t g0+ ) = Tt 90) = [DgT (159014 1.2,
[D4T (t: 90+ BU) |h — [ Dy T (12 q0) |1 £ . ,)
<[ DT (13 g0+ BR) = Dy T (1390 £ 9. (77,0, 111

<[ Dy T (-3 g0+ BUDR) = DyT (540 || oo 0002 0:22: 2 I
< C(qo) [ BR] I1n]
<
<

C(qo)Ih1I?
C(qo)ellh|| for ||| <e, forall e such that O< e < 3.

Here we have applied Theorem 5 to obtain the above estimate. The desired differentiability
is established. O

It is important to note that Theorems 3 and 6 imply that the solutjam; g) of the
linear homogeneous problem associatedy, is Fréchet differentiable with respectgo
both as a mapping int@ and intoZs, respectively. Theorems 4 and 5 imply, moreover,
that the corresponding Fréchet derivatives are locally Lipschitz continuous.

We state below a generalization of Growall’'s lemma for singular kernels. The proof can
be found in [6, Lemma 7.1.1]. This lemma will be of fundamental importance for our next
results.

Lemma?.LetL, T, § be positive constants,< 1, a(¢) a real valued, nonnegative, locally
integrable function ori0, 7] and . (¢) a real-valued function of0, T'] satisfying

wu(s)
(t—s)°

t
() <alt) + L/ ds, tel0,T].
0
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Then, there exists a constakitdepending only oi such that

t

1 (t) <a(r)+1<L/
0

a(s)
(r—s)

ds, te[0,T].

Observation 1. From this point orj| - || s shall denote the norm- [|4,.s = |l (—Aq0)° ()] 2.
Recall that forgg € Q, all these norms are equivalent. Moreover, it can be easily shown
that all these norms are uniformly equivalent gy in any subset ofQ for which the
constantC in H4 can be chosen independentgafandg,. For example, ifC in H4 can

be chosen independent gf and g, on compact subsets @, then all these norms are
uniformly equivalent foig in compact subsets @b.

Observation 2. Since(—A(qo))’ T (t; go+h) = (—A(q0))° (—A(go+h) °T(t; go+h) x
(—A(go + h))? on Ds, it follows from H4 that for all > 0,

—eot

C
| (~A@0) Tt qo+ 1| < e,a

Here the constan® depends oigg and#, but it can be chosen independentiadindgg on
any subset of) where the constar® in H4 can be chosen independengafandgs.

Recall now that the solution(z; g) of (P), satisfies the integral equatiarit; ) =
T(t;9)z0+ S(t; q) whereS(t; g) = fé Tt —s;9)F(q,s,z(s;q))ds. Before proving the
Fréchet differentiability of the mapping — S(-; ¢q) from Q — L*°(0, T; Zs), we will
show that ifF (g, ¢, z) satisfies appropriate regularity properties, such a mapping is locally
Lipschitz continuous &jo, for all go € Qa9. We will need this result later.

Consider the following hypothesis:

H8: The mapping; — F(q, -; z) from Q into L*°(0, T; Z) is locally Lipschitz continu-
ous for allz € Zs with Lipschitz constant independent pbn Zs-bounded sets.

Theorem 8. Letgg € Qag, z0 € Ds and assumeél1-H5, H7 andH8 hold. Then the mapping
qg— S(-;q) from Q — L*°(0, T; Zs) is locally Lipschitz continuous af.

Proof. Lett € [0, T, go € Qad- SinceQaqis open, there exists a constaat> 0 such that
qo+h € Qagforall ||h|| < y1. Then, from Theorem 3 we have

S(t; g0+ ) — S(t; q0)
1
=/[T(t — 5590+ h)F(qo+h.s,z(s;qo+h))
0
—T(t —5;90) F (90, 5. 2(s: 90)) ] ds
1
= / T(t—s:q0+h)[F(qo+h,s,z(s;qo+h)) — F(qo,s.2(s: g0+ h)) ] ds
0
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T(t —s;q0+h)[F(qo. 5. 2(s; g0+ h)) — F(qo. 5, 2(s; q0)) | ds

+ | [Tt —s;q0+h) — Tt —s;90)|F(qo. 5. 2(s; 90)) ds

_I_
O | O—_

T(t—s;q0+h)[F(qo+h,s, z(s;qo+h)) — F(qo,s. z(s; g0+ h)) ] ds

|
o _

t

+/T(t—s;q0+h)[F(qo,s,z(s;qo+h)) — F(qo. s.2(s; q0))] ds
0
t

+ / DT (t —s;q0+ B(hh)RF(qo, s, 2(s; qo)) ds
0

provided || 2] < y1, where B(h) is an appropriately selected constant satisfying 0
IB(h)| < 1.
The above identity, together with H8, H3 and Theorem 5, provides the estimate

IS(t: g0+ h) — S(1: q0) | 5
t
< /“T(t —s;q0+h) “L(Z;Z,;)HF(‘IO +h,s,z(s; qo0 +h))
0
— F(qo.s.2(s:q0+ )| ,ds

+/”T(f_S§‘10+h)||z:(z;25)||F(€10’5v2(52qo"'h)) = F(qo,5,2(s: q0)) | , ds

+[DgT (5 g0+ BN 10,1 200,22, 20 11 /”F(QO’S’Z(“QO)) |2 ds
0

M —&o(t—s)
/ e Colhl ds

M go(t—s)
/ ’“’*he L|z(s: go+ h) — z(s: qo)|| s + Call Al

IIZ(s; qo+h) —z(s; q0)lls

< Callhll + Ca —

ds
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|T(s; 90+ h)zo— T(s;g0)z0 + S(s; g0+ h) — S(s; 90)|ls ds
(t —s)?

t
|
— Calh| +C4/
0

DyT(s; qo+ B(h)h)h]lzo + S(s; g0+ h) — S(s;q0)lls ds
(t—s)°

t
I
_ 3l +c4/
0

t
15Cs: go+h) = Stsigollls
S.

< Csllhll + Ca .

0

The constants”; and C» exist and are independent ofe [0, T'] since z(s; go) is
bounded fors € [0, T] and F(q, s, z) is continuous ins andz. The constant€’s, C4 and
Cs represent particular linear combinations@fandCs.

Hence, by Lemma 7, there exist a const&Ensuch that

IS(: g0+ h) — S(1: q0) | 4

1
(r—s)

T
<C5|IhII+KC4C5||h||/ ds =Cellhll, t€[0,T],
0

provided||.|| < y1. The theorem follows. O

Observation. Note that this result together with Theorem 6 imply that the mappirg
z(-; q) from Q into L*°(0, T'; Zs) is locally Lipschitz continuous afp.

We proceed now to prove the Fréchet differentiability of the mapging S(z; ¢),
corresponding to the nonlinear part of probleR),, .
Consider the following hypothesis:

H9: The mappindq, z(-)) = F(q, -, z(-)) from Qag x LY(0, T; Zs) into L>°(0, T; Z) is
Fréchet differentiable in both variables, the mappingz(-)) — F, (g, -, z(-)) from
O x L*®(0,T; Zs) into L*°(0, T : L(Q; Zs)) is locally Lipschitz continuous with
respect tq; andz, with Lipschitz constant independent pbn Zs-bounded sets and
F(q,-z2(:5q)) € L0, T; L(Z; Zs)).

Theorem 9. Letgg € Qad, z0 € Ds and supposél1-H5, H7 andH9 hold. Then the map-
pingg — S(t;q) = fé Tt —s;9)F(q,s,z(s;9))ds from Q — L>®(0, T; Zs) is Fréchet
differentiable aiyo. Moreover, for any € [0, T'1, and anyh € Qad, [DyS(t; go)1h = wy (t)
satisfies the integral equation

t
wp (1) = /{T(t —5590)[ F4(qo. s, 2(s3 g0))h + F=(qo. 5, 2(s: 90))[ Dg T (55 q0)z0]h
0
+ F2(qo, s, 2(s: g0) ) wa (s)] 4+ [Dg T (t — 5: 90) F (g0, 5, 2(s; q0)) |h } ds,
(10)
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andwy, (¢) is the solution of the following nonhomogeneous linear IVP, the so-called “sen-
sitivity equation” forS(z; ¢), in Z:

L wn(t) = (A(go) + F-(qo. 1. 2(t: ) wi (1) Fy(qo. 1, 2(t: qo))h
+ F.(qo. 1. 2(t: q0))[Dy T (t: qo)zolh
+ Jo DgA@T (t — 55 90)lg=goh F (q0. 5. 2(s: g0)) s,
Wi, (0) =0.

(S2)

Observation. Clearly hypothesis H9 is stronger than H8. This observation is important
because in order to prove this theorem we will need to make use of the results in Theorem 8
for which H8 must hold.

Proof. Using the well-known variation of constants formula from semigroup theory, the
sensitivity equation 1) for T(z;9) given in Theorem 3 and recalling that
[DyT(0; q0)zlh =0 for z € Z andh € Q, it follows immediately that the solutiom, ()
of the (IVP) (S2) satisfies the integral equation (10).

Fort € (0, T] we write

S(t;q90+h) — S(t; g0) — wi (1)

= /{T(r — 8590+ h)F(qo +h,s,z(s; 90+ h)) T —s; qo)F(qo, s, z(s; qo))
0
— T(t — 5:q0)[Fy(qo. 5. 2(s3 q0)) b + F-(qo. 5. 2(s: q0)) [Ty (s: q0)z0]
+ F-(qo, s, 2(s: q0))wa(s)] — Dy T (t — 55 90) F (0, 5. 2(s: 90))h } ds

= / T(t —s5590)[F(q0+h, s, 2(s; 90)) — F(qo. 5. 2(s; q0))
0
— Fy(qo. 5. 2(s5 q0))h] ds
+ /t T(t — s:q0)[ F(qo. 5. 2(s: qo + 1)) — F(qo. . 2(s: q0))

0

— Fz(q0.5.2(s: 90)) (2(s: go + h) — 2(s; q0)) | ds
+ / T(t — 55q0) Fz(qo. 5, 2(s: 90)) [S(s: g0 + h) — S(s; q0) — wy(s)] dss

0
t

+ / Tt — 5 40 F: (qo. 2(5: 40)) [ Dy T (5: g0 + () zo]
0

— [DgT (s; g0)z0]R] ds
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t
+f{T(t _S§qo+h)F(q0,S,Z(S;q0)) —T( —S§CIO)F(C]0,S,Z(S;q0))
0
[DyT (t — s q0) F (. 5. 2(s3 q0)) |} ds

t

D
+/T(r—s;qo+h)[F(qo+h,s,z(s;qo+h))—F(qo,s,z<s;qo>)]ds
0
t

—/T(Z—S;QO)[F(qo+h,s,z(S;QO))—2F(qoﬁs,Z(S;ro))
0

+ F(qo0.5.2(s; g0+ h))] ds
7
izli,
i=1

wherel; is theith term in the expression written above.lln I3 andI; we have made use
of the fact that (s; go+h) —z(s; qo) = [Dy T (s; gqo+a(h)h)zolh + S(s; go+h) — S(s; q0),
for some appropriately chosen constagt) satisfying 0< |a (k)| < 1.

In what follows,C; will denote a generic finite positive constant depending®n

Let y1 > 0 be such thatp + n € Q4q for all n € Q satisfying||n|| < y1. Then for any
h € QagWith || k| < y1 we can write

t

le+ I7= / T(t—s:q0+h)[F(qo+h,s,z(s;qo+h))
0

1
— F(qo, s,2(s; 90+ h))]ds + /[T(r —s;q90+h)—T(t —s; qo)]
0

x [F(qo. s, z(s; g0+ h)) — F(qo. s, z(s; q0)) ] ds
t
- / T(t —s:qo0)[ F(qo+ h.s.2(s: q0)) — F(qo. 5. 2(s: qo)) | ds
0
1
= / T(t —s;q0+h)Fy(qo+ a1(h)h, s, z(s; go+ h))h ds
0
t

+ /[DqT(t — 5590+ a2(h)h) F-(qo, s, 2j;(q0))
0

x (z(s: 90+ h) — z(s: q0)) |h ds
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t
- f T(t — s3q0) F4 (g0 + aa(h)h, s, z(s; qo) ) h ds,

0
where 0< |o; (h)| < 1,i =1,2,3, andzj (qo) = z(s; qo) + B(z(s; g0 + h) — z(s; q0)) for
some < B8] < 1.

Continuing, we have

t
16+17=/[T(t — s1qo+h) — Tt — 51 40)|Fy (g0 + cr(hh. 5. (53 go + M)

0
t

+/T(t—s;c]o)[Fq(qural(h)h,s,z(s;qo+h))h
- ;q (g0 + aa(h)h, s, z(s; qo))h] ds
‘
+/[DqT(t — 53q0+ a2(h)h) F-(qo, 5. 2j(q0)) (z(s: g0 + )
—g(s;qo))]hds
:/[DqT(t—S;6]0+ot2(h)h)Fq(qo+a1(h)h,s,Z(S;qo—i—h))h]hds

0
t

+/T(r—s;qo>[Fq(qo+a1<h>h,s,z<s;qo+h))h
— ;q (g0 +a3(h)h, s, z(s; qo0))h] ds
,
+ / [DyT(t — s g0+ 2()h) F- (qo. 5. 2} (q0)) ((s: g0 + h)
- :(S; q0)) | ds.

Hence, by virtue of Theorem 8 and hypothesis H9, it follows that there exist positive
constants”q, C> and L, such that

L
(t—s)

t
16 + I7lls <C1IIh||2+/ (lea(h) = az(m|l1n]]
0

+ [ 2(s5 g0+ h) — 2(s5 0 | ;) 1l ds

t

C2

+f Gy a0+ = 2G5 go) |1l ds
0

< Callh|?,  provided|ih| < yi, (11)
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where the last inequality follows from the Lipschitz continuity of the mapping z(-; q)
from Q into L*°(0, T; Zs) atqgo (note the observation after Theorem 8).

Now let ¢ be a fixed positive constant. It follows from hypothesis H9 that there exist
y2 > 0 andys > 0 such that

t
Ca
ials < [ ot eliblds < Coelhl, (12)
0

provided| 2| < y»2, and

t
C
izl < [ o255t a0 ) = 265 qo)| .
0

< Crelhll, (13)

provided| 2| < y3. The last inequality follows by virtue of the observation following The-
orem 8 and the fact thdt- ||z < || - |Is.

With respect tals, since by H9F, (qo, -, z(+; go)) € L*°(0, T; L(Z; Zs)), we have that
there exists a constafg such that

1S (s: qo+h) — S(s: q0) — wr()lls
(t—s)?

[13lls < Cs
0

where we have also used the fact that|, < | - ||s.
Similarly, by virtue of the local Lipschitz continuity ab, T'(-; go) (Theorem 4), there
exist finite positive constantSg andy, such that

ds (14)

t

Cq .

I als < / sl 1h17ds < Cuolll%. providedh| < ya (15)
0

Finally, from Theorem 6, there exist finite positive constaiis andys such that

t
f[T(r Csiqoth) — T —s5:q0) — DyT(t —s:qo)h]
0

I15lls =

X F(qo, s, z(s; qo)) ds

)
<|TCigo+h) =T q0) = DaT (5 q0h| oo 2200,

t
x /|| F(qo.5.2(5:90)) | , ds
0

t
< Clqoellhl f | F(q0.5.2(s: 90)) | , ds < Caoe|n], (16)
0
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provided|i|| < ys. Here we used H9 to obtain our final estimate.
From (11)-(16) we conclude that there exist finite positive const@ptsCi2, andy
such that for € [0, T] andh € Qag With ||/ < y,

| S g0+ h) — S(t; go) — wi ()|

/’ 1553 g0+ h) = (53 g0) = wn®ls

2 S.
(r—s)

0

< Cullhll + C1
Hence, Lemma 7 provides

t
1
I3 g0+ ) = S(t:00) = wn(0)], < Cuselinl + KCazCraelhl [ = ds
0

< Cuzelhll, 1€[0,T] Al <vy.

We conclude that the mapping— S(-; ¢) from Q — L*°(0, T; Zs) is Fréchet differ-
entiable atgo and wy, () is the Fréchet derivative of(; ¢) at go, i.e., DyS(t; g0) =
wp(t). O

Theorem 10. Under the same hypotheses of Theo&nthe mapping; — z(; ¢) from
the admissible parameter s€l,q into the solution spacd.®(0, T'; Zs), is Fréchet dif-
ferentiable atgg. Moreover, for anyz € Q, ¢ € [0, T], the g-Fréchet derivative of(¢; q)
evaluated ayg and applied toh, i.e.,[Dyz(t; go)1h is the solutiorw, (¢) of the following
linear nonhomogeneous initial value problemZnthe sensitivity equation fai(z; ¢):

Lun(1) = (A(go) + F:(qo. 1. 2(t: q0)))vn () + Fy(qo. 1. 2(t: o))
+ Dy A(@)T (t; g0)z0lg=goh

+ JoDg AT (t — 55 q0)lg=goh F (g0, 5, 2(s5 q0)) ds,
Up (0) =0.

(S

Proof. The Fréchet differentiability of(s; g) = T (¢; g)zo + S(¢; ¢) follows immediately
from Theorems 6 and 9 and the sensitivity equation is readily obtained by combining the
sensitivity equation$Sy) and(S2). O

4. Conclusionsand final remarks

In this article we have obtained sufficient conditions that guarantee that the solutions of
the abstract semilinear Cauchy problem

P { Lz(t) = AlQ)z(t) + F(g,t,z(1), z(t) € Z,
T 120 =20 te[0,T]
are Fréchet differentiable with respect to the paramgtérhis type of regularity results

are needed for the implementation of direct methods for parameter identification like qua-
silinearization.
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Some remarks are in order. In Theorems 1-6 all spaces were considered over the entire
interval [0, co). This was the case since the solutiBy; go)zo of the associated linear
homogeneous initial value problem exists forzad [0, co).

It is interesting to see in Theorems 2—4 how fIf& g-regularity of the solution of the
associated linear problem is entirely driven by theg-regularity of the time derivative
operator of the associat&t)-semigroup, namely ol (¢)T (-; go).

For theg-regularity of the term in the solution corresponding to the nonlinear part of the
equation, namely of (r; go), not only are smoothness conditions required on the nonlinear
term F(q, t, z) (H8 and H9) of(P), but also strongeg-regularity conditions are required
on A(g)T (-; go) (namely H6 and H7). These conditions guarantee the Fréchet differentia-
bility of T'(-; go) when viewed as a mapping from the parameter sgaéeto the space
L>°(0, 00; L(Q; L(Z; Zs))), where the strongeZs-norm is needed.

It is possible to allow;y-dependence on the norms in the state spafeneeded. How-
ever, the domains of the operatetég) cannot depend og. No results are yet known for
this varying domain case.
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